vmscan.c 111.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
49
#include <linux/dax.h>
L
Linus Torvalds 已提交
50 51 52 53 54

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
55
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
56

57 58
#include "internal.h"

59 60 61
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
62
struct scan_control {
63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68

69
	/* Allocation order */
A
Andy Whitcroft 已提交
70
	int order;
71

72 73 74 75 76
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
77

78 79 80 81 82
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
83

84 85 86
	/* Scan (total_size >> priority) pages at once */
	int priority;

87 88 89
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

90 91 92 93 94 95 96 97
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

98 99 100
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

101 102 103 104 105 106 107 108 109 110
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
145 146 147 148 149
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
150 151 152 153

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
154
#ifdef CONFIG_MEMCG
155 156
static bool global_reclaim(struct scan_control *sc)
{
157
	return !sc->target_mem_cgroup;
158
}
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
180
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 182 183 184
		return true;
#endif
	return false;
}
185
#else
186 187 188 189
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
190 191 192 193 194

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
195 196
#endif

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
215 216 217 218 219 220 221
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222 223

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
224 225 226
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227 228 229 230

	return nr;
}

M
Mel Gorman 已提交
231
bool pgdat_reclaimable(struct pglist_data *pgdat)
232
{
M
Mel Gorman 已提交
233 234
	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
		pgdat_reclaimable_pages(pgdat) * 6;
235 236
}

237
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
238
{
239
	if (!mem_cgroup_disabled())
240
		return mem_cgroup_get_lru_size(lruvec, lru);
241

M
Mel Gorman 已提交
242
	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
243 244
}

245 246 247 248 249 250 251 252 253 254
unsigned long lruvec_zone_lru_size(struct lruvec *lruvec, enum lru_list lru,
				   int zone_idx)
{
	if (!mem_cgroup_disabled())
		return mem_cgroup_get_zone_lru_size(lruvec, lru, zone_idx);

	return zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zone_idx],
			       NR_ZONE_LRU_BASE + lru);
}

L
Linus Torvalds 已提交
255
/*
G
Glauber Costa 已提交
256
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
257
 */
G
Glauber Costa 已提交
258
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
259
{
G
Glauber Costa 已提交
260 261 262 263 264 265 266 267 268
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

269 270 271
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
272
	return 0;
L
Linus Torvalds 已提交
273
}
274
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
275 276 277 278

/*
 * Remove one
 */
279
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
280 281 282 283
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
284
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
285
}
286
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
287 288

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
289

290 291 292 293
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
294 295 296 297
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
298
	long freeable;
G
Glauber Costa 已提交
299 300 301 302 303
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
304
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
305

306 307
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
308 309 310 311 312 313 314 315 316 317
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
318
	delta = (4 * nr_scanned) / shrinker->seeks;
319
	delta *= freeable;
320
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
321 322
	total_scan += delta;
	if (total_scan < 0) {
323
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
324
		       shrinker->scan_objects, total_scan);
325
		total_scan = freeable;
326 327 328
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
329 330 331 332 333 334 335

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
336
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
337 338 339 340 341
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
342 343
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
344 345 346 347 348 349

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
350 351
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
352 353

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
354 355
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
356

357 358 359 360 361 362 363 364 365 366 367
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
368
	 * than the total number of objects on slab (freeable), we must be
369 370 371 372
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
373
	       total_scan >= freeable) {
D
Dave Chinner 已提交
374
		unsigned long ret;
375
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
376

377
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
378 379 380 381
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
382

383 384
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
385
		scanned += nr_to_scan;
G
Glauber Costa 已提交
386 387 388 389

		cond_resched();
	}

390 391 392 393
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
394 395 396 397 398
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
399 400
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
401 402 403 404
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

405
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
406
	return freed;
407 408
}

409
/**
410
 * shrink_slab - shrink slab caches
411 412
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
413
 * @memcg: memory cgroup whose slab caches to target
414 415
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
416
 *
417
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
418
 *
419 420
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
421
 *
422 423
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
424 425
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
426
 *
427 428 429 430 431 432 433
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
434
 *
435
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
436
 */
437 438 439 440
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
441 442
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
443
	unsigned long freed = 0;
L
Linus Torvalds 已提交
444

445
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
446 447
		return 0;

448 449
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
450

451
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
452 453 454 455 456 457 458
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
459 460
		goto out;
	}
L
Linus Torvalds 已提交
461 462

	list_for_each_entry(shrinker, &shrinker_list, list) {
463 464 465
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
466
			.memcg = memcg,
467
		};
468

469 470 471 472 473 474 475
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
476 477
			continue;

478 479
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
480

481
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
482
	}
483

L
Linus Torvalds 已提交
484
	up_read(&shrinker_rwsem);
485 486
out:
	cond_resched();
D
Dave Chinner 已提交
487
	return freed;
L
Linus Torvalds 已提交
488 489
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
513 514
static inline int is_page_cache_freeable(struct page *page)
{
515 516 517 518 519
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
520
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
521 522
}

523
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
524
{
525
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
526
		return 1;
527
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
528
		return 1;
529
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
549
	lock_page(page);
550 551
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
552 553 554
	unlock_page(page);
}

555 556 557 558 559 560 561 562 563 564 565 566
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
567
/*
A
Andrew Morton 已提交
568 569
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
570
 */
571
static pageout_t pageout(struct page *page, struct address_space *mapping,
572
			 struct scan_control *sc)
L
Linus Torvalds 已提交
573 574 575 576 577 578 579 580
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
581
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
597
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
598 599
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
600
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
601 602 603 604 605 606 607
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
608
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
609 610 611 612 613 614 615
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
616 617
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
618 619 620 621 622 623 624
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
625
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
626 627 628
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
629

L
Linus Torvalds 已提交
630 631 632 633
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
634
		trace_mm_vmscan_writepage(page);
635
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
636 637 638 639 640 641
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

642
/*
N
Nick Piggin 已提交
643 644
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
645
 */
646 647
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
648
{
649 650
	unsigned long flags;

651 652
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
653

654
	spin_lock_irqsave(&mapping->tree_lock, flags);
655
	/*
N
Nick Piggin 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
675
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
676 677 678
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
679
	 */
680
	if (!page_ref_freeze(page, 2))
681
		goto cannot_free;
N
Nick Piggin 已提交
682 683
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
684
		page_ref_unfreeze(page, 2);
685
		goto cannot_free;
N
Nick Piggin 已提交
686
	}
687 688 689

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
690
		mem_cgroup_swapout(page, swap);
691
		__delete_from_swap_cache(page);
692
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
693
		swapcache_free(swap);
N
Nick Piggin 已提交
694
	} else {
695
		void (*freepage)(struct page *);
696
		void *shadow = NULL;
697 698

		freepage = mapping->a_ops->freepage;
699 700 701 702 703 704 705 706 707
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
708 709 710 711 712 713
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
714 715
		 */
		if (reclaimed && page_is_file_cache(page) &&
716
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
717
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
718
		__delete_from_page_cache(page, shadow);
719
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
720 721 722

		if (freepage != NULL)
			freepage(page);
723 724 725 726 727
	}

	return 1;

cannot_free:
728
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
729 730 731
	return 0;
}

N
Nick Piggin 已提交
732 733 734 735 736 737 738 739
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
740
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
741 742 743 744 745
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
746
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
747 748 749 750 751
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
752 753 754 755 756 757 758 759 760 761 762
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
763
	bool is_unevictable;
764
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
765

766
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
767 768 769 770

redo:
	ClearPageUnevictable(page);

771
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
772 773 774 775 776 777
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
778
		is_unevictable = false;
779
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
780 781 782 783 784
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
785
		is_unevictable = true;
L
Lee Schermerhorn 已提交
786
		add_page_to_unevictable_list(page);
787
		/*
788 789 790
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
791
		 * isolation/check_move_unevictable_pages,
792
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
793 794
		 * the page back to the evictable list.
		 *
795
		 * The other side is TestClearPageMlocked() or shmem_lock().
796 797
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
798 799 800 801 802 803 804
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
805
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
806 807 808 809 810 811 812 813 814 815
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

816
	if (was_unevictable && !is_unevictable)
817
		count_vm_event(UNEVICTABLE_PGRESCUED);
818
	else if (!was_unevictable && is_unevictable)
819 820
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
821 822 823
	put_page(page);		/* drop ref from isolate */
}

824 825 826
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
827
	PAGEREF_KEEP,
828 829 830 831 832 833
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
834
	int referenced_ptes, referenced_page;
835 836
	unsigned long vm_flags;

837 838
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
839
	referenced_page = TestClearPageReferenced(page);
840 841 842 843 844 845 846 847

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

848
	if (referenced_ptes) {
849
		if (PageSwapBacked(page))
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

867
		if (referenced_page || referenced_ptes > 1)
868 869
			return PAGEREF_ACTIVATE;

870 871 872 873 874 875
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

876 877
		return PAGEREF_KEEP;
	}
878 879

	/* Reclaim if clean, defer dirty pages to writeback */
880
	if (referenced_page && !PageSwapBacked(page))
881 882 883
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
884 885
}

886 887 888 889
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
890 891
	struct address_space *mapping;

892 893 894 895 896 897 898 899 900 901 902 903 904
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
905 906 907 908 909 910 911 912

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
913 914
}

L
Linus Torvalds 已提交
915
/*
A
Andrew Morton 已提交
916
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
917
 */
A
Andrew Morton 已提交
918
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
919
				      struct pglist_data *pgdat,
920
				      struct scan_control *sc,
921
				      enum ttu_flags ttu_flags,
922
				      unsigned long *ret_nr_dirty,
923
				      unsigned long *ret_nr_unqueued_dirty,
924
				      unsigned long *ret_nr_congested,
925
				      unsigned long *ret_nr_writeback,
926
				      unsigned long *ret_nr_immediate,
927
				      bool force_reclaim)
L
Linus Torvalds 已提交
928 929
{
	LIST_HEAD(ret_pages);
930
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
931
	int pgactivate = 0;
932
	unsigned long nr_unqueued_dirty = 0;
933 934
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
935
	unsigned long nr_reclaimed = 0;
936
	unsigned long nr_writeback = 0;
937
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
938 939 940 941 942 943 944

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
945
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
946
		bool dirty, writeback;
M
Minchan Kim 已提交
947 948
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
949 950 951 952 953 954

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
955
		if (!trylock_page(page))
L
Linus Torvalds 已提交
956 957
			goto keep;

958
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
959 960

		sc->nr_scanned++;
961

962
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
963
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
964

965
		if (!sc->may_unmap && page_mapped(page))
966 967
			goto keep_locked;

L
Linus Torvalds 已提交
968 969 970 971
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

972 973 974
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

975 976 977 978 979 980 981 982 983 984 985 986 987
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

988 989 990 991 992 993
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
994
		mapping = page_mapping(page);
995
		if (((dirty || writeback) && mapping &&
996
		     inode_write_congested(mapping->host)) ||
997
		    (writeback && PageReclaim(page)))
998 999
			nr_congested++;

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1011 1012
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1013
		 *
1014
		 * 2) Global or new memcg reclaim encounters a page that is
1015 1016 1017
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1018
		 *    reclaim and continue scanning.
1019
		 *
1020 1021
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1022 1023 1024 1025 1026
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1027
		 * 3) Legacy memcg encounters a page that is already marked
1028 1029 1030 1031 1032
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
1033
		if (PageWriteback(page)) {
1034 1035 1036
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1037
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1038 1039
				nr_immediate++;
				goto keep_locked;
1040 1041

			/* Case 2 above */
1042
			} else if (sane_reclaim(sc) ||
1043
			    !PageReclaim(page) || !may_enter_fs) {
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1056
				nr_writeback++;
1057
				goto keep_locked;
1058 1059 1060

			/* Case 3 above */
			} else {
1061
				unlock_page(page);
1062
				wait_on_page_writeback(page);
1063 1064 1065
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1066
			}
1067
		}
L
Linus Torvalds 已提交
1068

1069 1070 1071
		if (!force_reclaim)
			references = page_check_references(page, sc);

1072 1073
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1074
			goto activate_locked;
1075 1076
		case PAGEREF_KEEP:
			goto keep_locked;
1077 1078 1079 1080
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1081 1082 1083 1084 1085

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1086
		if (PageAnon(page) && !PageSwapCache(page)) {
1087 1088
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1089
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1090
				goto activate_locked;
M
Minchan Kim 已提交
1091
			lazyfree = true;
1092
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1093

1094 1095
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1096 1097 1098 1099
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1100
		}
L
Linus Torvalds 已提交
1101

1102 1103
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1104 1105 1106 1107 1108
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1109 1110 1111
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1112 1113 1114 1115
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1116 1117
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1118 1119
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1120 1121 1122 1123 1124 1125
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1126 1127
			/*
			 * Only kswapd can writeback filesystem pages to
1128 1129
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1130
			 */
1131
			if (page_is_file_cache(page) &&
1132
					(!current_is_kswapd() ||
M
Mel Gorman 已提交
1133
					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1134 1135 1136 1137 1138 1139
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1140
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1141 1142
				SetPageReclaim(page);

1143 1144 1145
				goto keep_locked;
			}

1146
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1147
				goto keep_locked;
1148
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1149
				goto keep_locked;
1150
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1151 1152
				goto keep_locked;

1153 1154 1155 1156 1157 1158
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1159
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1160 1161 1162 1163 1164
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1165
				if (PageWriteback(page))
1166
					goto keep;
1167
				if (PageDirty(page))
L
Linus Torvalds 已提交
1168
					goto keep;
1169

L
Linus Torvalds 已提交
1170 1171 1172 1173
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1174
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1194
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1205
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1206 1207
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1224 1225
		}

M
Minchan Kim 已提交
1226
lazyfree:
1227
		if (!mapping || !__remove_mapping(mapping, page, true))
1228
			goto keep_locked;
L
Linus Torvalds 已提交
1229

N
Nick Piggin 已提交
1230 1231 1232 1233 1234 1235 1236
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1237
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1238
free_it:
M
Minchan Kim 已提交
1239 1240 1241
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1242
		nr_reclaimed++;
1243 1244 1245 1246 1247 1248

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1249 1250
		continue;

N
Nick Piggin 已提交
1251
cull_mlocked:
1252 1253
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1254
		unlock_page(page);
1255
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1256 1257
		continue;

L
Linus Torvalds 已提交
1258
activate_locked:
1259
		/* Not a candidate for swapping, so reclaim swap space. */
1260
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1261
			try_to_free_swap(page);
1262
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1263 1264 1265 1266 1267 1268
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1269
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1270
	}
1271

1272
	mem_cgroup_uncharge_list(&free_pages);
1273
	try_to_unmap_flush();
1274
	free_hot_cold_page_list(&free_pages, true);
1275

L
Linus Torvalds 已提交
1276
	list_splice(&ret_pages, page_list);
1277
	count_vm_events(PGACTIVATE, pgactivate);
1278

1279 1280
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1281
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1282
	*ret_nr_writeback += nr_writeback;
1283
	*ret_nr_immediate += nr_immediate;
1284
	return nr_reclaimed;
L
Linus Torvalds 已提交
1285 1286
}

1287 1288 1289 1290 1291 1292 1293 1294
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1295
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1296 1297 1298 1299
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1300
		if (page_is_file_cache(page) && !PageDirty(page) &&
1301
		    !__PageMovable(page)) {
1302 1303 1304 1305 1306
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1307
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1308 1309
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1310
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1311
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1312 1313 1314
	return ret;
}

A
Andy Whitcroft 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1325
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1326 1327 1328 1329 1330 1331 1332
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1333 1334
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1335 1336
		return ret;

A
Andy Whitcroft 已提交
1337
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1372

1373 1374 1375
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1389 1390 1391 1392 1393 1394

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1395
			enum lru_list lru, unsigned long *nr_zone_taken)
1396 1397 1398 1399 1400 1401 1402 1403 1404
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1405
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1406
#endif
1407 1408
	}

1409 1410
}

L
Linus Torvalds 已提交
1411
/*
1412
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1422
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1423
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1424
 * @nr_scanned:	The number of pages that were scanned.
1425
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1426
 * @mode:	One of the LRU isolation modes
1427
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1428 1429 1430
 *
 * returns how many pages were moved onto *@dst.
 */
1431
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1432
		struct lruvec *lruvec, struct list_head *dst,
1433
		unsigned long *nr_scanned, struct scan_control *sc,
1434
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1435
{
H
Hugh Dickins 已提交
1436
	struct list_head *src = &lruvec->lists[lru];
1437
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1438
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1439
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1440
	unsigned long skipped = 0, total_skipped = 0;
M
Mel Gorman 已提交
1441
	unsigned long scan, nr_pages;
1442
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1443

1444
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1445
					!list_empty(src);) {
A
Andy Whitcroft 已提交
1446 1447
		struct page *page;

L
Linus Torvalds 已提交
1448 1449 1450
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1451
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1452

1453 1454
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1455
			nr_skipped[page_zonenum(page)]++;
1456 1457 1458
			continue;
		}

1459 1460 1461 1462 1463 1464
		/*
		 * Account for scanned and skipped separetly to avoid the pgdat
		 * being prematurely marked unreclaimable by pgdat_reclaimable.
		 */
		scan++;

1465
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1466
		case 0:
M
Mel Gorman 已提交
1467 1468 1469
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1470 1471 1472 1473 1474 1475 1476
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1477

A
Andy Whitcroft 已提交
1478 1479 1480
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1481 1482
	}

1483 1484 1485 1486 1487 1488 1489
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1490 1491 1492 1493 1494 1495 1496 1497
	if (!list_empty(&pages_skipped)) {
		int zid;

		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1498
			skipped += nr_skipped[zid];
1499
		}
1500 1501 1502 1503 1504 1505

		/*
		 * Account skipped pages as a partial scan as the pgdat may be
		 * close to unreclaimable. If the LRU list is empty, account
		 * skipped pages as a full scan.
		 */
1506
		total_skipped = list_empty(src) ? skipped : skipped >> 2;
1507 1508

		list_splice(&pages_skipped, src);
1509
	}
1510 1511
	*nr_scanned = scan + total_skipped;
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1512
				    scan, skipped, nr_taken, mode, lru);
1513
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1514 1515 1516
	return nr_taken;
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1528 1529 1530
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1546
	VM_BUG_ON_PAGE(!page_count(page), page);
1547
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1548

1549 1550
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1551
		struct lruvec *lruvec;
1552

1553
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1554
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1555
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1556
			int lru = page_lru(page);
1557
			get_page(page);
1558
			ClearPageLRU(page);
1559 1560
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1561
		}
1562
		spin_unlock_irq(zone_lru_lock(zone));
1563 1564 1565 1566
	}
	return ret;
}

1567
/*
F
Fengguang Wu 已提交
1568 1569 1570 1571 1572
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1573
 */
M
Mel Gorman 已提交
1574
static int too_many_isolated(struct pglist_data *pgdat, int file,
1575 1576 1577 1578 1579 1580 1581
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1582
	if (!sane_reclaim(sc))
1583 1584 1585
		return 0;

	if (file) {
M
Mel Gorman 已提交
1586 1587
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1588
	} else {
M
Mel Gorman 已提交
1589 1590
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1591 1592
	}

1593 1594 1595 1596 1597
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1598
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1599 1600
		inactive >>= 3;

1601 1602 1603
	return isolated > inactive;
}

1604
static noinline_for_stack void
H
Hugh Dickins 已提交
1605
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1606
{
1607
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1608
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1609
	LIST_HEAD(pages_to_free);
1610 1611 1612 1613 1614

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1615
		struct page *page = lru_to_page(page_list);
1616
		int lru;
1617

1618
		VM_BUG_ON_PAGE(PageLRU(page), page);
1619
		list_del(&page->lru);
1620
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1621
			spin_unlock_irq(&pgdat->lru_lock);
1622
			putback_lru_page(page);
M
Mel Gorman 已提交
1623
			spin_lock_irq(&pgdat->lru_lock);
1624 1625
			continue;
		}
1626

M
Mel Gorman 已提交
1627
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1628

1629
		SetPageLRU(page);
1630
		lru = page_lru(page);
1631 1632
		add_page_to_lru_list(page, lruvec, lru);

1633 1634
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1635 1636
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1637
		}
1638 1639 1640
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1641
			del_page_from_lru_list(page, lruvec, lru);
1642 1643

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1644
				spin_unlock_irq(&pgdat->lru_lock);
1645
				mem_cgroup_uncharge(page);
1646
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1647
				spin_lock_irq(&pgdat->lru_lock);
1648 1649
			} else
				list_add(&page->lru, &pages_to_free);
1650 1651 1652
		}
	}

1653 1654 1655 1656
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1657 1658
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
static bool inactive_reclaimable_pages(struct lruvec *lruvec,
				struct scan_control *sc, enum lru_list lru)
{
	int zid;
	struct zone *zone;
	int file = is_file_lru(lru);
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);

	if (!global_reclaim(sc))
		return true;

	for (zid = sc->reclaim_idx; zid >= 0; zid--) {
		zone = &pgdat->node_zones[zid];
1685
		if (!managed_zone(zone))
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
			continue;

		if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
				LRU_FILE * file) >= SWAP_CLUSTER_MAX)
			return true;
	}

	return false;
}

L
Linus Torvalds 已提交
1696
/*
1697
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1698
 * of reclaimed pages
L
Linus Torvalds 已提交
1699
 */
1700
static noinline_for_stack unsigned long
1701
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1702
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1703 1704
{
	LIST_HEAD(page_list);
1705
	unsigned long nr_scanned;
1706
	unsigned long nr_reclaimed = 0;
1707
	unsigned long nr_taken;
1708 1709
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1710
	unsigned long nr_unqueued_dirty = 0;
1711
	unsigned long nr_writeback = 0;
1712
	unsigned long nr_immediate = 0;
1713
	isolate_mode_t isolate_mode = 0;
1714
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1715
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1716
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1717

1718 1719 1720
	if (!inactive_reclaimable_pages(lruvec, sc, lru))
		return 0;

M
Mel Gorman 已提交
1721
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1722
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1723 1724 1725 1726 1727 1728

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1729
	lru_add_drain();
1730 1731

	if (!sc->may_unmap)
1732
		isolate_mode |= ISOLATE_UNMAPPED;
1733
	if (!sc->may_writepage)
1734
		isolate_mode |= ISOLATE_CLEAN;
1735

M
Mel Gorman 已提交
1736
	spin_lock_irq(&pgdat->lru_lock);
1737

1738 1739
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1740

M
Mel Gorman 已提交
1741
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1742
	reclaim_stat->recent_scanned[file] += nr_taken;
1743

1744
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
1745
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1746
		if (current_is_kswapd())
M
Mel Gorman 已提交
1747
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1748
		else
M
Mel Gorman 已提交
1749
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1750
	}
M
Mel Gorman 已提交
1751
	spin_unlock_irq(&pgdat->lru_lock);
1752

1753
	if (nr_taken == 0)
1754
		return 0;
A
Andy Whitcroft 已提交
1755

M
Mel Gorman 已提交
1756
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1757 1758 1759
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1760

M
Mel Gorman 已提交
1761
	spin_lock_irq(&pgdat->lru_lock);
1762

Y
Ying Han 已提交
1763 1764
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1765
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1766
		else
M
Mel Gorman 已提交
1767
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1768
	}
N
Nick Piggin 已提交
1769

1770
	putback_inactive_pages(lruvec, &page_list);
1771

M
Mel Gorman 已提交
1772
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1773

M
Mel Gorman 已提交
1774
	spin_unlock_irq(&pgdat->lru_lock);
1775

1776
	mem_cgroup_uncharge_list(&page_list);
1777
	free_hot_cold_page_list(&page_list, true);
1778

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1789 1790 1791
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1792
	 */
1793
	if (nr_writeback && nr_writeback == nr_taken)
M
Mel Gorman 已提交
1794
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1795

1796
	/*
1797 1798
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1799
	 */
1800
	if (sane_reclaim(sc)) {
1801 1802 1803 1804 1805
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
M
Mel Gorman 已提交
1806
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1807

1808 1809 1810
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
M
Mel Gorman 已提交
1811
		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
J
Johannes Weiner 已提交
1812
		 * reclaim context.
1813 1814
		 */
		if (nr_unqueued_dirty == nr_taken)
M
Mel Gorman 已提交
1815
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1816 1817

		/*
1818 1819 1820
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1821 1822
		 * they are written so also forcibly stall.
		 */
1823
		if (nr_immediate && current_may_throttle())
1824
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1825
	}
1826

1827 1828 1829 1830 1831
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1832 1833
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1834
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1835

M
Mel Gorman 已提交
1836 1837
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1838
			sc->priority, file);
1839
	return nr_reclaimed;
L
Linus Torvalds 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1849
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1850
 * the pages are mapped, the processing is slow (page_referenced()) so we
1851
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1852 1853 1854 1855
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1856
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1857
 * But we had to alter page->flags anyway.
1858 1859
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1860
 */
1861

1862
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1863
				     struct list_head *list,
1864
				     struct list_head *pages_to_free,
1865 1866
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1867
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1868 1869
	unsigned long pgmoved = 0;
	struct page *page;
1870
	int nr_pages;
1871
	int nr_moved = 0;
1872 1873 1874

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1875
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1876

1877
		VM_BUG_ON_PAGE(PageLRU(page), page);
1878 1879
		SetPageLRU(page);

1880
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1881
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1882
		list_move(&page->lru, &lruvec->lists[lru]);
1883
		pgmoved += nr_pages;
1884

1885 1886 1887
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1888
			del_page_from_lru_list(page, lruvec, lru);
1889 1890

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1891
				spin_unlock_irq(&pgdat->lru_lock);
1892
				mem_cgroup_uncharge(page);
1893
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1894
				spin_lock_irq(&pgdat->lru_lock);
1895 1896
			} else
				list_add(&page->lru, pages_to_free);
1897 1898
		} else {
			nr_moved += nr_pages;
1899 1900
		}
	}
1901

1902 1903
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
1904 1905

	return nr_moved;
1906
}
1907

H
Hugh Dickins 已提交
1908
static void shrink_active_list(unsigned long nr_to_scan,
1909
			       struct lruvec *lruvec,
1910
			       struct scan_control *sc,
1911
			       enum lru_list lru)
L
Linus Torvalds 已提交
1912
{
1913
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1914
	unsigned long nr_scanned;
1915
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1916
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1917
	LIST_HEAD(l_active);
1918
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1919
	struct page *page;
1920
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1921 1922
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1923
	isolate_mode_t isolate_mode = 0;
1924
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1925
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1926 1927

	lru_add_drain();
1928 1929

	if (!sc->may_unmap)
1930
		isolate_mode |= ISOLATE_UNMAPPED;
1931
	if (!sc->may_writepage)
1932
		isolate_mode |= ISOLATE_CLEAN;
1933

M
Mel Gorman 已提交
1934
	spin_lock_irq(&pgdat->lru_lock);
1935

1936 1937
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1938

M
Mel Gorman 已提交
1939
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1940
	reclaim_stat->recent_scanned[file] += nr_taken;
1941

1942
	if (global_reclaim(sc))
M
Mel Gorman 已提交
1943 1944
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
	__count_vm_events(PGREFILL, nr_scanned);
1945

M
Mel Gorman 已提交
1946
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1947 1948 1949 1950 1951

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1952

1953
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1954 1955 1956 1957
			putback_lru_page(page);
			continue;
		}

1958 1959 1960 1961 1962 1963 1964 1965
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1966 1967
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1968
			nr_rotated += hpage_nr_pages(page);
1969 1970 1971 1972 1973 1974 1975 1976 1977
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1978
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1979 1980 1981 1982
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1983

1984
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1985 1986 1987
		list_add(&page->lru, &l_inactive);
	}

1988
	/*
1989
	 * Move pages back to the lru list.
1990
	 */
M
Mel Gorman 已提交
1991
	spin_lock_irq(&pgdat->lru_lock);
1992
	/*
1993 1994 1995
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1996
	 * get_scan_count.
1997
	 */
1998
	reclaim_stat->recent_rotated[file] += nr_rotated;
1999

2000 2001
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2002 2003
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2004

2005
	mem_cgroup_uncharge_list(&l_hold);
2006
	free_hot_cold_page_list(&l_hold, true);
2007 2008
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2009 2010
}

2011 2012 2013
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2014
 *
2015 2016 2017
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2018
 *
2019 2020
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2021
 *
2022 2023 2024
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2025
 *
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2036
 */
2037 2038
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
						struct scan_control *sc)
2039
{
2040
	unsigned long inactive_ratio;
2041 2042
	unsigned long inactive;
	unsigned long active;
2043
	unsigned long gb;
2044 2045
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	int zid;
2046

2047 2048 2049 2050 2051 2052
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2053

2054 2055
	inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
	active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065
	/*
	 * For zone-constrained allocations, it is necessary to check if
	 * deactivations are required for lowmem to be reclaimed. This
	 * calculates the inactive/active pages available in eligible zones.
	 */
	for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];
		unsigned long inactive_zone, active_zone;

2066
		if (!managed_zone(zone))
2067 2068
			continue;

2069 2070
		inactive_zone = lruvec_zone_lru_size(lruvec, file * LRU_FILE, zid);
		active_zone = lruvec_zone_lru_size(lruvec, (file * LRU_FILE) + LRU_ACTIVE, zid);
2071 2072 2073 2074 2075

		inactive -= min(inactive, inactive_zone);
		active -= min(active, active_zone);
	}

2076 2077 2078
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
2079
	else
2080 2081 2082
		inactive_ratio = 1;

	return inactive * inactive_ratio < active;
2083 2084
}

2085
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2086
				 struct lruvec *lruvec, struct scan_control *sc)
2087
{
2088
	if (is_active_lru(lru)) {
2089
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2090
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2091 2092 2093
		return 0;
	}

2094
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2095 2096
}

2097 2098 2099 2100 2101 2102 2103
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2104 2105 2106 2107 2108 2109
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2110 2111
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2112
 */
2113
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2114 2115
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2116
{
2117
	int swappiness = mem_cgroup_swappiness(memcg);
2118 2119 2120
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2121
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2122
	unsigned long anon_prio, file_prio;
2123
	enum scan_balance scan_balance;
2124
	unsigned long anon, file;
2125
	bool force_scan = false;
2126
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2127
	enum lru_list lru;
2128 2129
	bool some_scanned;
	int pass;
2130

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
2141
	if (current_is_kswapd()) {
M
Mel Gorman 已提交
2142
		if (!pgdat_reclaimable(pgdat))
2143
			force_scan = true;
2144
		if (!mem_cgroup_online(memcg))
2145 2146
			force_scan = true;
	}
2147
	if (!global_reclaim(sc))
2148
		force_scan = true;
2149 2150

	/* If we have no swap space, do not bother scanning anon pages. */
2151
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2152
		scan_balance = SCAN_FILE;
2153 2154
		goto out;
	}
2155

2156 2157 2158 2159 2160 2161 2162
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2163
	if (!global_reclaim(sc) && !swappiness) {
2164
		scan_balance = SCAN_FILE;
2165 2166 2167 2168 2169 2170 2171 2172
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2173
	if (!sc->priority && swappiness) {
2174
		scan_balance = SCAN_EQUAL;
2175 2176 2177
		goto out;
	}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2188 2189 2190 2191
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2192

M
Mel Gorman 已提交
2193 2194 2195 2196 2197 2198
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2199
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2200 2201 2202 2203
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2204

M
Mel Gorman 已提交
2205
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2206 2207 2208 2209 2210
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2211
	/*
2212 2213 2214 2215 2216 2217 2218
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2219
	 */
2220
	if (!inactive_list_is_low(lruvec, true, sc) &&
2221
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2222
		scan_balance = SCAN_FILE;
2223 2224 2225
		goto out;
	}

2226 2227
	scan_balance = SCAN_FRACT;

2228 2229 2230 2231
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2232
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2233
	file_prio = 200 - anon_prio;
2234

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2246

2247 2248 2249 2250
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2251

M
Mel Gorman 已提交
2252
	spin_lock_irq(&pgdat->lru_lock);
2253 2254 2255
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2256 2257
	}

2258 2259 2260
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2261 2262 2263
	}

	/*
2264 2265 2266
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2267
	 */
2268
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2269
	ap /= reclaim_stat->recent_rotated[0] + 1;
2270

2271
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2272
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2273
	spin_unlock_irq(&pgdat->lru_lock);
2274

2275 2276 2277 2278
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2279 2280 2281
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2282
		*lru_pages = 0;
2283 2284 2285 2286
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2287

2288
			size = lruvec_lru_size(lruvec, lru);
2289
			scan = size >> sc->priority;
2290

2291 2292
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2293

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2309 2310
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2311
					scan = 0;
2312
				}
2313 2314 2315 2316 2317
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2318 2319

			*lru_pages += size;
2320
			nr[lru] = scan;
2321

2322
			/*
2323 2324
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2325
			 */
2326
			some_scanned |= !!scan;
2327
		}
2328
	}
2329
}
2330

2331
/*
2332
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2333
 */
2334
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2335
			      struct scan_control *sc, unsigned long *lru_pages)
2336
{
2337
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2338
	unsigned long nr[NR_LRU_LISTS];
2339
	unsigned long targets[NR_LRU_LISTS];
2340 2341 2342 2343 2344
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2345
	bool scan_adjusted;
2346

2347
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2348

2349 2350 2351
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2366 2367 2368
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2369 2370 2371
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2372 2373 2374 2375 2376 2377 2378 2379 2380
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2381

2382 2383
		cond_resched();

2384 2385 2386 2387 2388
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2389
		 * requested. Ensure that the anon and file LRUs are scanned
2390 2391 2392 2393 2394 2395 2396
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2397 2398 2399 2400 2401 2402 2403 2404 2405
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2437 2438 2439 2440 2441 2442 2443 2444
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2445
	if (inactive_list_is_low(lruvec, false, sc))
2446 2447 2448 2449
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2450
/* Use reclaim/compaction for costly allocs or under memory pressure */
2451
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2452
{
2453
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2454
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2455
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2456 2457 2458 2459 2460
		return true;

	return false;
}

2461
/*
M
Mel Gorman 已提交
2462 2463 2464 2465 2466
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2467
 */
2468
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2469 2470 2471 2472 2473 2474
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2475
	int z;
2476 2477

	/* If not in reclaim/compaction mode, stop */
2478
	if (!in_reclaim_compaction(sc))
2479 2480
		return false;

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2503 2504 2505 2506 2507

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2508
	pages_for_compaction = compact_gap(sc->order);
2509
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2510
	if (get_nr_swap_pages() > 0)
2511
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2512 2513 2514 2515 2516
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2517 2518
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2519
		if (!managed_zone(zone))
2520 2521 2522
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2523
		case COMPACT_SUCCESS:
2524 2525 2526 2527 2528 2529
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2530
	}
2531
	return true;
2532 2533
}

2534
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2535
{
2536
	struct reclaim_state *reclaim_state = current->reclaim_state;
2537
	unsigned long nr_reclaimed, nr_scanned;
2538
	bool reclaimable = false;
L
Linus Torvalds 已提交
2539

2540 2541 2542
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2543
			.pgdat = pgdat,
2544 2545
			.priority = sc->priority,
		};
2546
		unsigned long node_lru_pages = 0;
2547
		struct mem_cgroup *memcg;
2548

2549 2550
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2551

2552 2553
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2554
			unsigned long lru_pages;
2555
			unsigned long reclaimed;
2556
			unsigned long scanned;
2557

2558 2559 2560 2561 2562 2563
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2564
			reclaimed = sc->nr_reclaimed;
2565
			scanned = sc->nr_scanned;
2566

2567 2568
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2569

2570
			if (memcg)
2571
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2572 2573 2574
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2575 2576 2577 2578 2579
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2580
			/*
2581 2582
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2583
			 * node.
2584 2585 2586 2587 2588
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2589
			 */
2590 2591
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2592 2593 2594
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2595
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2596

2597 2598 2599 2600
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2601
		if (global_reclaim(sc))
2602
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2603
				    sc->nr_scanned - nr_scanned,
2604
				    node_lru_pages);
2605 2606 2607 2608

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2609 2610
		}

2611 2612
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2613 2614 2615
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2616 2617 2618
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2619
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2620
					 sc->nr_scanned - nr_scanned, sc));
2621 2622

	return reclaimable;
2623 2624
}

2625
/*
2626 2627 2628
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2629
 */
2630
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2631
{
M
Mel Gorman 已提交
2632
	unsigned long watermark;
2633
	enum compact_result suitable;
2634

2635 2636 2637 2638 2639 2640 2641
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2642

2643
	/*
2644 2645 2646 2647 2648 2649 2650
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2651
	 */
2652
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2653

2654
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2655 2656
}

L
Linus Torvalds 已提交
2657 2658 2659 2660 2661 2662 2663 2664
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2665
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2666
{
2667
	struct zoneref *z;
2668
	struct zone *zone;
2669 2670
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2671
	gfp_t orig_mask;
2672
	pg_data_t *last_pgdat = NULL;
2673

2674 2675 2676 2677 2678
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2679
	orig_mask = sc->gfp_mask;
2680
	if (buffer_heads_over_limit) {
2681
		sc->gfp_mask |= __GFP_HIGHMEM;
2682
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2683
	}
2684

2685
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2686
					sc->reclaim_idx, sc->nodemask) {
2687 2688 2689 2690
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2691
		if (global_reclaim(sc)) {
2692 2693
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2694
				continue;
2695

2696
			if (sc->priority != DEF_PRIORITY &&
M
Mel Gorman 已提交
2697
			    !pgdat_reclaimable(zone->zone_pgdat))
2698
				continue;	/* Let kswapd poll it */
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2711
			    compaction_ready(zone, sc)) {
2712 2713
				sc->compaction_ready = true;
				continue;
2714
			}
2715

2716 2717 2718 2719 2720 2721 2722 2723 2724
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2725 2726 2727 2728 2729 2730 2731
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2732
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2733 2734 2735 2736
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2737
			/* need some check for avoid more shrink_zone() */
2738
		}
2739

2740 2741 2742 2743
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2744
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2745
	}
2746

2747 2748 2749 2750 2751
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2752
}
2753

L
Linus Torvalds 已提交
2754 2755 2756 2757 2758 2759 2760 2761
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2762 2763 2764 2765
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2766 2767 2768
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2769
 */
2770
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2771
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2772
{
2773
	int initial_priority = sc->priority;
2774
	unsigned long total_scanned = 0;
2775
	unsigned long writeback_threshold;
2776
retry:
2777 2778
	delayacct_freepages_start();

2779
	if (global_reclaim(sc))
2780
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2781

2782
	do {
2783 2784
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2785
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2786
		shrink_zones(zonelist, sc);
2787

2788
		total_scanned += sc->nr_scanned;
2789
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2790 2791 2792 2793
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2794

2795 2796 2797 2798 2799 2800 2801
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2802 2803 2804 2805 2806 2807 2808
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2809 2810
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2811 2812
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2813
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2814
		}
2815
	} while (--sc->priority >= 0);
2816

2817 2818
	delayacct_freepages_end();

2819 2820 2821
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2822
	/* Aborted reclaim to try compaction? don't OOM, then */
2823
	if (sc->compaction_ready)
2824 2825
		return 1;

2826 2827 2828 2829 2830 2831 2832
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2833
	return 0;
L
Linus Torvalds 已提交
2834 2835
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2846
		if (!managed_zone(zone) ||
M
Mel Gorman 已提交
2847
		    pgdat_reclaimable_pages(pgdat) == 0)
2848 2849
			continue;

2850 2851 2852 2853
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2854 2855 2856 2857
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2858 2859 2860 2861
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2862
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2874 2875 2876 2877
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2878
 */
2879
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2880 2881
					nodemask_t *nodemask)
{
2882
	struct zoneref *z;
2883
	struct zone *zone;
2884
	pg_data_t *pgdat = NULL;
2885 2886 2887 2888 2889 2890 2891 2892 2893

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2894 2895 2896 2897 2898 2899 2900 2901
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2902

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2918
					gfp_zone(gfp_mask), nodemask) {
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2931
		goto out;
2932

2933 2934 2935
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2947 2948

		goto check_pending;
2949 2950 2951 2952 2953
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2954 2955 2956 2957 2958 2959 2960

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2961 2962
}

2963
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2964
				gfp_t gfp_mask, nodemask_t *nodemask)
2965
{
2966
	unsigned long nr_reclaimed;
2967
	struct scan_control sc = {
2968
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2969
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2970
		.reclaim_idx = gfp_zone(gfp_mask),
2971 2972 2973
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2974
		.may_writepage = !laptop_mode,
2975
		.may_unmap = 1,
2976
		.may_swap = 1,
2977 2978
	};

2979
	/*
2980 2981 2982
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2983
	 */
2984
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2985 2986
		return 1;

2987 2988
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
2989 2990
				gfp_mask,
				sc.reclaim_idx);
2991

2992
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2993 2994 2995 2996

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2997 2998
}

A
Andrew Morton 已提交
2999
#ifdef CONFIG_MEMCG
3000

3001
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3002
						gfp_t gfp_mask, bool noswap,
3003
						pg_data_t *pgdat,
3004
						unsigned long *nr_scanned)
3005 3006
{
	struct scan_control sc = {
3007
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3008
		.target_mem_cgroup = memcg,
3009 3010
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3011
		.reclaim_idx = MAX_NR_ZONES - 1,
3012 3013
		.may_swap = !noswap,
	};
3014
	unsigned long lru_pages;
3015

3016 3017
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3018

3019
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3020
						      sc.may_writepage,
3021 3022
						      sc.gfp_mask,
						      sc.reclaim_idx);
3023

3024 3025 3026
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3027
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3028 3029 3030
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3031
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3032 3033 3034

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3035
	*nr_scanned = sc.nr_scanned;
3036 3037 3038
	return sc.nr_reclaimed;
}

3039
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3040
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3041
					   gfp_t gfp_mask,
3042
					   bool may_swap)
3043
{
3044
	struct zonelist *zonelist;
3045
	unsigned long nr_reclaimed;
3046
	int nid;
3047
	struct scan_control sc = {
3048
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3049 3050
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3051
		.reclaim_idx = MAX_NR_ZONES - 1,
3052 3053 3054 3055
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3056
		.may_swap = may_swap,
3057
	};
3058

3059 3060 3061 3062 3063
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3064
	nid = mem_cgroup_select_victim_node(memcg);
3065

3066
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3067 3068 3069

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3070 3071
					    sc.gfp_mask,
					    sc.reclaim_idx);
3072

3073
	current->flags |= PF_MEMALLOC;
3074
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3075
	current->flags &= ~PF_MEMALLOC;
3076 3077 3078 3079

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3080 3081 3082
}
#endif

3083
static void age_active_anon(struct pglist_data *pgdat,
3084
				struct scan_control *sc)
3085
{
3086
	struct mem_cgroup *memcg;
3087

3088 3089 3090 3091 3092
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3093
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3094

3095
		if (inactive_list_is_low(lruvec, false, sc))
3096
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3097
					   sc, LRU_ACTIVE_ANON);
3098 3099 3100

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3101 3102
}

M
Mel Gorman 已提交
3103
static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3104
{
M
Mel Gorman 已提交
3105
	unsigned long mark = high_wmark_pages(zone);
3106

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
		return false;

	/*
	 * If any eligible zone is balanced then the node is not considered
	 * to be congested or dirty
	 */
	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);

	return true;
3118 3119
}

3120 3121 3122 3123 3124 3125
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3126
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3127
{
3128 3129
	int i;

3130
	/*
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3142
	 */
3143 3144
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3145

3146 3147 3148
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

3149
		if (!managed_zone(zone))
3150 3151
			continue;

3152 3153
		if (!zone_balanced(zone, order, classzone_idx))
			return false;
3154 3155
	}

3156
	return true;
3157 3158
}

3159
/*
3160 3161
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3162 3163
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3164 3165
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3166
 */
3167
static bool kswapd_shrink_node(pg_data_t *pgdat,
3168
			       struct scan_control *sc)
3169
{
3170 3171
	struct zone *zone;
	int z;
3172

3173 3174
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3175
	for (z = 0; z <= sc->reclaim_idx; z++) {
3176
		zone = pgdat->node_zones + z;
3177
		if (!managed_zone(zone))
3178
			continue;
3179

3180 3181
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3182 3183

	/*
3184 3185
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3186
	 */
3187
	shrink_node(pgdat, sc);
3188

3189
	/*
3190 3191 3192 3193 3194
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3195
	 */
3196
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3197
		sc->order = 0;
3198

3199
	return sc->nr_scanned >= sc->nr_to_reclaim;
3200 3201
}

L
Linus Torvalds 已提交
3202
/*
3203 3204 3205
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3206
 *
3207
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3208 3209
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3210
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3211 3212 3213
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3214
 */
3215
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3216 3217
{
	int i;
3218 3219
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3220
	struct zone *zone;
3221 3222
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3223
		.order = order,
3224
		.priority = DEF_PRIORITY,
3225
		.may_writepage = !laptop_mode,
3226
		.may_unmap = 1,
3227
		.may_swap = 1,
3228
	};
3229
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3230

3231
	do {
3232 3233 3234
		bool raise_priority = true;

		sc.nr_reclaimed = 0;
3235
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3236

3237
		/*
3238 3239 3240 3241 3242 3243 3244 3245
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3246 3247 3248 3249
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3250
				if (!managed_zone(zone))
3251
					continue;
3252

3253
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3254
				break;
L
Linus Torvalds 已提交
3255 3256
			}
		}
3257

3258 3259 3260 3261 3262 3263
		/*
		 * Only reclaim if there are no eligible zones. Check from
		 * high to low zone as allocations prefer higher zones.
		 * Scanning from low to high zone would allow congestion to be
		 * cleared during a very small window when a small low
		 * zone was balanced even under extreme pressure when the
3264 3265 3266
		 * overall node may be congested. Note that sc.reclaim_idx
		 * is not used as buffer_heads_over_limit may have adjusted
		 * it.
3267
		 */
3268
		for (i = classzone_idx; i >= 0; i--) {
3269
			zone = pgdat->node_zones + i;
3270
			if (!managed_zone(zone))
3271 3272
				continue;

3273
			if (zone_balanced(zone, sc.order, classzone_idx))
3274 3275
				goto out;
		}
A
Andrew Morton 已提交
3276

3277 3278 3279 3280 3281 3282
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3283
		age_active_anon(pgdat, &sc);
3284

3285 3286 3287 3288
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3289
		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3290 3291
			sc.may_writepage = 1;

3292 3293 3294
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3295
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3296 3297 3298
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3299
		/*
3300 3301 3302
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3303
		 */
3304
		if (kswapd_shrink_node(pgdat, &sc))
3305
			raise_priority = false;
3306 3307 3308 3309 3310 3311 3312 3313

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3314
			wake_up_all(&pgdat->pfmemalloc_wait);
3315

3316 3317 3318
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3319

3320
		/*
3321 3322
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3323
		 */
3324 3325
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3326
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3327

3328
out:
3329
	/*
3330 3331 3332 3333
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3334
	 */
3335
	return sc.order;
L
Linus Torvalds 已提交
3336 3337
}

3338 3339
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3350
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3363
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3364

3365
		remaining = schedule_timeout(HZ/10);
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3377 3378 3379 3380 3381 3382 3383 3384
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3385 3386
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3398 3399 3400 3401

		if (!kthread_should_stop())
			schedule();

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3412 3413
/*
 * The background pageout daemon, started as a kernel thread
3414
 * from the init process.
L
Linus Torvalds 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3427
	unsigned int alloc_order, reclaim_order, classzone_idx;
L
Linus Torvalds 已提交
3428 3429
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3430

L
Linus Torvalds 已提交
3431 3432 3433
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3434
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3435

3436 3437
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3438
	if (!cpumask_empty(cpumask))
3439
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3454
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3455
	set_freezable();
L
Linus Torvalds 已提交
3456

3457 3458
	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
	pgdat->kswapd_classzone_idx = classzone_idx = 0;
L
Linus Torvalds 已提交
3459
	for ( ; ; ) {
3460
		bool ret;
3461

3462 3463 3464
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3465

3466 3467 3468 3469 3470
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
		pgdat->kswapd_order = 0;
		pgdat->kswapd_classzone_idx = 0;
L
Linus Torvalds 已提交
3471

3472 3473 3474 3475 3476 3477 3478 3479
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3491 3492
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3493 3494 3495
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
3496

3497 3498
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
L
Linus Torvalds 已提交
3499
	}
3500

3501
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3502
	current->reclaim_state = NULL;
3503 3504
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3505 3506 3507 3508 3509 3510
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3511
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3512 3513
{
	pg_data_t *pgdat;
3514
	int z;
L
Linus Torvalds 已提交
3515

3516
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3517 3518
		return;

3519
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3520
		return;
3521
	pgdat = zone->zone_pgdat;
3522 3523
	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3524
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3525
		return;
3526 3527 3528 3529

	/* Only wake kswapd if all zones are unbalanced */
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
3530
		if (!managed_zone(zone))
3531 3532 3533 3534 3535
			continue;

		if (zone_balanced(zone, order, classzone_idx))
			return;
	}
3536 3537

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3538
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3539 3540
}

3541
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3542
/*
3543
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3544 3545 3546 3547 3548
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3549
 */
3550
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3551
{
3552 3553
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3554
		.nr_to_reclaim = nr_to_reclaim,
3555
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3556
		.reclaim_idx = MAX_NR_ZONES - 1,
3557
		.priority = DEF_PRIORITY,
3558
		.may_writepage = 1,
3559 3560
		.may_unmap = 1,
		.may_swap = 1,
3561
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3562
	};
3563
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3564 3565
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3566

3567 3568 3569 3570
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3571

3572
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3573

3574 3575 3576
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3577

3578
	return nr_reclaimed;
L
Linus Torvalds 已提交
3579
}
3580
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3586
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3587
{
3588
	int nid;
L
Linus Torvalds 已提交
3589

3590 3591 3592
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3593

3594
		mask = cpumask_of_node(pgdat->node_id);
3595

3596 3597 3598
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3599
	}
3600
	return 0;
L
Linus Torvalds 已提交
3601 3602
}

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3619 3620
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3621
		pgdat->kswapd = NULL;
3622 3623 3624 3625
	}
	return ret;
}

3626
/*
3627
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3628
 * hold mem_hotplug_begin/end().
3629 3630 3631 3632 3633
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3634
	if (kswapd) {
3635
		kthread_stop(kswapd);
3636 3637
		NODE_DATA(nid)->kswapd = NULL;
	}
3638 3639
}

L
Linus Torvalds 已提交
3640 3641
static int __init kswapd_init(void)
{
3642
	int nid, ret;
3643

L
Linus Torvalds 已提交
3644
	swap_setup();
3645
	for_each_node_state(nid, N_MEMORY)
3646
 		kswapd_run(nid);
3647 3648 3649 3650
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3651 3652 3653 3654
	return 0;
}

module_init(kswapd_init)
3655 3656 3657

#ifdef CONFIG_NUMA
/*
3658
 * Node reclaim mode
3659
 *
3660
 * If non-zero call node_reclaim when the number of free pages falls below
3661 3662
 * the watermarks.
 */
3663
int node_reclaim_mode __read_mostly;
3664

3665
#define RECLAIM_OFF 0
3666
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3667
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3668
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3669

3670
/*
3671
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3672 3673 3674
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3675
#define NODE_RECLAIM_PRIORITY 4
3676

3677
/*
3678
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3679 3680 3681 3682
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3683 3684 3685 3686 3687 3688
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3689
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3690
{
3691 3692 3693
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3704
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3705
{
3706 3707
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3708 3709

	/*
3710
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3711
	 * potentially reclaimable. Otherwise, we have to worry about
3712
	 * pages like swapcache and node_unmapped_file_pages() provides
3713 3714
	 * a better estimate
	 */
3715 3716
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3717
	else
3718
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3719 3720

	/* If we can't clean pages, remove dirty pages from consideration */
3721 3722
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3723 3724 3725 3726 3727 3728 3729 3730

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3731
/*
3732
 * Try to free up some pages from this node through reclaim.
3733
 */
3734
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3735
{
3736
	/* Minimum pages needed in order to stay on node */
3737
	const unsigned long nr_pages = 1 << order;
3738 3739
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3740
	int classzone_idx = gfp_zone(gfp_mask);
3741
	struct scan_control sc = {
3742
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3743
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3744
		.order = order,
3745 3746 3747
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3748
		.may_swap = 1,
3749
		.reclaim_idx = classzone_idx,
3750
	};
3751 3752

	cond_resched();
3753
	/*
3754
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3755
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3756
	 * and RECLAIM_UNMAP.
3757 3758
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3759
	lockdep_set_current_reclaim_state(gfp_mask);
3760 3761
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3762

3763
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3764 3765 3766 3767 3768
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3769
			shrink_node(pgdat, &sc);
3770
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3771
	}
3772

3773
	p->reclaim_state = NULL;
3774
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3775
	lockdep_clear_current_reclaim_state();
3776
	return sc.nr_reclaimed >= nr_pages;
3777
}
3778

3779
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3780
{
3781
	int ret;
3782 3783

	/*
3784
	 * Node reclaim reclaims unmapped file backed pages and
3785
	 * slab pages if we are over the defined limits.
3786
	 *
3787 3788
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3789 3790
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3791
	 * unmapped file backed pages.
3792
	 */
3793 3794 3795
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3796

3797 3798
	if (!pgdat_reclaimable(pgdat))
		return NODE_RECLAIM_FULL;
3799

3800
	/*
3801
	 * Do not scan if the allocation should not be delayed.
3802
	 */
3803
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3804
		return NODE_RECLAIM_NOSCAN;
3805 3806

	/*
3807
	 * Only run node reclaim on the local node or on nodes that do not
3808 3809 3810 3811
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3812 3813
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3814

3815 3816
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3817

3818 3819
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3820

3821 3822 3823
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3824
	return ret;
3825
}
3826
#endif
L
Lee Schermerhorn 已提交
3827 3828 3829 3830 3831 3832

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3833
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3834 3835
 *
 * Reasons page might not be evictable:
3836
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3837
 * (2) page is part of an mlocked VMA
3838
 *
L
Lee Schermerhorn 已提交
3839
 */
3840
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3841
{
3842
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3843
}
3844

3845
#ifdef CONFIG_SHMEM
3846
/**
3847 3848 3849
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3850
 *
3851
 * Checks pages for evictability and moves them to the appropriate lru list.
3852 3853
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3854
 */
3855
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3856
{
3857
	struct lruvec *lruvec;
3858
	struct pglist_data *pgdat = NULL;
3859 3860 3861
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3862

3863 3864
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3865
		struct pglist_data *pagepgdat = page_pgdat(page);
3866

3867
		pgscanned++;
3868 3869 3870 3871 3872
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3873
		}
3874
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3875

3876 3877
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3878

3879
		if (page_evictable(page)) {
3880 3881
			enum lru_list lru = page_lru_base_type(page);

3882
			VM_BUG_ON_PAGE(PageActive(page), page);
3883
			ClearPageUnevictable(page);
3884 3885
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3886
			pgrescued++;
3887
		}
3888
	}
3889

3890
	if (pgdat) {
3891 3892
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3893
		spin_unlock_irq(&pgdat->lru_lock);
3894 3895
	}
}
3896
#endif /* CONFIG_SHMEM */