vmscan.c 111.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
49
#include <linux/dax.h>
L
Linus Torvalds 已提交
50 51 52 53 54

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
55
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
56

57 58
#include "internal.h"

59 60 61
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
62
struct scan_control {
63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68

69
	/* Allocation order */
A
Andy Whitcroft 已提交
70
	int order;
71

72 73 74 75 76
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
77

78 79 80 81 82
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
83

84 85 86
	/* Scan (total_size >> priority) pages at once */
	int priority;

87 88 89
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

90 91 92 93 94 95 96 97
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

98 99 100
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

101 102 103 104 105 106 107 108 109 110
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
145 146 147 148 149
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
150 151 152 153

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
154
#ifdef CONFIG_MEMCG
155 156
static bool global_reclaim(struct scan_control *sc)
{
157
	return !sc->target_mem_cgroup;
158
}
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
180
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 182 183 184
		return true;
#endif
	return false;
}
185
#else
186 187 188 189
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
190 191 192 193 194

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
195 196
#endif

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
215 216 217 218 219 220 221
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222 223

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
224 225 226
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227 228 229 230

	return nr;
}

M
Mel Gorman 已提交
231
bool pgdat_reclaimable(struct pglist_data *pgdat)
232
{
M
Mel Gorman 已提交
233 234
	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
		pgdat_reclaimable_pages(pgdat) * 6;
235 236
}

237 238 239 240 241 242 243
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
244
{
245 246 247
	unsigned long lru_size;
	int zid;

248
	if (!mem_cgroup_disabled())
249 250 251
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
252

253 254 255
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
256

257 258 259 260 261 262 263 264 265 266 267 268
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
269 270 271

}

L
Linus Torvalds 已提交
272
/*
G
Glauber Costa 已提交
273
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
274
 */
G
Glauber Costa 已提交
275
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
276
{
G
Glauber Costa 已提交
277 278 279 280 281 282 283 284 285
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

286 287 288
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
289
	return 0;
L
Linus Torvalds 已提交
290
}
291
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
292 293 294 295

/*
 * Remove one
 */
296
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
297 298 299 300
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
301
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
302
}
303
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
304 305

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
306

307 308 309 310
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
311 312 313 314
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
315
	long freeable;
G
Glauber Costa 已提交
316 317 318 319 320
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
321
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
322

323 324
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
325 326 327 328 329 330 331 332 333 334
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
335
	delta = (4 * nr_scanned) / shrinker->seeks;
336
	delta *= freeable;
337
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
338 339
	total_scan += delta;
	if (total_scan < 0) {
340
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
341
		       shrinker->scan_objects, total_scan);
342
		total_scan = freeable;
343 344 345
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
346 347 348 349 350 351 352

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
353
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
354 355 356 357 358
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
359 360
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
361 362 363 364 365 366

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
367 368
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
369 370

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
371 372
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
373

374 375 376 377 378 379 380 381 382 383 384
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
385
	 * than the total number of objects on slab (freeable), we must be
386 387 388 389
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
390
	       total_scan >= freeable) {
D
Dave Chinner 已提交
391
		unsigned long ret;
392
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
393

394
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
395 396 397 398
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
399

400 401
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
402
		scanned += nr_to_scan;
G
Glauber Costa 已提交
403 404 405 406

		cond_resched();
	}

407 408 409 410
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
411 412 413 414 415
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
416 417
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
418 419 420 421
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

422
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
423
	return freed;
424 425
}

426
/**
427
 * shrink_slab - shrink slab caches
428 429
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
430
 * @memcg: memory cgroup whose slab caches to target
431 432
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
433
 *
434
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
435
 *
436 437
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
438
 *
439 440
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
441 442
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
443
 *
444 445 446 447 448 449 450
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
451
 *
452
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
453
 */
454 455 456 457
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
458 459
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
460
	unsigned long freed = 0;
L
Linus Torvalds 已提交
461

462
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
463 464
		return 0;

465 466
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
467

468
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
469 470 471 472 473 474 475
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
476 477
		goto out;
	}
L
Linus Torvalds 已提交
478 479

	list_for_each_entry(shrinker, &shrinker_list, list) {
480 481 482
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
483
			.memcg = memcg,
484
		};
485

486 487 488 489 490 491 492
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
493 494
			continue;

495 496
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
497

498
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
499
	}
500

L
Linus Torvalds 已提交
501
	up_read(&shrinker_rwsem);
502 503
out:
	cond_resched();
D
Dave Chinner 已提交
504
	return freed;
L
Linus Torvalds 已提交
505 506
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
530 531
static inline int is_page_cache_freeable(struct page *page)
{
532 533 534 535 536
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
537
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
538 539
}

540
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
541
{
542
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
543
		return 1;
544
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
545
		return 1;
546
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
566
	lock_page(page);
567 568
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
569 570 571
	unlock_page(page);
}

572 573 574 575 576 577 578 579 580 581 582 583
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
584
/*
A
Andrew Morton 已提交
585 586
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
587
 */
588
static pageout_t pageout(struct page *page, struct address_space *mapping,
589
			 struct scan_control *sc)
L
Linus Torvalds 已提交
590 591 592 593 594 595 596 597
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
598
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
614
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
615 616
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
617
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
618 619 620 621 622 623 624
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
625
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
626 627 628 629 630 631 632
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
633 634
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
635 636 637 638 639 640 641
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
642
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
643 644 645
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
646

L
Linus Torvalds 已提交
647 648 649 650
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
651
		trace_mm_vmscan_writepage(page);
652
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
653 654 655 656 657 658
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

659
/*
N
Nick Piggin 已提交
660 661
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
662
 */
663 664
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
665
{
666 667
	unsigned long flags;

668 669
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
670

671
	spin_lock_irqsave(&mapping->tree_lock, flags);
672
	/*
N
Nick Piggin 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
692
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
693 694 695
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
696
	 */
697
	if (!page_ref_freeze(page, 2))
698
		goto cannot_free;
N
Nick Piggin 已提交
699 700
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
701
		page_ref_unfreeze(page, 2);
702
		goto cannot_free;
N
Nick Piggin 已提交
703
	}
704 705 706

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
707
		mem_cgroup_swapout(page, swap);
708
		__delete_from_swap_cache(page);
709
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
710
		swapcache_free(swap);
N
Nick Piggin 已提交
711
	} else {
712
		void (*freepage)(struct page *);
713
		void *shadow = NULL;
714 715

		freepage = mapping->a_ops->freepage;
716 717 718 719 720 721 722 723 724
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
725 726 727 728 729 730
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
731 732
		 */
		if (reclaimed && page_is_file_cache(page) &&
733
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
734
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
735
		__delete_from_page_cache(page, shadow);
736
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
737 738 739

		if (freepage != NULL)
			freepage(page);
740 741 742 743 744
	}

	return 1;

cannot_free:
745
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
746 747 748
	return 0;
}

N
Nick Piggin 已提交
749 750 751 752 753 754 755 756
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
757
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
758 759 760 761 762
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
763
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
764 765 766 767 768
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
769 770 771 772 773 774 775 776 777 778 779
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
780
	bool is_unevictable;
781
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
782

783
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
784 785 786 787

redo:
	ClearPageUnevictable(page);

788
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
789 790 791 792 793 794
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
795
		is_unevictable = false;
796
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
797 798 799 800 801
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
802
		is_unevictable = true;
L
Lee Schermerhorn 已提交
803
		add_page_to_unevictable_list(page);
804
		/*
805 806 807
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
808
		 * isolation/check_move_unevictable_pages,
809
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
810 811
		 * the page back to the evictable list.
		 *
812
		 * The other side is TestClearPageMlocked() or shmem_lock().
813 814
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
815 816 817 818 819 820 821
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
822
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
823 824 825 826 827 828 829 830 831 832
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

833
	if (was_unevictable && !is_unevictable)
834
		count_vm_event(UNEVICTABLE_PGRESCUED);
835
	else if (!was_unevictable && is_unevictable)
836 837
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
838 839 840
	put_page(page);		/* drop ref from isolate */
}

841 842 843
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
844
	PAGEREF_KEEP,
845 846 847 848 849 850
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
851
	int referenced_ptes, referenced_page;
852 853
	unsigned long vm_flags;

854 855
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
856
	referenced_page = TestClearPageReferenced(page);
857 858 859 860 861 862 863 864

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

865
	if (referenced_ptes) {
866
		if (PageSwapBacked(page))
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

884
		if (referenced_page || referenced_ptes > 1)
885 886
			return PAGEREF_ACTIVATE;

887 888 889 890 891 892
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

893 894
		return PAGEREF_KEEP;
	}
895 896

	/* Reclaim if clean, defer dirty pages to writeback */
897
	if (referenced_page && !PageSwapBacked(page))
898 899 900
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
901 902
}

903 904 905 906
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
907 908
	struct address_space *mapping;

909 910 911 912 913 914 915 916 917 918 919 920 921
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
922 923 924 925 926 927 928 929

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
930 931
}

932 933 934 935 936 937
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
938 939 940
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
941 942
};

L
Linus Torvalds 已提交
943
/*
A
Andrew Morton 已提交
944
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
945
 */
A
Andrew Morton 已提交
946
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
947
				      struct pglist_data *pgdat,
948
				      struct scan_control *sc,
949
				      enum ttu_flags ttu_flags,
950
				      struct reclaim_stat *stat,
951
				      bool force_reclaim)
L
Linus Torvalds 已提交
952 953
{
	LIST_HEAD(ret_pages);
954
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
955
	int pgactivate = 0;
956 957 958 959 960 961
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
962 963
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
964 965 966 967 968 969 970

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
971
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
972
		bool dirty, writeback;
M
Minchan Kim 已提交
973 974
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
975 976 977 978 979 980

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
981
		if (!trylock_page(page))
L
Linus Torvalds 已提交
982 983
			goto keep;

984
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
985 986

		sc->nr_scanned++;
987

988
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
989
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
990

991
		if (!sc->may_unmap && page_mapped(page))
992 993
			goto keep_locked;

L
Linus Torvalds 已提交
994 995 996 997
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

998 999 1000
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1014 1015 1016 1017 1018 1019
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1020
		mapping = page_mapping(page);
1021
		if (((dirty || writeback) && mapping &&
1022
		     inode_write_congested(mapping->host)) ||
1023
		    (writeback && PageReclaim(page)))
1024 1025
			nr_congested++;

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1037 1038
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1039
		 *
1040
		 * 2) Global or new memcg reclaim encounters a page that is
1041 1042 1043
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1044
		 *    reclaim and continue scanning.
1045
		 *
1046 1047
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1048 1049 1050 1051 1052
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1053
		 * 3) Legacy memcg encounters a page that is already marked
1054 1055 1056 1057 1058
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
1059
		if (PageWriteback(page)) {
1060 1061 1062
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1063
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1064 1065
				nr_immediate++;
				goto keep_locked;
1066 1067

			/* Case 2 above */
1068
			} else if (sane_reclaim(sc) ||
1069
			    !PageReclaim(page) || !may_enter_fs) {
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1082
				nr_writeback++;
1083
				goto keep_locked;
1084 1085 1086

			/* Case 3 above */
			} else {
1087
				unlock_page(page);
1088
				wait_on_page_writeback(page);
1089 1090 1091
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1092
			}
1093
		}
L
Linus Torvalds 已提交
1094

1095 1096 1097
		if (!force_reclaim)
			references = page_check_references(page, sc);

1098 1099
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1100
			goto activate_locked;
1101
		case PAGEREF_KEEP:
1102
			nr_ref_keep++;
1103
			goto keep_locked;
1104 1105 1106 1107
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1108 1109 1110 1111 1112

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1113
		if (PageAnon(page) && !PageSwapCache(page)) {
1114 1115
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1116
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1117
				goto activate_locked;
M
Minchan Kim 已提交
1118
			lazyfree = true;
1119
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1120

1121 1122
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1123 1124 1125 1126
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1127
		}
L
Linus Torvalds 已提交
1128

1129 1130
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1131 1132 1133 1134 1135
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1136 1137 1138
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1139
			case SWAP_FAIL:
1140
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1141 1142 1143
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1144 1145
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1146 1147
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152 1153
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1154 1155
			/*
			 * Only kswapd can writeback filesystem pages to
1156 1157
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1158
			 */
1159
			if (page_is_file_cache(page) &&
1160
					(!current_is_kswapd() ||
M
Mel Gorman 已提交
1161
					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1162 1163 1164 1165 1166 1167
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1168
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1169 1170
				SetPageReclaim(page);

1171 1172 1173
				goto keep_locked;
			}

1174
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1175
				goto keep_locked;
1176
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1177
				goto keep_locked;
1178
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1179 1180
				goto keep_locked;

1181 1182 1183 1184 1185 1186
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1187
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1188 1189 1190 1191 1192
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1193
				if (PageWriteback(page))
1194
					goto keep;
1195
				if (PageDirty(page))
L
Linus Torvalds 已提交
1196
					goto keep;
1197

L
Linus Torvalds 已提交
1198 1199 1200 1201
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1202
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1222
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1233
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1234 1235
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1252 1253
		}

M
Minchan Kim 已提交
1254
lazyfree:
1255
		if (!mapping || !__remove_mapping(mapping, page, true))
1256
			goto keep_locked;
L
Linus Torvalds 已提交
1257

N
Nick Piggin 已提交
1258 1259 1260 1261 1262 1263 1264
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1265
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1266
free_it:
M
Minchan Kim 已提交
1267 1268 1269
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1270
		nr_reclaimed++;
1271 1272 1273 1274 1275 1276

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1277 1278
		continue;

N
Nick Piggin 已提交
1279
cull_mlocked:
1280 1281
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1282
		unlock_page(page);
1283
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1284 1285
		continue;

L
Linus Torvalds 已提交
1286
activate_locked:
1287
		/* Not a candidate for swapping, so reclaim swap space. */
1288
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1289
			try_to_free_swap(page);
1290
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1291 1292 1293 1294 1295 1296
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1297
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1298
	}
1299

1300
	mem_cgroup_uncharge_list(&free_pages);
1301
	try_to_unmap_flush();
1302
	free_hot_cold_page_list(&free_pages, true);
1303

L
Linus Torvalds 已提交
1304
	list_splice(&ret_pages, page_list);
1305
	count_vm_events(PGACTIVATE, pgactivate);
1306

1307 1308 1309 1310 1311 1312
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1313 1314 1315
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1316
	}
1317
	return nr_reclaimed;
L
Linus Torvalds 已提交
1318 1319
}

1320 1321 1322 1323 1324 1325 1326 1327
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1328
	unsigned long ret;
1329 1330 1331 1332
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1333
		if (page_is_file_cache(page) && !PageDirty(page) &&
1334
		    !__PageMovable(page)) {
1335 1336 1337 1338 1339
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1340
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1341
			TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1342
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1343
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1344 1345 1346
	return ret;
}

A
Andy Whitcroft 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1357
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1358 1359 1360 1361 1362 1363 1364
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1365 1366
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1367 1368
		return ret;

A
Andy Whitcroft 已提交
1369
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1404

1405 1406 1407
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1421 1422 1423 1424 1425 1426

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1427
			enum lru_list lru, unsigned long *nr_zone_taken)
1428 1429 1430 1431 1432 1433 1434 1435 1436
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1437
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1438
#endif
1439 1440
	}

1441 1442
}

L
Linus Torvalds 已提交
1443
/*
1444
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1454
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1455
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1456
 * @nr_scanned:	The number of pages that were scanned.
1457
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1458
 * @mode:	One of the LRU isolation modes
1459
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1460 1461 1462
 *
 * returns how many pages were moved onto *@dst.
 */
1463
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1464
		struct lruvec *lruvec, struct list_head *dst,
1465
		unsigned long *nr_scanned, struct scan_control *sc,
1466
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1467
{
H
Hugh Dickins 已提交
1468
	struct list_head *src = &lruvec->lists[lru];
1469
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1470
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1471
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1472
	unsigned long skipped = 0, total_skipped = 0;
M
Mel Gorman 已提交
1473
	unsigned long scan, nr_pages;
1474
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1475

1476
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1477
					!list_empty(src);) {
A
Andy Whitcroft 已提交
1478 1479
		struct page *page;

L
Linus Torvalds 已提交
1480 1481 1482
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1483
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1484

1485 1486
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1487
			nr_skipped[page_zonenum(page)]++;
1488 1489 1490
			continue;
		}

1491 1492 1493 1494 1495 1496
		/*
		 * Account for scanned and skipped separetly to avoid the pgdat
		 * being prematurely marked unreclaimable by pgdat_reclaimable.
		 */
		scan++;

1497
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1498
		case 0:
M
Mel Gorman 已提交
1499 1500 1501
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1502 1503 1504 1505 1506 1507 1508
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1509

A
Andy Whitcroft 已提交
1510 1511 1512
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1513 1514
	}

1515 1516 1517 1518 1519 1520 1521
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1522 1523 1524 1525 1526 1527 1528 1529
	if (!list_empty(&pages_skipped)) {
		int zid;

		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1530
			skipped += nr_skipped[zid];
1531
		}
1532 1533 1534 1535 1536 1537

		/*
		 * Account skipped pages as a partial scan as the pgdat may be
		 * close to unreclaimable. If the LRU list is empty, account
		 * skipped pages as a full scan.
		 */
1538
		total_skipped = list_empty(src) ? skipped : skipped >> 2;
1539 1540

		list_splice(&pages_skipped, src);
1541
	}
1542 1543
	*nr_scanned = scan + total_skipped;
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1544
				    scan, skipped, nr_taken, mode, lru);
1545
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1546 1547 1548
	return nr_taken;
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1560 1561 1562
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1578
	VM_BUG_ON_PAGE(!page_count(page), page);
1579
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1580

1581 1582
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1583
		struct lruvec *lruvec;
1584

1585
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1586
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1587
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1588
			int lru = page_lru(page);
1589
			get_page(page);
1590
			ClearPageLRU(page);
1591 1592
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1593
		}
1594
		spin_unlock_irq(zone_lru_lock(zone));
1595 1596 1597 1598
	}
	return ret;
}

1599
/*
F
Fengguang Wu 已提交
1600 1601 1602 1603 1604
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1605
 */
M
Mel Gorman 已提交
1606
static int too_many_isolated(struct pglist_data *pgdat, int file,
1607 1608 1609 1610 1611 1612 1613
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1614
	if (!sane_reclaim(sc))
1615 1616 1617
		return 0;

	if (file) {
M
Mel Gorman 已提交
1618 1619
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1620
	} else {
M
Mel Gorman 已提交
1621 1622
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1623 1624
	}

1625 1626 1627 1628 1629
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1630
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1631 1632
		inactive >>= 3;

1633 1634 1635
	return isolated > inactive;
}

1636
static noinline_for_stack void
H
Hugh Dickins 已提交
1637
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1638
{
1639
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1640
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1641
	LIST_HEAD(pages_to_free);
1642 1643 1644 1645 1646

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1647
		struct page *page = lru_to_page(page_list);
1648
		int lru;
1649

1650
		VM_BUG_ON_PAGE(PageLRU(page), page);
1651
		list_del(&page->lru);
1652
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1653
			spin_unlock_irq(&pgdat->lru_lock);
1654
			putback_lru_page(page);
M
Mel Gorman 已提交
1655
			spin_lock_irq(&pgdat->lru_lock);
1656 1657
			continue;
		}
1658

M
Mel Gorman 已提交
1659
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1660

1661
		SetPageLRU(page);
1662
		lru = page_lru(page);
1663 1664
		add_page_to_lru_list(page, lruvec, lru);

1665 1666
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1667 1668
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1669
		}
1670 1671 1672
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1673
			del_page_from_lru_list(page, lruvec, lru);
1674 1675

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1676
				spin_unlock_irq(&pgdat->lru_lock);
1677
				mem_cgroup_uncharge(page);
1678
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1679
				spin_lock_irq(&pgdat->lru_lock);
1680 1681
			} else
				list_add(&page->lru, &pages_to_free);
1682 1683 1684
		}
	}

1685 1686 1687 1688
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1689 1690
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
static bool inactive_reclaimable_pages(struct lruvec *lruvec,
				struct scan_control *sc, enum lru_list lru)
{
	int zid;
	struct zone *zone;
	int file = is_file_lru(lru);
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);

	if (!global_reclaim(sc))
		return true;

	for (zid = sc->reclaim_idx; zid >= 0; zid--) {
		zone = &pgdat->node_zones[zid];
1717
		if (!managed_zone(zone))
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
			continue;

		if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
				LRU_FILE * file) >= SWAP_CLUSTER_MAX)
			return true;
	}

	return false;
}

L
Linus Torvalds 已提交
1728
/*
1729
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1730
 * of reclaimed pages
L
Linus Torvalds 已提交
1731
 */
1732
static noinline_for_stack unsigned long
1733
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1734
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1735 1736
{
	LIST_HEAD(page_list);
1737
	unsigned long nr_scanned;
1738
	unsigned long nr_reclaimed = 0;
1739
	unsigned long nr_taken;
1740
	struct reclaim_stat stat = {};
1741
	isolate_mode_t isolate_mode = 0;
1742
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1743
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1744
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1745

1746 1747 1748
	if (!inactive_reclaimable_pages(lruvec, sc, lru))
		return 0;

M
Mel Gorman 已提交
1749
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1750
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1751 1752 1753 1754 1755 1756

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1757
	lru_add_drain();
1758 1759

	if (!sc->may_unmap)
1760
		isolate_mode |= ISOLATE_UNMAPPED;
1761
	if (!sc->may_writepage)
1762
		isolate_mode |= ISOLATE_CLEAN;
1763

M
Mel Gorman 已提交
1764
	spin_lock_irq(&pgdat->lru_lock);
1765

1766 1767
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1768

M
Mel Gorman 已提交
1769
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1770
	reclaim_stat->recent_scanned[file] += nr_taken;
1771

1772
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
1773
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1774
		if (current_is_kswapd())
M
Mel Gorman 已提交
1775
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1776
		else
M
Mel Gorman 已提交
1777
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1778
	}
M
Mel Gorman 已提交
1779
	spin_unlock_irq(&pgdat->lru_lock);
1780

1781
	if (nr_taken == 0)
1782
		return 0;
A
Andy Whitcroft 已提交
1783

M
Mel Gorman 已提交
1784
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1785
				&stat, false);
1786

M
Mel Gorman 已提交
1787
	spin_lock_irq(&pgdat->lru_lock);
1788

Y
Ying Han 已提交
1789 1790
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1791
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1792
		else
M
Mel Gorman 已提交
1793
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1794
	}
N
Nick Piggin 已提交
1795

1796
	putback_inactive_pages(lruvec, &page_list);
1797

M
Mel Gorman 已提交
1798
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1799

M
Mel Gorman 已提交
1800
	spin_unlock_irq(&pgdat->lru_lock);
1801

1802
	mem_cgroup_uncharge_list(&page_list);
1803
	free_hot_cold_page_list(&page_list, true);
1804

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1815 1816 1817
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1818
	 */
1819
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1820
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1821

1822
	/*
1823 1824
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1825
	 */
1826
	if (sane_reclaim(sc)) {
1827 1828 1829 1830
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1831
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1832
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1833

1834 1835 1836
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
M
Mel Gorman 已提交
1837
		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
J
Johannes Weiner 已提交
1838
		 * reclaim context.
1839
		 */
1840
		if (stat.nr_unqueued_dirty == nr_taken)
M
Mel Gorman 已提交
1841
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1842 1843

		/*
1844 1845 1846
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1847 1848
		 * they are written so also forcibly stall.
		 */
1849
		if (stat.nr_immediate && current_may_throttle())
1850
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1851
	}
1852

1853 1854 1855 1856 1857
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1858 1859
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1860
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1861

M
Mel Gorman 已提交
1862 1863
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1864 1865 1866 1867
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1868
			sc->priority, file);
1869
	return nr_reclaimed;
L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1879
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1880
 * the pages are mapped, the processing is slow (page_referenced()) so we
1881
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1882 1883 1884 1885
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1886
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1887
 * But we had to alter page->flags anyway.
1888 1889
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1890
 */
1891

1892
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1893
				     struct list_head *list,
1894
				     struct list_head *pages_to_free,
1895 1896
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1897
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1898
	struct page *page;
1899
	int nr_pages;
1900
	int nr_moved = 0;
1901 1902 1903

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1904
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1905

1906
		VM_BUG_ON_PAGE(PageLRU(page), page);
1907 1908
		SetPageLRU(page);

1909
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1910
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1911
		list_move(&page->lru, &lruvec->lists[lru]);
1912

1913 1914 1915
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1916
			del_page_from_lru_list(page, lruvec, lru);
1917 1918

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1919
				spin_unlock_irq(&pgdat->lru_lock);
1920
				mem_cgroup_uncharge(page);
1921
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1922
				spin_lock_irq(&pgdat->lru_lock);
1923 1924
			} else
				list_add(&page->lru, pages_to_free);
1925 1926
		} else {
			nr_moved += nr_pages;
1927 1928
		}
	}
1929

1930
	if (!is_active_lru(lru))
1931
		__count_vm_events(PGDEACTIVATE, nr_moved);
1932 1933

	return nr_moved;
1934
}
1935

H
Hugh Dickins 已提交
1936
static void shrink_active_list(unsigned long nr_to_scan,
1937
			       struct lruvec *lruvec,
1938
			       struct scan_control *sc,
1939
			       enum lru_list lru)
L
Linus Torvalds 已提交
1940
{
1941
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1942
	unsigned long nr_scanned;
1943
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1944
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1945
	LIST_HEAD(l_active);
1946
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1947
	struct page *page;
1948
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1949 1950
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1951
	isolate_mode_t isolate_mode = 0;
1952
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1953
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1954 1955

	lru_add_drain();
1956 1957

	if (!sc->may_unmap)
1958
		isolate_mode |= ISOLATE_UNMAPPED;
1959
	if (!sc->may_writepage)
1960
		isolate_mode |= ISOLATE_CLEAN;
1961

M
Mel Gorman 已提交
1962
	spin_lock_irq(&pgdat->lru_lock);
1963

1964 1965
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1966

M
Mel Gorman 已提交
1967
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1968
	reclaim_stat->recent_scanned[file] += nr_taken;
1969

1970
	if (global_reclaim(sc))
M
Mel Gorman 已提交
1971 1972
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
	__count_vm_events(PGREFILL, nr_scanned);
1973

M
Mel Gorman 已提交
1974
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1975 1976 1977 1978 1979

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1980

1981
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1982 1983 1984 1985
			putback_lru_page(page);
			continue;
		}

1986 1987 1988 1989 1990 1991 1992 1993
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1994 1995
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1996
			nr_rotated += hpage_nr_pages(page);
1997 1998 1999 2000 2001 2002 2003 2004 2005
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2006
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2007 2008 2009 2010
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2011

2012
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
2013 2014 2015
		list_add(&page->lru, &l_inactive);
	}

2016
	/*
2017
	 * Move pages back to the lru list.
2018
	 */
M
Mel Gorman 已提交
2019
	spin_lock_irq(&pgdat->lru_lock);
2020
	/*
2021 2022 2023
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2024
	 * get_scan_count.
2025
	 */
2026
	reclaim_stat->recent_rotated[file] += nr_rotated;
2027

2028 2029
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2030 2031
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2032

2033
	mem_cgroup_uncharge_list(&l_hold);
2034
	free_hot_cold_page_list(&l_hold, true);
2035 2036
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2037 2038
}

2039 2040 2041
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2042
 *
2043 2044 2045
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2046
 *
2047 2048
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2049
 *
2050 2051 2052
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2053
 *
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2064
 */
2065
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2066
						struct scan_control *sc, bool trace)
2067
{
2068
	unsigned long inactive_ratio;
2069 2070 2071
	unsigned long inactive, active;
	enum lru_list inactive_lru = file * LRU_FILE;
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2072
	unsigned long gb;
2073

2074 2075 2076 2077 2078 2079
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2080

2081 2082
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2083

2084 2085 2086
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
2087
	else
2088 2089
		inactive_ratio = 1;

2090
	if (trace)
2091
		trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2092
				sc->reclaim_idx,
2093 2094 2095 2096
				lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
				lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
				inactive_ratio, file);

2097
	return inactive * inactive_ratio < active;
2098 2099
}

2100
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2101
				 struct lruvec *lruvec, struct scan_control *sc)
2102
{
2103
	if (is_active_lru(lru)) {
2104
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2105
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2106 2107 2108
		return 0;
	}

2109
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2110 2111
}

2112 2113 2114 2115 2116 2117 2118
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2119 2120 2121 2122 2123 2124
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2125 2126
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2127
 */
2128
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2129 2130
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2131
{
2132
	int swappiness = mem_cgroup_swappiness(memcg);
2133 2134 2135
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2136
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2137
	unsigned long anon_prio, file_prio;
2138
	enum scan_balance scan_balance;
2139
	unsigned long anon, file;
2140
	bool force_scan = false;
2141
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2142
	enum lru_list lru;
2143 2144
	bool some_scanned;
	int pass;
2145

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
2156
	if (current_is_kswapd()) {
M
Mel Gorman 已提交
2157
		if (!pgdat_reclaimable(pgdat))
2158
			force_scan = true;
2159
		if (!mem_cgroup_online(memcg))
2160 2161
			force_scan = true;
	}
2162
	if (!global_reclaim(sc))
2163
		force_scan = true;
2164 2165

	/* If we have no swap space, do not bother scanning anon pages. */
2166
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2167
		scan_balance = SCAN_FILE;
2168 2169
		goto out;
	}
2170

2171 2172 2173 2174 2175 2176 2177
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2178
	if (!global_reclaim(sc) && !swappiness) {
2179
		scan_balance = SCAN_FILE;
2180 2181 2182 2183 2184 2185 2186 2187
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2188
	if (!sc->priority && swappiness) {
2189
		scan_balance = SCAN_EQUAL;
2190 2191 2192
		goto out;
	}

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2203 2204 2205 2206
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2207

M
Mel Gorman 已提交
2208 2209 2210 2211 2212 2213
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2214
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2215 2216 2217 2218
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2219

M
Mel Gorman 已提交
2220
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2221 2222 2223 2224 2225
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2226
	/*
2227 2228 2229 2230 2231 2232 2233
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2234
	 */
2235
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2236
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES) >> sc->priority) {
2237
		scan_balance = SCAN_FILE;
2238 2239 2240
		goto out;
	}

2241 2242
	scan_balance = SCAN_FRACT;

2243 2244 2245 2246
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2247
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2248
	file_prio = 200 - anon_prio;
2249

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2261

2262 2263 2264 2265
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2266

M
Mel Gorman 已提交
2267
	spin_lock_irq(&pgdat->lru_lock);
2268 2269 2270
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2271 2272
	}

2273 2274 2275
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2276 2277 2278
	}

	/*
2279 2280 2281
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2282
	 */
2283
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2284
	ap /= reclaim_stat->recent_rotated[0] + 1;
2285

2286
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2287
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2288
	spin_unlock_irq(&pgdat->lru_lock);
2289

2290 2291 2292 2293
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2294 2295 2296
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2297
		*lru_pages = 0;
2298 2299 2300 2301
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2302

2303
			size = lruvec_lru_size(lruvec, lru, MAX_NR_ZONES);
2304
			scan = size >> sc->priority;
2305

2306 2307
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2308

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2324 2325
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2326
					scan = 0;
2327
				}
2328 2329 2330 2331 2332
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2333 2334

			*lru_pages += size;
2335
			nr[lru] = scan;
2336

2337
			/*
2338 2339
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2340
			 */
2341
			some_scanned |= !!scan;
2342
		}
2343
	}
2344
}
2345

2346
/*
2347
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2348
 */
2349
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2350
			      struct scan_control *sc, unsigned long *lru_pages)
2351
{
2352
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2353
	unsigned long nr[NR_LRU_LISTS];
2354
	unsigned long targets[NR_LRU_LISTS];
2355 2356 2357 2358 2359
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2360
	bool scan_adjusted;
2361

2362
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2363

2364 2365 2366
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2381 2382 2383
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2384 2385 2386
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2387 2388 2389 2390 2391 2392 2393 2394 2395
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2396

2397 2398
		cond_resched();

2399 2400 2401 2402 2403
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2404
		 * requested. Ensure that the anon and file LRUs are scanned
2405 2406 2407 2408 2409 2410 2411
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2412 2413 2414 2415 2416 2417 2418 2419 2420
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2452 2453 2454 2455 2456 2457 2458 2459
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2460
	if (inactive_list_is_low(lruvec, false, sc, true))
2461 2462 2463 2464
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2465
/* Use reclaim/compaction for costly allocs or under memory pressure */
2466
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2467
{
2468
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2469
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2470
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2471 2472 2473 2474 2475
		return true;

	return false;
}

2476
/*
M
Mel Gorman 已提交
2477 2478 2479 2480 2481
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2482
 */
2483
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2484 2485 2486 2487 2488 2489
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2490
	int z;
2491 2492

	/* If not in reclaim/compaction mode, stop */
2493
	if (!in_reclaim_compaction(sc))
2494 2495
		return false;

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2518 2519 2520 2521 2522

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2523
	pages_for_compaction = compact_gap(sc->order);
2524
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2525
	if (get_nr_swap_pages() > 0)
2526
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2527 2528 2529 2530 2531
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2532 2533
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2534
		if (!managed_zone(zone))
2535 2536 2537
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2538
		case COMPACT_SUCCESS:
2539 2540 2541 2542 2543 2544
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2545
	}
2546
	return true;
2547 2548
}

2549
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2550
{
2551
	struct reclaim_state *reclaim_state = current->reclaim_state;
2552
	unsigned long nr_reclaimed, nr_scanned;
2553
	bool reclaimable = false;
L
Linus Torvalds 已提交
2554

2555 2556 2557
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2558
			.pgdat = pgdat,
2559 2560
			.priority = sc->priority,
		};
2561
		unsigned long node_lru_pages = 0;
2562
		struct mem_cgroup *memcg;
2563

2564 2565
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2566

2567 2568
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2569
			unsigned long lru_pages;
2570
			unsigned long reclaimed;
2571
			unsigned long scanned;
2572

2573 2574 2575 2576 2577 2578
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2579
			reclaimed = sc->nr_reclaimed;
2580
			scanned = sc->nr_scanned;
2581

2582 2583
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2584

2585
			if (memcg)
2586
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2587 2588 2589
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2590 2591 2592 2593 2594
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2595
			/*
2596 2597
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2598
			 * node.
2599 2600 2601 2602 2603
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2604
			 */
2605 2606
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2607 2608 2609
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2610
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2611

2612 2613 2614 2615
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2616
		if (global_reclaim(sc))
2617
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2618
				    sc->nr_scanned - nr_scanned,
2619
				    node_lru_pages);
2620 2621 2622 2623

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2624 2625
		}

2626 2627
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2628 2629 2630
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2631 2632 2633
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2634
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2635
					 sc->nr_scanned - nr_scanned, sc));
2636 2637

	return reclaimable;
2638 2639
}

2640
/*
2641 2642 2643
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2644
 */
2645
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2646
{
M
Mel Gorman 已提交
2647
	unsigned long watermark;
2648
	enum compact_result suitable;
2649

2650 2651 2652 2653 2654 2655 2656
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2657

2658
	/*
2659 2660 2661 2662 2663 2664 2665
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2666
	 */
2667
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2668

2669
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2670 2671
}

L
Linus Torvalds 已提交
2672 2673 2674 2675 2676 2677 2678 2679
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2680
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2681
{
2682
	struct zoneref *z;
2683
	struct zone *zone;
2684 2685
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2686
	gfp_t orig_mask;
2687
	pg_data_t *last_pgdat = NULL;
2688

2689 2690 2691 2692 2693
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2694
	orig_mask = sc->gfp_mask;
2695
	if (buffer_heads_over_limit) {
2696
		sc->gfp_mask |= __GFP_HIGHMEM;
2697
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2698
	}
2699

2700
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2701
					sc->reclaim_idx, sc->nodemask) {
2702 2703 2704 2705
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2706
		if (global_reclaim(sc)) {
2707 2708
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2709
				continue;
2710

2711
			if (sc->priority != DEF_PRIORITY &&
M
Mel Gorman 已提交
2712
			    !pgdat_reclaimable(zone->zone_pgdat))
2713
				continue;	/* Let kswapd poll it */
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2726
			    compaction_ready(zone, sc)) {
2727 2728
				sc->compaction_ready = true;
				continue;
2729
			}
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2740 2741 2742 2743 2744 2745 2746
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2747
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2748 2749 2750 2751
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2752
			/* need some check for avoid more shrink_zone() */
2753
		}
2754

2755 2756 2757 2758
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2759
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2760
	}
2761

2762 2763 2764 2765 2766
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2767
}
2768

L
Linus Torvalds 已提交
2769 2770 2771 2772 2773 2774 2775 2776
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2777 2778 2779 2780
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2781 2782 2783
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2784
 */
2785
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2786
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2787
{
2788
	int initial_priority = sc->priority;
2789
	unsigned long total_scanned = 0;
2790
	unsigned long writeback_threshold;
2791
retry:
2792 2793
	delayacct_freepages_start();

2794
	if (global_reclaim(sc))
2795
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2796

2797
	do {
2798 2799
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2800
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2801
		shrink_zones(zonelist, sc);
2802

2803
		total_scanned += sc->nr_scanned;
2804
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2805 2806 2807 2808
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2809

2810 2811 2812 2813 2814 2815 2816
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2817 2818 2819 2820 2821 2822 2823
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2824 2825
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2826 2827
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2828
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2829
		}
2830
	} while (--sc->priority >= 0);
2831

2832 2833
	delayacct_freepages_end();

2834 2835 2836
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2837
	/* Aborted reclaim to try compaction? don't OOM, then */
2838
	if (sc->compaction_ready)
2839 2840
		return 1;

2841 2842 2843 2844 2845 2846 2847
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2848
	return 0;
L
Linus Torvalds 已提交
2849 2850
}

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2861
		if (!managed_zone(zone) ||
M
Mel Gorman 已提交
2862
		    pgdat_reclaimable_pages(pgdat) == 0)
2863 2864
			continue;

2865 2866 2867 2868
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2869 2870 2871 2872
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2873 2874 2875 2876
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2877
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2889 2890 2891 2892
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2893
 */
2894
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2895 2896
					nodemask_t *nodemask)
{
2897
	struct zoneref *z;
2898
	struct zone *zone;
2899
	pg_data_t *pgdat = NULL;
2900 2901 2902 2903 2904 2905 2906 2907 2908

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2909 2910 2911 2912 2913 2914 2915 2916
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2917

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2933
					gfp_zone(gfp_mask), nodemask) {
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2946
		goto out;
2947

2948 2949 2950
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2962 2963

		goto check_pending;
2964 2965 2966 2967 2968
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2969 2970 2971 2972 2973 2974 2975

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2976 2977
}

2978
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2979
				gfp_t gfp_mask, nodemask_t *nodemask)
2980
{
2981
	unsigned long nr_reclaimed;
2982
	struct scan_control sc = {
2983
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2984
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2985
		.reclaim_idx = gfp_zone(gfp_mask),
2986 2987 2988
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2989
		.may_writepage = !laptop_mode,
2990
		.may_unmap = 1,
2991
		.may_swap = 1,
2992 2993
	};

2994
	/*
2995 2996 2997
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2998
	 */
2999
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
3000 3001
		return 1;

3002 3003
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3004 3005
				gfp_mask,
				sc.reclaim_idx);
3006

3007
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3008 3009 3010 3011

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3012 3013
}

A
Andrew Morton 已提交
3014
#ifdef CONFIG_MEMCG
3015

3016
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3017
						gfp_t gfp_mask, bool noswap,
3018
						pg_data_t *pgdat,
3019
						unsigned long *nr_scanned)
3020 3021
{
	struct scan_control sc = {
3022
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3023
		.target_mem_cgroup = memcg,
3024 3025
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3026
		.reclaim_idx = MAX_NR_ZONES - 1,
3027 3028
		.may_swap = !noswap,
	};
3029
	unsigned long lru_pages;
3030

3031 3032
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3033

3034
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3035
						      sc.may_writepage,
3036 3037
						      sc.gfp_mask,
						      sc.reclaim_idx);
3038

3039 3040 3041
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3042
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3043 3044 3045
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3046
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3047 3048 3049

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3050
	*nr_scanned = sc.nr_scanned;
3051 3052 3053
	return sc.nr_reclaimed;
}

3054
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3055
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3056
					   gfp_t gfp_mask,
3057
					   bool may_swap)
3058
{
3059
	struct zonelist *zonelist;
3060
	unsigned long nr_reclaimed;
3061
	int nid;
3062
	struct scan_control sc = {
3063
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3064 3065
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3066
		.reclaim_idx = MAX_NR_ZONES - 1,
3067 3068 3069 3070
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3071
		.may_swap = may_swap,
3072
	};
3073

3074 3075 3076 3077 3078
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3079
	nid = mem_cgroup_select_victim_node(memcg);
3080

3081
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3082 3083 3084

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3085 3086
					    sc.gfp_mask,
					    sc.reclaim_idx);
3087

3088
	current->flags |= PF_MEMALLOC;
3089
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3090
	current->flags &= ~PF_MEMALLOC;
3091 3092 3093 3094

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3095 3096 3097
}
#endif

3098
static void age_active_anon(struct pglist_data *pgdat,
3099
				struct scan_control *sc)
3100
{
3101
	struct mem_cgroup *memcg;
3102

3103 3104 3105 3106 3107
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3108
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3109

3110
		if (inactive_list_is_low(lruvec, false, sc, true))
3111
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3112
					   sc, LRU_ACTIVE_ANON);
3113 3114 3115

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3116 3117
}

M
Mel Gorman 已提交
3118
static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3119
{
M
Mel Gorman 已提交
3120
	unsigned long mark = high_wmark_pages(zone);
3121

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
		return false;

	/*
	 * If any eligible zone is balanced then the node is not considered
	 * to be congested or dirty
	 */
	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);

	return true;
3133 3134
}

3135 3136 3137 3138 3139 3140
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3141
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3142
{
3143 3144
	int i;

3145
	/*
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3157
	 */
3158 3159
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3160

3161 3162 3163
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

3164
		if (!managed_zone(zone))
3165 3166
			continue;

3167 3168
		if (!zone_balanced(zone, order, classzone_idx))
			return false;
3169 3170
	}

3171
	return true;
3172 3173
}

3174
/*
3175 3176
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3177 3178
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3179 3180
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3181
 */
3182
static bool kswapd_shrink_node(pg_data_t *pgdat,
3183
			       struct scan_control *sc)
3184
{
3185 3186
	struct zone *zone;
	int z;
3187

3188 3189
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3190
	for (z = 0; z <= sc->reclaim_idx; z++) {
3191
		zone = pgdat->node_zones + z;
3192
		if (!managed_zone(zone))
3193
			continue;
3194

3195 3196
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3197 3198

	/*
3199 3200
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3201
	 */
3202
	shrink_node(pgdat, sc);
3203

3204
	/*
3205 3206 3207 3208 3209
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3210
	 */
3211
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3212
		sc->order = 0;
3213

3214
	return sc->nr_scanned >= sc->nr_to_reclaim;
3215 3216
}

L
Linus Torvalds 已提交
3217
/*
3218 3219 3220
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3221
 *
3222
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3223 3224
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3225
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3226 3227 3228
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3229
 */
3230
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3231 3232
{
	int i;
3233 3234
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3235
	struct zone *zone;
3236 3237
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3238
		.order = order,
3239
		.priority = DEF_PRIORITY,
3240
		.may_writepage = !laptop_mode,
3241
		.may_unmap = 1,
3242
		.may_swap = 1,
3243
	};
3244
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3245

3246
	do {
3247 3248 3249
		bool raise_priority = true;

		sc.nr_reclaimed = 0;
3250
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3251

3252
		/*
3253 3254 3255 3256 3257 3258 3259 3260
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3261 3262 3263 3264
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3265
				if (!managed_zone(zone))
3266
					continue;
3267

3268
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3269
				break;
L
Linus Torvalds 已提交
3270 3271
			}
		}
3272

3273 3274 3275 3276 3277 3278
		/*
		 * Only reclaim if there are no eligible zones. Check from
		 * high to low zone as allocations prefer higher zones.
		 * Scanning from low to high zone would allow congestion to be
		 * cleared during a very small window when a small low
		 * zone was balanced even under extreme pressure when the
3279 3280 3281
		 * overall node may be congested. Note that sc.reclaim_idx
		 * is not used as buffer_heads_over_limit may have adjusted
		 * it.
3282
		 */
3283
		for (i = classzone_idx; i >= 0; i--) {
3284
			zone = pgdat->node_zones + i;
3285
			if (!managed_zone(zone))
3286 3287
				continue;

3288
			if (zone_balanced(zone, sc.order, classzone_idx))
3289 3290
				goto out;
		}
A
Andrew Morton 已提交
3291

3292 3293 3294 3295 3296 3297
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3298
		age_active_anon(pgdat, &sc);
3299

3300 3301 3302 3303
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3304
		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3305 3306
			sc.may_writepage = 1;

3307 3308 3309
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3310
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3311 3312 3313
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3314
		/*
3315 3316 3317
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3318
		 */
3319
		if (kswapd_shrink_node(pgdat, &sc))
3320
			raise_priority = false;
3321 3322 3323 3324 3325 3326 3327 3328

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3329
			wake_up_all(&pgdat->pfmemalloc_wait);
3330

3331 3332 3333
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3334

3335
		/*
3336 3337
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3338
		 */
3339 3340
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3341
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3342

3343
out:
3344
	/*
3345 3346 3347 3348
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3349
	 */
3350
	return sc.order;
L
Linus Torvalds 已提交
3351 3352
}

3353 3354
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3365
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3378
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3379

3380
		remaining = schedule_timeout(HZ/10);
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3392 3393 3394 3395 3396 3397 3398 3399
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3400 3401
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3413 3414 3415 3416

		if (!kthread_should_stop())
			schedule();

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3427 3428
/*
 * The background pageout daemon, started as a kernel thread
3429
 * from the init process.
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3442
	unsigned int alloc_order, reclaim_order, classzone_idx;
L
Linus Torvalds 已提交
3443 3444
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3445

L
Linus Torvalds 已提交
3446 3447 3448
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3449
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3450

3451 3452
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3453
	if (!cpumask_empty(cpumask))
3454
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3469
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3470
	set_freezable();
L
Linus Torvalds 已提交
3471

3472 3473
	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
	pgdat->kswapd_classzone_idx = classzone_idx = 0;
L
Linus Torvalds 已提交
3474
	for ( ; ; ) {
3475
		bool ret;
3476

3477 3478 3479
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3480

3481 3482 3483 3484 3485
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
		pgdat->kswapd_order = 0;
		pgdat->kswapd_classzone_idx = 0;
L
Linus Torvalds 已提交
3486

3487 3488 3489 3490 3491 3492 3493 3494
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3506 3507
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3508 3509 3510
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
3511

3512 3513
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
L
Linus Torvalds 已提交
3514
	}
3515

3516
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3517
	current->reclaim_state = NULL;
3518 3519
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3520 3521 3522 3523 3524 3525
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3526
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3527 3528
{
	pg_data_t *pgdat;
3529
	int z;
L
Linus Torvalds 已提交
3530

3531
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3532 3533
		return;

3534
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3535
		return;
3536
	pgdat = zone->zone_pgdat;
3537 3538
	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3539
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3540
		return;
3541 3542 3543 3544

	/* Only wake kswapd if all zones are unbalanced */
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
3545
		if (!managed_zone(zone))
3546 3547 3548 3549 3550
			continue;

		if (zone_balanced(zone, order, classzone_idx))
			return;
	}
3551 3552

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3553
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3554 3555
}

3556
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3557
/*
3558
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3559 3560 3561 3562 3563
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3564
 */
3565
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3566
{
3567 3568
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3569
		.nr_to_reclaim = nr_to_reclaim,
3570
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3571
		.reclaim_idx = MAX_NR_ZONES - 1,
3572
		.priority = DEF_PRIORITY,
3573
		.may_writepage = 1,
3574 3575
		.may_unmap = 1,
		.may_swap = 1,
3576
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3577
	};
3578
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3579 3580
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3581

3582 3583 3584 3585
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3586

3587
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3588

3589 3590 3591
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3592

3593
	return nr_reclaimed;
L
Linus Torvalds 已提交
3594
}
3595
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3596 3597 3598 3599 3600

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3601
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3602
{
3603
	int nid;
L
Linus Torvalds 已提交
3604

3605 3606 3607
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3608

3609
		mask = cpumask_of_node(pgdat->node_id);
3610

3611 3612 3613
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3614
	}
3615
	return 0;
L
Linus Torvalds 已提交
3616 3617
}

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3634 3635
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3636
		pgdat->kswapd = NULL;
3637 3638 3639 3640
	}
	return ret;
}

3641
/*
3642
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3643
 * hold mem_hotplug_begin/end().
3644 3645 3646 3647 3648
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3649
	if (kswapd) {
3650
		kthread_stop(kswapd);
3651 3652
		NODE_DATA(nid)->kswapd = NULL;
	}
3653 3654
}

L
Linus Torvalds 已提交
3655 3656
static int __init kswapd_init(void)
{
3657
	int nid, ret;
3658

L
Linus Torvalds 已提交
3659
	swap_setup();
3660
	for_each_node_state(nid, N_MEMORY)
3661
 		kswapd_run(nid);
3662 3663 3664 3665
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3666 3667 3668 3669
	return 0;
}

module_init(kswapd_init)
3670 3671 3672

#ifdef CONFIG_NUMA
/*
3673
 * Node reclaim mode
3674
 *
3675
 * If non-zero call node_reclaim when the number of free pages falls below
3676 3677
 * the watermarks.
 */
3678
int node_reclaim_mode __read_mostly;
3679

3680
#define RECLAIM_OFF 0
3681
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3682
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3683
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3684

3685
/*
3686
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3687 3688 3689
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3690
#define NODE_RECLAIM_PRIORITY 4
3691

3692
/*
3693
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3694 3695 3696 3697
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3698 3699 3700 3701 3702 3703
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3704
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3705
{
3706 3707 3708
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3719
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3720
{
3721 3722
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3723 3724

	/*
3725
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3726
	 * potentially reclaimable. Otherwise, we have to worry about
3727
	 * pages like swapcache and node_unmapped_file_pages() provides
3728 3729
	 * a better estimate
	 */
3730 3731
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3732
	else
3733
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3734 3735

	/* If we can't clean pages, remove dirty pages from consideration */
3736 3737
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3738 3739 3740 3741 3742 3743 3744 3745

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3746
/*
3747
 * Try to free up some pages from this node through reclaim.
3748
 */
3749
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3750
{
3751
	/* Minimum pages needed in order to stay on node */
3752
	const unsigned long nr_pages = 1 << order;
3753 3754
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3755
	int classzone_idx = gfp_zone(gfp_mask);
3756
	struct scan_control sc = {
3757
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3758
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3759
		.order = order,
3760 3761 3762
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3763
		.may_swap = 1,
3764
		.reclaim_idx = classzone_idx,
3765
	};
3766 3767

	cond_resched();
3768
	/*
3769
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3770
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3771
	 * and RECLAIM_UNMAP.
3772 3773
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3774
	lockdep_set_current_reclaim_state(gfp_mask);
3775 3776
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3777

3778
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3779 3780 3781 3782 3783
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3784
			shrink_node(pgdat, &sc);
3785
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3786
	}
3787

3788
	p->reclaim_state = NULL;
3789
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3790
	lockdep_clear_current_reclaim_state();
3791
	return sc.nr_reclaimed >= nr_pages;
3792
}
3793

3794
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3795
{
3796
	int ret;
3797 3798

	/*
3799
	 * Node reclaim reclaims unmapped file backed pages and
3800
	 * slab pages if we are over the defined limits.
3801
	 *
3802 3803
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3804 3805
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3806
	 * unmapped file backed pages.
3807
	 */
3808 3809 3810
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3811

3812 3813
	if (!pgdat_reclaimable(pgdat))
		return NODE_RECLAIM_FULL;
3814

3815
	/*
3816
	 * Do not scan if the allocation should not be delayed.
3817
	 */
3818
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3819
		return NODE_RECLAIM_NOSCAN;
3820 3821

	/*
3822
	 * Only run node reclaim on the local node or on nodes that do not
3823 3824 3825 3826
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3827 3828
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3829

3830 3831
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3832

3833 3834
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3835

3836 3837 3838
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3839
	return ret;
3840
}
3841
#endif
L
Lee Schermerhorn 已提交
3842 3843 3844 3845 3846 3847

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3848
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3849 3850
 *
 * Reasons page might not be evictable:
3851
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3852
 * (2) page is part of an mlocked VMA
3853
 *
L
Lee Schermerhorn 已提交
3854
 */
3855
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3856
{
3857
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3858
}
3859

3860
#ifdef CONFIG_SHMEM
3861
/**
3862 3863 3864
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3865
 *
3866
 * Checks pages for evictability and moves them to the appropriate lru list.
3867 3868
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3869
 */
3870
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3871
{
3872
	struct lruvec *lruvec;
3873
	struct pglist_data *pgdat = NULL;
3874 3875 3876
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3877

3878 3879
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3880
		struct pglist_data *pagepgdat = page_pgdat(page);
3881

3882
		pgscanned++;
3883 3884 3885 3886 3887
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3888
		}
3889
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3890

3891 3892
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3893

3894
		if (page_evictable(page)) {
3895 3896
			enum lru_list lru = page_lru_base_type(page);

3897
			VM_BUG_ON_PAGE(PageActive(page), page);
3898
			ClearPageUnevictable(page);
3899 3900
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3901
			pgrescued++;
3902
		}
3903
	}
3904

3905
	if (pgdat) {
3906 3907
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3908
		spin_unlock_irq(&pgdat->lru_lock);
3909 3910
	}
}
3911
#endif /* CONFIG_SHMEM */