vmscan.c 106.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142
#else
143 144 145 146
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
147 148
#endif

149
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150
{
151
	if (!mem_cgroup_disabled())
152
		return mem_cgroup_get_lru_size(lruvec, lru);
153

154
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 156
}

L
Linus Torvalds 已提交
157 158 159
/*
 * Add a shrinker callback to be called from the vm
 */
160
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
161
{
162
	atomic_long_set(&shrinker->nr_in_batch, 0);
163 164 165
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
166
}
167
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
168 169 170 171

/*
 * Remove one
 */
172
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
173 174 175 176 177
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
178
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
179

180 181 182 183 184 185 186 187
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
197
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
198 199 200 201 202 203 204
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
205 206
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
207
 */
D
Dave Chinner 已提交
208
unsigned long shrink_slab(struct shrink_control *shrinkctl,
209
			  unsigned long nr_pages_scanned,
210
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
211 212
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
213
	unsigned long freed = 0;
L
Linus Torvalds 已提交
214

215 216
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
217

218
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
219 220 221 222 223 224 225
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
226 227
		goto out;
	}
L
Linus Torvalds 已提交
228 229 230

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
231 232
		long total_scan;
		long max_pass;
233 234
		long nr;
		long new_nr;
235 236
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
237

D
Dave Chinner 已提交
238 239 240 241 242
		if (shrinker->count_objects)
			max_pass = shrinker->count_objects(shrinker, shrinkctl);
		else
			max_pass = do_shrinker_shrink(shrinker, shrinkctl, 0);
		if (max_pass == 0)
243 244
			continue;

245 246 247 248 249
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
250
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
251 252

		total_scan = nr;
253
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
254
		delta *= max_pass;
L
Linus Torvalds 已提交
255
		do_div(delta, lru_pages + 1);
256 257
		total_scan += delta;
		if (total_scan < 0) {
D
Dave Chinner 已提交
258 259
			printk(KERN_ERR
			"shrink_slab: %pF negative objects to delete nr=%ld\n",
260 261
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
262 263
		}

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

279 280 281 282 283
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
284 285
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
286

D
Dave Chinner 已提交
287
		trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
288 289 290
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

291
		while (total_scan >= batch_size) {
D
Dave Chinner 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

			if (shrinker->scan_objects) {
				unsigned long ret;
				shrinkctl->nr_to_scan = batch_size;
				ret = shrinker->scan_objects(shrinker, shrinkctl);

				if (ret == SHRINK_STOP)
					break;
				freed += ret;
			} else {
				int nr_before;
				long ret;

				nr_before = do_shrinker_shrink(shrinker, shrinkctl, 0);
				ret = do_shrinker_shrink(shrinker, shrinkctl,
								batch_size);
				if (ret == -1)
					break;
				if (ret < nr_before)
					freed += nr_before - ret;
			}

314 315
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
316 317 318 319

			cond_resched();
		}

320 321 322 323 324
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
325 326 327 328 329
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
330

D
Dave Chinner 已提交
331
		trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
L
Linus Torvalds 已提交
332 333
	}
	up_read(&shrinker_rwsem);
334 335
out:
	cond_resched();
D
Dave Chinner 已提交
336
	return freed;
L
Linus Torvalds 已提交
337 338 339 340
}

static inline int is_page_cache_freeable(struct page *page)
{
341 342 343 344 345
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
346
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
347 348
}

349 350
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
351
{
352
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
376
	lock_page(page);
377 378
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
379 380 381
	unlock_page(page);
}

382 383 384 385 386 387 388 389 390 391 392 393
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
394
/*
A
Andrew Morton 已提交
395 396
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
397
 */
398
static pageout_t pageout(struct page *page, struct address_space *mapping,
399
			 struct scan_control *sc)
L
Linus Torvalds 已提交
400 401 402 403 404 405 406 407
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
408
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
424
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
425 426
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
427
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
428 429 430 431 432 433 434
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
435
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
436 437 438 439 440 441 442
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
443 444
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
445 446 447 448 449 450 451
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
452
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
453 454 455
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
456

L
Linus Torvalds 已提交
457 458 459 460
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
461
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
462
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
463 464 465 466 467 468
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

469
/*
N
Nick Piggin 已提交
470 471
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
472
 */
N
Nick Piggin 已提交
473
static int __remove_mapping(struct address_space *mapping, struct page *page)
474
{
475 476
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
477

N
Nick Piggin 已提交
478
	spin_lock_irq(&mapping->tree_lock);
479
	/*
N
Nick Piggin 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
503
	 */
N
Nick Piggin 已提交
504
	if (!page_freeze_refs(page, 2))
505
		goto cannot_free;
N
Nick Piggin 已提交
506 507 508
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
509
		goto cannot_free;
N
Nick Piggin 已提交
510
	}
511 512 513 514

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
515
		spin_unlock_irq(&mapping->tree_lock);
516
		swapcache_free(swap, page);
N
Nick Piggin 已提交
517
	} else {
518 519 520 521
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

522
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
523
		spin_unlock_irq(&mapping->tree_lock);
524
		mem_cgroup_uncharge_cache_page(page);
525 526 527

		if (freepage != NULL)
			freepage(page);
528 529 530 531 532
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
533
	spin_unlock_irq(&mapping->tree_lock);
534 535 536
	return 0;
}

N
Nick Piggin 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
557 558 559 560 561 562 563 564 565 566 567 568
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
569
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
570 571 572 573 574 575

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

576
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
577 578 579 580 581 582
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
583 584
		lru = page_lru_base_type(page);
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
585 586 587 588 589 590 591
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
592
		/*
593 594 595
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
596
		 * isolation/check_move_unevictable_pages,
597
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
598 599
		 * the page back to the evictable list.
		 *
600
		 * The other side is TestClearPageMlocked() or shmem_lock().
601 602
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
603 604 605 606 607 608 609
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
610
	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
L
Lee Schermerhorn 已提交
611 612 613 614 615 616 617 618 619 620
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

621 622 623 624 625
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
626 627 628
	put_page(page);		/* drop ref from isolate */
}

629 630 631
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
632
	PAGEREF_KEEP,
633 634 635 636 637 638
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
639
	int referenced_ptes, referenced_page;
640 641
	unsigned long vm_flags;

642 643
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
644
	referenced_page = TestClearPageReferenced(page);
645 646 647 648 649 650 651 652

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

653
	if (referenced_ptes) {
654
		if (PageSwapBacked(page))
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

672
		if (referenced_page || referenced_ptes > 1)
673 674
			return PAGEREF_ACTIVATE;

675 676 677 678 679 680
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

681 682
		return PAGEREF_KEEP;
	}
683 684

	/* Reclaim if clean, defer dirty pages to writeback */
685
	if (referenced_page && !PageSwapBacked(page))
686 687 688
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
689 690
}

691 692 693 694
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
695 696
	struct address_space *mapping;

697 698 699 700 701 702 703 704 705 706 707 708 709
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
710 711 712 713 714 715 716 717

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
718 719
}

L
Linus Torvalds 已提交
720
/*
A
Andrew Morton 已提交
721
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
722
 */
A
Andrew Morton 已提交
723
static unsigned long shrink_page_list(struct list_head *page_list,
724
				      struct zone *zone,
725
				      struct scan_control *sc,
726
				      enum ttu_flags ttu_flags,
727
				      unsigned long *ret_nr_dirty,
728
				      unsigned long *ret_nr_unqueued_dirty,
729
				      unsigned long *ret_nr_congested,
730
				      unsigned long *ret_nr_writeback,
731
				      unsigned long *ret_nr_immediate,
732
				      bool force_reclaim)
L
Linus Torvalds 已提交
733 734
{
	LIST_HEAD(ret_pages);
735
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
736
	int pgactivate = 0;
737
	unsigned long nr_unqueued_dirty = 0;
738 739
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
740
	unsigned long nr_reclaimed = 0;
741
	unsigned long nr_writeback = 0;
742
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
743 744 745

	cond_resched();

746
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
747 748 749 750
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
751
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
752
		bool dirty, writeback;
L
Linus Torvalds 已提交
753 754 755 756 757 758

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
759
		if (!trylock_page(page))
L
Linus Torvalds 已提交
760 761
			goto keep;

N
Nick Piggin 已提交
762
		VM_BUG_ON(PageActive(page));
763
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
764 765

		sc->nr_scanned++;
766

767
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
768
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
769

770
		if (!sc->may_unmap && page_mapped(page))
771 772
			goto keep_locked;

L
Linus Torvalds 已提交
773 774 775 776
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

777 778 779
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

780 781 782 783 784 785 786 787 788 789 790 791 792
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

793 794 795 796 797 798
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
799
		mapping = page_mapping(page);
800 801
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
802 803
			nr_congested++;

804 805 806 807 808 809 810 811 812 813 814
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
815 816
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
841
		if (PageWriteback(page)) {
842 843 844 845
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
846 847
				nr_immediate++;
				goto keep_locked;
848 849 850

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
851 852 853 854 855 856 857 858 859 860 861 862 863
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
864
				nr_writeback++;
865

866
				goto keep_locked;
867 868 869 870

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
871
			}
872
		}
L
Linus Torvalds 已提交
873

874 875 876
		if (!force_reclaim)
			references = page_check_references(page, sc);

877 878
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
879
			goto activate_locked;
880 881
		case PAGEREF_KEEP:
			goto keep_locked;
882 883 884 885
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
886 887 888 889 890

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
891
		if (PageAnon(page) && !PageSwapCache(page)) {
892 893
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
894
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
895
				goto activate_locked;
896
			may_enter_fs = 1;
L
Linus Torvalds 已提交
897

898 899 900
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
901 902 903 904 905 906

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
907
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
908 909 910 911
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
912 913
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
914 915 916 917 918 919
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
920 921
			/*
			 * Only kswapd can writeback filesystem pages to
922 923
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
924
			 */
925
			if (page_is_file_cache(page) &&
926
					(!current_is_kswapd() ||
927
					 !zone_is_reclaim_dirty(zone))) {
928 929 930 931 932 933 934 935 936
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

937 938 939
				goto keep_locked;
			}

940
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
941
				goto keep_locked;
942
			if (!may_enter_fs)
L
Linus Torvalds 已提交
943
				goto keep_locked;
944
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
945 946 947
				goto keep_locked;

			/* Page is dirty, try to write it out here */
948
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
949 950 951 952 953
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
954
				if (PageWriteback(page))
955
					goto keep;
956
				if (PageDirty(page))
L
Linus Torvalds 已提交
957
					goto keep;
958

L
Linus Torvalds 已提交
959 960 961 962
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
963
				if (!trylock_page(page))
L
Linus Torvalds 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
983
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
984 985 986 987 988 989 990 991 992 993
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
994
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
995 996
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1013 1014
		}

N
Nick Piggin 已提交
1015
		if (!mapping || !__remove_mapping(mapping, page))
1016
			goto keep_locked;
L
Linus Torvalds 已提交
1017

N
Nick Piggin 已提交
1018 1019 1020 1021 1022 1023 1024 1025
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1026
free_it:
1027
		nr_reclaimed++;
1028 1029 1030 1031 1032 1033

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1034 1035
		continue;

N
Nick Piggin 已提交
1036
cull_mlocked:
1037 1038
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1039 1040 1041 1042
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1043
activate_locked:
1044 1045
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1046
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1047
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1048 1049 1050 1051 1052 1053
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1054
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1055
	}
1056

1057
	free_hot_cold_page_list(&free_pages, 1);
1058

L
Linus Torvalds 已提交
1059
	list_splice(&ret_pages, page_list);
1060
	count_vm_events(PGACTIVATE, pgactivate);
1061
	mem_cgroup_uncharge_end();
1062 1063
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1064
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1065
	*ret_nr_writeback += nr_writeback;
1066
	*ret_nr_immediate += nr_immediate;
1067
	return nr_reclaimed;
L
Linus Torvalds 已提交
1068 1069
}

1070 1071 1072 1073 1074 1075 1076 1077
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1078
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1090 1091
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1092 1093 1094 1095 1096
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1107
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1108 1109 1110 1111 1112 1113 1114
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1115 1116
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1117 1118
		return ret;

A
Andy Whitcroft 已提交
1119
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1154

1155 1156 1157
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1182
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1183
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1184
 * @nr_scanned:	The number of pages that were scanned.
1185
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1186
 * @mode:	One of the LRU isolation modes
1187
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1188 1189 1190
 *
 * returns how many pages were moved onto *@dst.
 */
1191
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1192
		struct lruvec *lruvec, struct list_head *dst,
1193
		unsigned long *nr_scanned, struct scan_control *sc,
1194
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1195
{
H
Hugh Dickins 已提交
1196
	struct list_head *src = &lruvec->lists[lru];
1197
	unsigned long nr_taken = 0;
1198
	unsigned long scan;
L
Linus Torvalds 已提交
1199

1200
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1201
		struct page *page;
1202
		int nr_pages;
A
Andy Whitcroft 已提交
1203

L
Linus Torvalds 已提交
1204 1205 1206
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1207
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1208

1209
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1210
		case 0:
1211 1212
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1213
			list_move(&page->lru, dst);
1214
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1215 1216 1217 1218 1219 1220
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1221

A
Andy Whitcroft 已提交
1222 1223 1224
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1225 1226
	}

H
Hugh Dickins 已提交
1227
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1228 1229
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1230 1231 1232
	return nr_taken;
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1244 1245 1246
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1262 1263
	VM_BUG_ON(!page_count(page));

1264 1265
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1266
		struct lruvec *lruvec;
1267 1268

		spin_lock_irq(&zone->lru_lock);
1269
		lruvec = mem_cgroup_page_lruvec(page, zone);
1270
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1271
			int lru = page_lru(page);
1272
			get_page(page);
1273
			ClearPageLRU(page);
1274 1275
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1276 1277 1278 1279 1280 1281
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1282
/*
F
Fengguang Wu 已提交
1283 1284 1285 1286 1287
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1288 1289 1290 1291 1292 1293 1294 1295 1296
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1297
	if (!global_reclaim(sc))
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1308 1309 1310 1311 1312 1313 1314 1315
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1316 1317 1318
	return isolated > inactive;
}

1319
static noinline_for_stack void
H
Hugh Dickins 已提交
1320
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1321
{
1322 1323
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1324
	LIST_HEAD(pages_to_free);
1325 1326 1327 1328 1329

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1330
		struct page *page = lru_to_page(page_list);
1331
		int lru;
1332

1333 1334
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1335
		if (unlikely(!page_evictable(page))) {
1336 1337 1338 1339 1340
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1341 1342 1343

		lruvec = mem_cgroup_page_lruvec(page, zone);

1344
		SetPageLRU(page);
1345
		lru = page_lru(page);
1346 1347
		add_page_to_lru_list(page, lruvec, lru);

1348 1349
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1350 1351
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1352
		}
1353 1354 1355
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1356
			del_page_from_lru_list(page, lruvec, lru);
1357 1358 1359 1360 1361 1362 1363

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1364 1365 1366
		}
	}

1367 1368 1369 1370
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1371 1372
}

L
Linus Torvalds 已提交
1373
/*
A
Andrew Morton 已提交
1374 1375
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1376
 */
1377
static noinline_for_stack unsigned long
1378
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1379
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1380 1381
{
	LIST_HEAD(page_list);
1382
	unsigned long nr_scanned;
1383
	unsigned long nr_reclaimed = 0;
1384
	unsigned long nr_taken;
1385 1386
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1387
	unsigned long nr_unqueued_dirty = 0;
1388
	unsigned long nr_writeback = 0;
1389
	unsigned long nr_immediate = 0;
1390
	isolate_mode_t isolate_mode = 0;
1391
	int file = is_file_lru(lru);
1392 1393
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1394

1395
	while (unlikely(too_many_isolated(zone, file, sc))) {
1396
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1397 1398 1399 1400 1401 1402

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1403
	lru_add_drain();
1404 1405

	if (!sc->may_unmap)
1406
		isolate_mode |= ISOLATE_UNMAPPED;
1407
	if (!sc->may_writepage)
1408
		isolate_mode |= ISOLATE_CLEAN;
1409

L
Linus Torvalds 已提交
1410
	spin_lock_irq(&zone->lru_lock);
1411

1412 1413
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1414 1415 1416 1417

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1418
	if (global_reclaim(sc)) {
1419 1420
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1421
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1422
		else
H
Hugh Dickins 已提交
1423
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1424
	}
1425
	spin_unlock_irq(&zone->lru_lock);
1426

1427
	if (nr_taken == 0)
1428
		return 0;
A
Andy Whitcroft 已提交
1429

1430
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1431 1432 1433
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1434

1435 1436
	spin_lock_irq(&zone->lru_lock);

1437
	reclaim_stat->recent_scanned[file] += nr_taken;
1438

Y
Ying Han 已提交
1439 1440 1441 1442 1443 1444 1445 1446
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1447

1448
	putback_inactive_pages(lruvec, &page_list);
1449

1450
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1451 1452 1453 1454

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1466 1467 1468
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1469
	 */
1470
	if (nr_writeback && nr_writeback == nr_taken)
1471
		zone_set_flag(zone, ZONE_WRITEBACK);
1472

1473
	/*
1474 1475
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1476
	 */
1477
	if (global_reclaim(sc)) {
1478 1479 1480 1481 1482 1483 1484
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1503
	}
1504

1505 1506 1507 1508 1509 1510 1511 1512
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
	if (!sc->hibernation_mode && !current_is_kswapd())
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1513 1514 1515
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1516
		sc->priority,
M
Mel Gorman 已提交
1517
		trace_shrink_flags(file));
1518
	return nr_reclaimed;
L
Linus Torvalds 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1538

1539
static void move_active_pages_to_lru(struct lruvec *lruvec,
1540
				     struct list_head *list,
1541
				     struct list_head *pages_to_free,
1542 1543
				     enum lru_list lru)
{
1544
	struct zone *zone = lruvec_zone(lruvec);
1545 1546
	unsigned long pgmoved = 0;
	struct page *page;
1547
	int nr_pages;
1548 1549 1550

	while (!list_empty(list)) {
		page = lru_to_page(list);
1551
		lruvec = mem_cgroup_page_lruvec(page, zone);
1552 1553 1554 1555

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1556 1557
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1558
		list_move(&page->lru, &lruvec->lists[lru]);
1559
		pgmoved += nr_pages;
1560

1561 1562 1563
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1564
			del_page_from_lru_list(page, lruvec, lru);
1565 1566 1567 1568 1569 1570 1571

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1572 1573 1574 1575 1576 1577
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1578

H
Hugh Dickins 已提交
1579
static void shrink_active_list(unsigned long nr_to_scan,
1580
			       struct lruvec *lruvec,
1581
			       struct scan_control *sc,
1582
			       enum lru_list lru)
L
Linus Torvalds 已提交
1583
{
1584
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1585
	unsigned long nr_scanned;
1586
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1587
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1588
	LIST_HEAD(l_active);
1589
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1590
	struct page *page;
1591
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1592
	unsigned long nr_rotated = 0;
1593
	isolate_mode_t isolate_mode = 0;
1594
	int file = is_file_lru(lru);
1595
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1596 1597

	lru_add_drain();
1598 1599

	if (!sc->may_unmap)
1600
		isolate_mode |= ISOLATE_UNMAPPED;
1601
	if (!sc->may_writepage)
1602
		isolate_mode |= ISOLATE_CLEAN;
1603

L
Linus Torvalds 已提交
1604
	spin_lock_irq(&zone->lru_lock);
1605

1606 1607
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1608
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1609
		zone->pages_scanned += nr_scanned;
1610

1611
	reclaim_stat->recent_scanned[file] += nr_taken;
1612

H
Hugh Dickins 已提交
1613
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1614
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1615
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1622

1623
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1624 1625 1626 1627
			putback_lru_page(page);
			continue;
		}

1628 1629 1630 1631 1632 1633 1634 1635
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1636 1637
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1638
			nr_rotated += hpage_nr_pages(page);
1639 1640 1641 1642 1643 1644 1645 1646 1647
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1648
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1649 1650 1651 1652
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1653

1654
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1655 1656 1657
		list_add(&page->lru, &l_inactive);
	}

1658
	/*
1659
	 * Move pages back to the lru list.
1660
	 */
1661
	spin_lock_irq(&zone->lru_lock);
1662
	/*
1663 1664 1665 1666
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1667
	 */
1668
	reclaim_stat->recent_rotated[file] += nr_rotated;
1669

1670 1671
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1672
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1673
	spin_unlock_irq(&zone->lru_lock);
1674 1675

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1676 1677
}

1678
#ifdef CONFIG_SWAP
1679
static int inactive_anon_is_low_global(struct zone *zone)
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1692 1693
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1694
 * @lruvec: LRU vector to check
1695 1696 1697 1698
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1699
static int inactive_anon_is_low(struct lruvec *lruvec)
1700
{
1701 1702 1703 1704 1705 1706 1707
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1708
	if (!mem_cgroup_disabled())
1709
		return mem_cgroup_inactive_anon_is_low(lruvec);
1710

1711
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1712
}
1713
#else
1714
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1715 1716 1717 1718
{
	return 0;
}
#endif
1719

1720 1721
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1722
 * @lruvec: LRU vector to check
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1734
static int inactive_file_is_low(struct lruvec *lruvec)
1735
{
1736 1737 1738 1739 1740
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1741

1742
	return active > inactive;
1743 1744
}

H
Hugh Dickins 已提交
1745
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1746
{
H
Hugh Dickins 已提交
1747
	if (is_file_lru(lru))
1748
		return inactive_file_is_low(lruvec);
1749
	else
1750
		return inactive_anon_is_low(lruvec);
1751 1752
}

1753
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1754
				 struct lruvec *lruvec, struct scan_control *sc)
1755
{
1756
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1757
		if (inactive_list_is_low(lruvec, lru))
1758
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1759 1760 1761
		return 0;
	}

1762
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1763 1764
}

1765
static int vmscan_swappiness(struct scan_control *sc)
1766
{
1767
	if (global_reclaim(sc))
1768
		return vm_swappiness;
1769
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1770 1771
}

1772 1773 1774 1775 1776 1777 1778
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1779 1780 1781 1782 1783 1784
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1785 1786
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1787
 */
1788
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1789
			   unsigned long *nr)
1790
{
1791 1792 1793 1794
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1795
	unsigned long anon_prio, file_prio;
1796 1797 1798
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1799
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1800
	enum lru_list lru;
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1812
	if (current_is_kswapd() && zone->all_unreclaimable)
1813
		force_scan = true;
1814
	if (!global_reclaim(sc))
1815
		force_scan = true;
1816 1817

	/* If we have no swap space, do not bother scanning anon pages. */
1818
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1819
		scan_balance = SCAN_FILE;
1820 1821
		goto out;
	}
1822

1823 1824 1825 1826 1827 1828 1829 1830
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1831
		scan_balance = SCAN_FILE;
1832 1833 1834 1835 1836 1837 1838 1839 1840
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1841
		scan_balance = SCAN_EQUAL;
1842 1843 1844
		goto out;
	}

1845 1846 1847 1848
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1849

1850 1851 1852 1853 1854 1855
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1856
	if (global_reclaim(sc)) {
1857
		free = zone_page_state(zone, NR_FREE_PAGES);
1858
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1859
			scan_balance = SCAN_ANON;
1860
			goto out;
1861
		}
1862 1863
	}

1864 1865 1866 1867 1868
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1869
		scan_balance = SCAN_FILE;
1870 1871 1872
		goto out;
	}

1873 1874
	scan_balance = SCAN_FRACT;

1875 1876 1877 1878
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1879
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1880
	file_prio = 200 - anon_prio;
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1893
	spin_lock_irq(&zone->lru_lock);
1894 1895 1896
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1897 1898
	}

1899 1900 1901
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1902 1903 1904
	}

	/*
1905 1906 1907
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1908
	 */
1909
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1910
	ap /= reclaim_stat->recent_rotated[0] + 1;
1911

1912
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1913
	fp /= reclaim_stat->recent_rotated[1] + 1;
1914
	spin_unlock_irq(&zone->lru_lock);
1915

1916 1917 1918 1919
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1920 1921
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1922
		unsigned long size;
1923
		unsigned long scan;
1924

1925
		size = get_lru_size(lruvec, lru);
1926
		scan = size >> sc->priority;
1927

1928 1929
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1952
		nr[lru] = scan;
1953
	}
1954
}
1955

1956 1957 1958 1959 1960 1961
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1962
	unsigned long targets[NR_LRU_LISTS];
1963 1964 1965 1966 1967
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
1968
	bool scan_adjusted = false;
1969 1970 1971

	get_scan_count(lruvec, sc, nr);

1972 1973 1974
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

1975 1976 1977
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
1978 1979 1980
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

1981 1982 1983 1984 1985 1986 1987 1988 1989
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
1990 1991 1992 1993

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

1994
		/*
1995 1996 1997 1998
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
1999
		 */
2000
		if (global_reclaim(sc) && !current_is_kswapd())
2001
			break;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2059
/* Use reclaim/compaction for costly allocs or under memory pressure */
2060
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2061
{
2062
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2063
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2064
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2065 2066 2067 2068 2069
		return true;

	return false;
}

2070
/*
M
Mel Gorman 已提交
2071 2072 2073 2074 2075
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2076
 */
2077
static inline bool should_continue_reclaim(struct zone *zone,
2078 2079 2080 2081 2082 2083 2084 2085
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2086
	if (!in_reclaim_compaction(sc))
2087 2088
		return false;

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2111 2112 2113 2114 2115 2116

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2117
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2118
	if (get_nr_swap_pages() > 0)
2119
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2120 2121 2122 2123 2124
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2125
	switch (compaction_suitable(zone, sc->order)) {
2126 2127 2128 2129 2130 2131 2132 2133
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2134
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2135
{
2136
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2137

2138 2139 2140 2141 2142 2143 2144
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
		struct mem_cgroup *memcg;
2145

2146 2147
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2148

2149 2150 2151
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
			struct lruvec *lruvec;
2152

2153
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2154

2155
			shrink_lruvec(lruvec, sc);
2156

2157
			/*
2158 2159
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2160
			 * zone.
2161 2162 2163 2164 2165
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2166
			 */
2167 2168
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2169 2170 2171 2172 2173
				mem_cgroup_iter_break(root, memcg);
				break;
			}
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2174 2175 2176 2177 2178

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2179 2180
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2181 2182
}

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2200
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2201 2202 2203 2204 2205 2206 2207 2208
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2209
	if (compaction_deferred(zone, sc->order))
2210 2211 2212 2213 2214 2215 2216 2217 2218
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2219 2220 2221 2222 2223
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2224 2225
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2226 2227
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2228 2229 2230
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2231 2232 2233
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2234 2235
 *
 * This function returns true if a zone is being reclaimed for a costly
2236
 * high-order allocation and compaction is ready to begin. This indicates to
2237 2238
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2239
 */
2240
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2241
{
2242
	struct zoneref *z;
2243
	struct zone *zone;
2244 2245
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2246
	bool aborted_reclaim = false;
2247

2248 2249 2250 2251 2252 2253 2254 2255
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2256 2257
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2258
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2259
			continue;
2260 2261 2262 2263
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2264
		if (global_reclaim(sc)) {
2265 2266
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2267 2268
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
2269
				continue;	/* Let kswapd poll it */
2270
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2271
				/*
2272 2273 2274 2275 2276
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2277 2278
				 * noticeable problem, like transparent huge
				 * page allocations.
2279
				 */
2280
				if (compaction_ready(zone, sc)) {
2281
					aborted_reclaim = true;
2282
					continue;
2283
				}
2284
			}
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2298
		}
2299

2300
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2301
	}
2302

2303
	return aborted_reclaim;
2304 2305 2306 2307 2308 2309 2310
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2311
/* All zones in zonelist are unreclaimable? */
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2324 2325
		if (!zone->all_unreclaimable)
			return false;
2326 2327
	}

2328
	return true;
L
Linus Torvalds 已提交
2329
}
2330

L
Linus Torvalds 已提交
2331 2332 2333 2334 2335 2336 2337 2338
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2339 2340 2341 2342
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2343 2344 2345
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2346
 */
2347
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2348 2349
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2350
{
2351
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2352
	struct reclaim_state *reclaim_state = current->reclaim_state;
2353
	struct zoneref *z;
2354
	struct zone *zone;
2355
	unsigned long writeback_threshold;
2356
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2357

2358 2359
	delayacct_freepages_start();

2360
	if (global_reclaim(sc))
2361
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2362

2363
	do {
2364 2365
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2366
		sc->nr_scanned = 0;
2367
		aborted_reclaim = shrink_zones(zonelist, sc);
2368

2369
		/*
2370 2371 2372 2373
		 * Don't shrink slabs when reclaiming memory from over limit
		 * cgroups but do shrink slab at least once when aborting
		 * reclaim for compaction to avoid unevenly scanning file/anon
		 * LRU pages over slab pages.
2374
		 */
2375
		if (global_reclaim(sc)) {
2376
			unsigned long lru_pages = 0;
D
Dave Chinner 已提交
2377 2378

			nodes_clear(shrink->nodes_to_scan);
2379 2380
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2381 2382 2383 2384
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
D
Dave Chinner 已提交
2385 2386
				node_set(zone_to_nid(zone),
					 shrink->nodes_to_scan);
2387 2388
			}

2389
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2390
			if (reclaim_state) {
2391
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2392 2393
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2394
		}
2395
		total_scanned += sc->nr_scanned;
2396
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2397 2398
			goto out;

2399 2400 2401 2402 2403 2404 2405
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2406 2407 2408 2409 2410 2411 2412
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2413 2414
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2415 2416
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2417
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2418
		}
2419
	} while (--sc->priority >= 0 && !aborted_reclaim);
2420

L
Linus Torvalds 已提交
2421
out:
2422 2423
	delayacct_freepages_end();

2424 2425 2426
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2427 2428 2429 2430 2431 2432 2433 2434
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2435 2436
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2437 2438
		return 1;

2439
	/* top priority shrink_zones still had more to do? don't OOM, then */
2440
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2441 2442 2443
		return 1;

	return 0;
L
Linus Torvalds 已提交
2444 2445
}

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2476 2477 2478 2479
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2480
 */
2481
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2496 2497 2498 2499 2500 2501 2502 2503
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2504 2505 2506 2507 2508

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2509
		goto out;
2510

2511 2512 2513
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2525 2526

		goto check_pending;
2527 2528 2529 2530 2531
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2532 2533 2534 2535 2536 2537 2538

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2539 2540
}

2541
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2542
				gfp_t gfp_mask, nodemask_t *nodemask)
2543
{
2544
	unsigned long nr_reclaimed;
2545
	struct scan_control sc = {
2546
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2547
		.may_writepage = !laptop_mode,
2548
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2549
		.may_unmap = 1,
2550
		.may_swap = 1,
2551
		.order = order,
2552
		.priority = DEF_PRIORITY,
2553
		.target_mem_cgroup = NULL,
2554
		.nodemask = nodemask,
2555
	};
2556 2557 2558
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2559

2560
	/*
2561 2562 2563
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2564
	 */
2565
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2566 2567
		return 1;

2568 2569 2570 2571
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2572
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2573 2574 2575 2576

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2577 2578
}

A
Andrew Morton 已提交
2579
#ifdef CONFIG_MEMCG
2580

2581
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2582
						gfp_t gfp_mask, bool noswap,
2583 2584
						struct zone *zone,
						unsigned long *nr_scanned)
2585 2586
{
	struct scan_control sc = {
2587
		.nr_scanned = 0,
2588
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2589 2590 2591 2592
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2593
		.priority = 0,
2594
		.target_mem_cgroup = memcg,
2595
	};
2596
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2597

2598 2599
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2600

2601
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2602 2603 2604
						      sc.may_writepage,
						      sc.gfp_mask);

2605 2606 2607 2608 2609 2610 2611
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2612
	shrink_lruvec(lruvec, &sc);
2613 2614 2615

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2616
	*nr_scanned = sc.nr_scanned;
2617 2618 2619
	return sc.nr_reclaimed;
}

2620
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2621
					   gfp_t gfp_mask,
2622
					   bool noswap)
2623
{
2624
	struct zonelist *zonelist;
2625
	unsigned long nr_reclaimed;
2626
	int nid;
2627 2628
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2629
		.may_unmap = 1,
2630
		.may_swap = !noswap,
2631
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2632
		.order = 0,
2633
		.priority = DEF_PRIORITY,
2634
		.target_mem_cgroup = memcg,
2635
		.nodemask = NULL, /* we don't care the placement */
2636 2637 2638 2639 2640
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2641 2642
	};

2643 2644 2645 2646 2647
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2648
	nid = mem_cgroup_select_victim_node(memcg);
2649 2650

	zonelist = NODE_DATA(nid)->node_zonelists;
2651 2652 2653 2654 2655

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2656
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2657 2658 2659 2660

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2661 2662 2663
}
#endif

2664
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2665
{
2666
	struct mem_cgroup *memcg;
2667

2668 2669 2670 2671 2672
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2673
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2674

2675
		if (inactive_anon_is_low(lruvec))
2676
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2677
					   sc, LRU_ACTIVE_ANON);
2678 2679 2680

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2681 2682
}

2683 2684 2685 2686 2687 2688 2689
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2690 2691
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2692 2693 2694 2695 2696
		return false;

	return true;
}

2697
/*
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2708 2709 2710 2711
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2712
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2713 2714 2715 2716
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2717
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2718
{
2719
	unsigned long managed_pages = 0;
2720
	unsigned long balanced_pages = 0;
2721 2722
	int i;

2723 2724 2725
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2726

2727 2728 2729
		if (!populated_zone(zone))
			continue;

2730
		managed_pages += zone->managed_pages;
2731 2732 2733 2734 2735 2736 2737 2738 2739

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
		if (zone->all_unreclaimable) {
2740
			balanced_pages += zone->managed_pages;
2741 2742 2743 2744
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2745
			balanced_pages += zone->managed_pages;
2746 2747 2748 2749 2750
		else if (!order)
			return false;
	}

	if (order)
2751
		return balanced_pages >= (managed_pages >> 2);
2752 2753
	else
		return true;
2754 2755
}

2756 2757 2758 2759 2760 2761 2762
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2763
					int classzone_idx)
2764 2765 2766
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2782

2783
	return pgdat_balanced(pgdat, order, classzone_idx);
2784 2785
}

2786 2787 2788
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2789 2790
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2791 2792
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2793
 */
2794
static bool kswapd_shrink_zone(struct zone *zone,
2795
			       int classzone_idx,
2796
			       struct scan_control *sc,
2797 2798
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2799 2800
{
	unsigned long nr_slab;
2801 2802
	int testorder = sc->order;
	unsigned long balance_gap;
2803 2804 2805 2806
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2807
	bool lowmem_pressure;
2808 2809 2810

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2842
	shrink_zone(zone, sc);
D
Dave Chinner 已提交
2843 2844
	nodes_clear(shrink.nodes_to_scan);
	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2845 2846 2847 2848 2849

	reclaim_state->reclaimed_slab = 0;
	nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2850 2851 2852
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2853 2854
	if (nr_slab == 0 && !zone_reclaimable(zone))
		zone->all_unreclaimable = 1;
2855

2856 2857
	zone_clear_flag(zone, ZONE_WRITEBACK);

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
	if (!zone->all_unreclaimable &&
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2870
	return sc->nr_scanned >= sc->nr_to_reclaim;
2871 2872
}

L
Linus Torvalds 已提交
2873 2874
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2875
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2876
 *
2877
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2888 2889 2890 2891 2892
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2893
 */
2894
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2895
							int *classzone_idx)
L
Linus Torvalds 已提交
2896 2897
{
	int i;
2898
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2899 2900
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2901 2902
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2903
		.priority = DEF_PRIORITY,
2904
		.may_unmap = 1,
2905
		.may_swap = 1,
2906
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2907
		.order = order,
2908
		.target_mem_cgroup = NULL,
2909
	};
2910
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2911

2912
	do {
L
Linus Torvalds 已提交
2913
		unsigned long lru_pages = 0;
2914
		unsigned long nr_attempted = 0;
2915
		bool raise_priority = true;
2916
		bool pgdat_needs_compaction = (order > 0);
2917 2918

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2919

2920 2921 2922 2923 2924 2925
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2926

2927 2928
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2929

2930 2931
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2932
				continue;
L
Linus Torvalds 已提交
2933

2934 2935 2936 2937
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2938
			age_active_anon(zone, &sc);
2939

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2951
			if (!zone_balanced(zone, order, 0, 0)) {
2952
				end_zone = i;
A
Andrew Morton 已提交
2953
				break;
2954
			} else {
2955 2956 2957 2958
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2959
				zone_clear_flag(zone, ZONE_CONGESTED);
2960
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2961 2962
			}
		}
2963

2964
		if (i < 0)
A
Andrew Morton 已提交
2965 2966
			goto out;

L
Linus Torvalds 已提交
2967 2968 2969
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2970 2971 2972
			if (!populated_zone(zone))
				continue;

2973
			lru_pages += zone_reclaimable_pages(zone);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
2985 2986
		}

2987 2988 2989 2990 2991 2992 2993
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3006
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3007 3008
				continue;

3009 3010
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
3011 3012 3013
				continue;

			sc.nr_scanned = 0;
3014

3015
			nr_soft_scanned = 0;
3016 3017 3018
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
3019 3020 3021 3022
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
3023

3024
			/*
3025 3026 3027 3028
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3029
			 */
3030 3031 3032
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3033
		}
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3044
		/*
3045 3046 3047 3048 3049 3050
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3051
		 */
3052 3053
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3054

3055 3056 3057
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3058

3059 3060 3061 3062 3063 3064 3065
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3066
		/*
3067 3068
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3069
		 */
3070 3071
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3072
	} while (sc.priority >= 1 &&
3073
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3074

3075
out:
3076
	/*
3077
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3078 3079 3080 3081
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3082
	*classzone_idx = end_zone;
3083
	return order;
L
Linus Torvalds 已提交
3084 3085
}

3086
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3097
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3098 3099 3100 3101 3102 3103 3104 3105 3106
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3107
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3119

3120 3121 3122 3123 3124 3125 3126 3127
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3128 3129 3130
		if (!kthread_should_stop())
			schedule();

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3141 3142
/*
 * The background pageout daemon, started as a kernel thread
3143
 * from the init process.
L
Linus Torvalds 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3156
	unsigned long order, new_order;
3157
	unsigned balanced_order;
3158
	int classzone_idx, new_classzone_idx;
3159
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3160 3161
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3162

L
Linus Torvalds 已提交
3163 3164 3165
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3166
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3167

3168 3169
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3170
	if (!cpumask_empty(cpumask))
3171
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3186
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3187
	set_freezable();
L
Linus Torvalds 已提交
3188

3189
	order = new_order = 0;
3190
	balanced_order = 0;
3191
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3192
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3193
	for ( ; ; ) {
3194
		bool ret;
3195

3196 3197 3198 3199 3200
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3201 3202
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3203 3204 3205 3206 3207 3208
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3209
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3210 3211
			/*
			 * Don't sleep if someone wants a larger 'order'
3212
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3213 3214
			 */
			order = new_order;
3215
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3216
		} else {
3217 3218
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3219
			order = pgdat->kswapd_max_order;
3220
			classzone_idx = pgdat->classzone_idx;
3221 3222
			new_order = order;
			new_classzone_idx = classzone_idx;
3223
			pgdat->kswapd_max_order = 0;
3224
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3225 3226
		}

3227 3228 3229 3230 3231 3232 3233 3234
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3235 3236
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3237 3238 3239
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3240
		}
L
Linus Torvalds 已提交
3241
	}
3242 3243

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3244 3245 3246 3247 3248 3249
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3250
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3251 3252 3253
{
	pg_data_t *pgdat;

3254
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3255 3256
		return;

3257
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3258
		return;
3259
	pgdat = zone->zone_pgdat;
3260
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3261
		pgdat->kswapd_max_order = order;
3262 3263
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3264
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3265
		return;
3266 3267 3268 3269
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3270
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3271 3272
}

3273 3274 3275 3276 3277 3278 3279 3280
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3281
{
3282 3283 3284 3285 3286
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3287
	if (get_nr_swap_pages() > 0)
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

3301
	if (get_nr_swap_pages() > 0)
3302 3303 3304 3305
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3306 3307
}

3308
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3309
/*
3310
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3311 3312 3313 3314 3315
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3316
 */
3317
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3318
{
3319 3320
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3321 3322 3323
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3324
		.may_writepage = 1,
3325 3326 3327
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3328
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3329
	};
3330 3331 3332 3333
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3334 3335
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3336

3337 3338 3339 3340
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3341

3342
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3343

3344 3345 3346
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3347

3348
	return nr_reclaimed;
L
Linus Torvalds 已提交
3349
}
3350
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3351 3352 3353 3354 3355

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3356 3357
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3358
{
3359
	int nid;
L
Linus Torvalds 已提交
3360

3361
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3362
		for_each_node_state(nid, N_MEMORY) {
3363
			pg_data_t *pgdat = NODE_DATA(nid);
3364 3365 3366
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3367

3368
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3369
				/* One of our CPUs online: restore mask */
3370
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3371 3372 3373 3374 3375
		}
	}
	return NOTIFY_OK;
}

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3392 3393
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3394
		pgdat->kswapd = NULL;
3395 3396 3397 3398
	}
	return ret;
}

3399
/*
3400 3401
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3402 3403 3404 3405 3406
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3407
	if (kswapd) {
3408
		kthread_stop(kswapd);
3409 3410
		NODE_DATA(nid)->kswapd = NULL;
	}
3411 3412
}

L
Linus Torvalds 已提交
3413 3414
static int __init kswapd_init(void)
{
3415
	int nid;
3416

L
Linus Torvalds 已提交
3417
	swap_setup();
3418
	for_each_node_state(nid, N_MEMORY)
3419
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3420 3421 3422 3423 3424
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3435
#define RECLAIM_OFF 0
3436
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3437 3438 3439
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3440 3441 3442 3443 3444 3445 3446
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3447 3448 3449 3450 3451 3452
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3453 3454 3455 3456 3457 3458
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3501 3502 3503
/*
 * Try to free up some pages from this zone through reclaim.
 */
3504
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3505
{
3506
	/* Minimum pages needed in order to stay on node */
3507
	const unsigned long nr_pages = 1 << order;
3508 3509
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3510 3511
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3512
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3513
		.may_swap = 1,
3514
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3515
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3516
		.order = order,
3517
		.priority = ZONE_RECLAIM_PRIORITY,
3518
	};
3519 3520 3521
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3522
	unsigned long nr_slab_pages0, nr_slab_pages1;
3523 3524

	cond_resched();
3525 3526 3527 3528 3529 3530
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3531
	lockdep_set_current_reclaim_state(gfp_mask);
3532 3533
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3534

3535
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3536 3537 3538 3539 3540
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3541 3542
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3543
	}
3544

3545 3546
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3547
		/*
3548
		 * shrink_slab() does not currently allow us to determine how
3549 3550 3551 3552
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3553
		 */
D
Dave Chinner 已提交
3554 3555
		nodes_clear(shrink.nodes_to_scan);
		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3556 3557 3558 3559
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3560
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3561 3562 3563 3564 3565 3566 3567 3568
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3569 3570 3571 3572 3573

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3574 3575 3576
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3577 3578
	}

3579
	p->reclaim_state = NULL;
3580
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3581
	lockdep_clear_current_reclaim_state();
3582
	return sc.nr_reclaimed >= nr_pages;
3583
}
3584 3585 3586 3587

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3588
	int ret;
3589 3590

	/*
3591 3592
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3593
	 *
3594 3595 3596 3597 3598
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3599
	 */
3600 3601
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3602
		return ZONE_RECLAIM_FULL;
3603

3604
	if (zone->all_unreclaimable)
3605
		return ZONE_RECLAIM_FULL;
3606

3607
	/*
3608
	 * Do not scan if the allocation should not be delayed.
3609
	 */
3610
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3611
		return ZONE_RECLAIM_NOSCAN;
3612 3613 3614 3615 3616 3617 3618

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3619
	node_id = zone_to_nid(zone);
3620
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3621
		return ZONE_RECLAIM_NOSCAN;
3622 3623

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3624 3625
		return ZONE_RECLAIM_NOSCAN;

3626 3627 3628
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3629 3630 3631
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3632
	return ret;
3633
}
3634
#endif
L
Lee Schermerhorn 已提交
3635 3636 3637 3638 3639 3640

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3641
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3642 3643
 *
 * Reasons page might not be evictable:
3644
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3645
 * (2) page is part of an mlocked VMA
3646
 *
L
Lee Schermerhorn 已提交
3647
 */
3648
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3649
{
3650
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3651
}
3652

3653
#ifdef CONFIG_SHMEM
3654
/**
3655 3656 3657
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3658
 *
3659
 * Checks pages for evictability and moves them to the appropriate lru list.
3660 3661
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3662
 */
3663
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3664
{
3665
	struct lruvec *lruvec;
3666 3667 3668 3669
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3670

3671 3672 3673
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3674

3675 3676 3677 3678 3679 3680 3681 3682
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3683
		lruvec = mem_cgroup_page_lruvec(page, zone);
3684

3685 3686
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3687

3688
		if (page_evictable(page)) {
3689 3690 3691 3692
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3693 3694
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3695
			pgrescued++;
3696
		}
3697
	}
3698

3699 3700 3701 3702
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3703 3704
	}
}
3705
#endif /* CONFIG_SHMEM */
3706

3707
static void warn_scan_unevictable_pages(void)
3708
{
3709
	printk_once(KERN_WARNING
3710
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3711
		    "disabled for lack of a legitimate use case.  If you have "
3712 3713
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3714 3715 3716 3717 3718 3719 3720 3721 3722
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3723
			   void __user *buffer,
3724 3725
			   size_t *length, loff_t *ppos)
{
3726
	warn_scan_unevictable_pages();
3727
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3728 3729 3730 3731
	scan_unevictable_pages = 0;
	return 0;
}

3732
#ifdef CONFIG_NUMA
3733 3734 3735 3736 3737
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3738 3739
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3740 3741
					  char *buf)
{
3742
	warn_scan_unevictable_pages();
3743 3744 3745
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3746 3747
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3748 3749
					const char *buf, size_t count)
{
3750
	warn_scan_unevictable_pages();
3751 3752 3753 3754
	return 1;
}


3755
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3756 3757 3758 3759 3760
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3761
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3762 3763 3764 3765
}

void scan_unevictable_unregister_node(struct node *node)
{
3766
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3767
}
3768
#endif