vmscan.c 110.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
L
Linus Torvalds 已提交
49 50 51 52 53

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
54
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
55

56 57
#include "internal.h"

58 59 60
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
61
struct scan_control {
62 63 64
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
65
	/* This context's GFP mask */
A
Al Viro 已提交
66
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
67

68
	/* Allocation order */
A
Andy Whitcroft 已提交
69
	int order;
70

71 72 73 74 75
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
76

77 78 79 80 81
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
82

83 84 85 86 87 88 89 90 91 92 93
	/* Scan (total_size >> priority) pages at once */
	int priority;

	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

94 95 96
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

97 98 99 100 101 102 103 104 105 106
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
143 144 145 146 147
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
148 149 150 151

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
152
#ifdef CONFIG_MEMCG
153 154
static bool global_reclaim(struct scan_control *sc)
{
155
	return !sc->target_mem_cgroup;
156
}
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
178
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
179 180 181 182
		return true;
#endif
	return false;
}
183
#else
184 185 186 187
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
188 189 190 191 192

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
193 194
#endif

195
static unsigned long zone_reclaimable_pages(struct zone *zone)
196
{
197
	unsigned long nr;
198 199 200 201 202 203 204 205 206 207 208 209 210

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
211 212
	return zone_page_state(zone, NR_PAGES_SCANNED) <
		zone_reclaimable_pages(zone) * 6;
213 214
}

215
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216
{
217
	if (!mem_cgroup_disabled())
218
		return mem_cgroup_get_lru_size(lruvec, lru);
219

220
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 222
}

L
Linus Torvalds 已提交
223
/*
G
Glauber Costa 已提交
224
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
225
 */
G
Glauber Costa 已提交
226
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
227
{
G
Glauber Costa 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

245 246 247
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
248
	return 0;
L
Linus Torvalds 已提交
249
}
250
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
251 252 253 254

/*
 * Remove one
 */
255
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
256 257 258 259
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
260
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
261
}
262
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
263 264

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
265

266 267 268 269
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
270 271 272 273
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
274
	long freeable;
G
Glauber Costa 已提交
275 276 277 278 279 280
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

281 282
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
283 284 285 286 287 288 289 290 291 292
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
293
	delta = (4 * nr_scanned) / shrinker->seeks;
294
	delta *= freeable;
295
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
296 297
	total_scan += delta;
	if (total_scan < 0) {
298
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
299
		       shrinker->scan_objects, total_scan);
300
		total_scan = freeable;
G
Glauber Costa 已提交
301 302 303 304 305 306 307 308
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
309
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
310 311 312 313 314
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
315 316
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
317 318 319 320 321 322

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
323 324
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
325 326

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
327 328
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
329

330 331 332 333 334 335 336 337 338 339 340
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
341
	 * than the total number of objects on slab (freeable), we must be
342 343 344 345
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
346
	       total_scan >= freeable) {
D
Dave Chinner 已提交
347
		unsigned long ret;
348
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
349

350
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
351 352 353 354
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
355

356 357
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

373
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
374
	return freed;
375 376
}

377
/**
378
 * shrink_slab - shrink slab caches
379 380
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
381
 * @memcg: memory cgroup whose slab caches to target
382 383
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
384
 *
385
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
386
 *
387 388
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
389
 *
390 391 392 393 394 395
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 * objects from the memory cgroup specified. Otherwise all shrinkers
 * are called, and memcg aware shrinkers are supposed to scan the
 * global list then.
 *
396 397 398 399 400 401 402
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
403
 *
404
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
405
 */
406 407 408 409
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
410 411
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
412
	unsigned long freed = 0;
L
Linus Torvalds 已提交
413

414 415 416
	if (memcg && !memcg_kmem_is_active(memcg))
		return 0;

417 418
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
419

420
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
421 422 423 424 425 426 427
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
428 429
		goto out;
	}
L
Linus Torvalds 已提交
430 431

	list_for_each_entry(shrinker, &shrinker_list, list) {
432 433 434
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
435
			.memcg = memcg,
436
		};
437

438 439 440
		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
			continue;

441 442
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
443

444
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
445
	}
446

L
Linus Torvalds 已提交
447
	up_read(&shrinker_rwsem);
448 449
out:
	cond_resched();
D
Dave Chinner 已提交
450
	return freed;
L
Linus Torvalds 已提交
451 452
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
476 477
static inline int is_page_cache_freeable(struct page *page)
{
478 479 480 481 482
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
483
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
484 485
}

486
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
487
{
488
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
489
		return 1;
490
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
491
		return 1;
492
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
512
	lock_page(page);
513 514
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
515 516 517
	unlock_page(page);
}

518 519 520 521 522 523 524 525 526 527 528 529
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
530
/*
A
Andrew Morton 已提交
531 532
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
533
 */
534
static pageout_t pageout(struct page *page, struct address_space *mapping,
535
			 struct scan_control *sc)
L
Linus Torvalds 已提交
536 537 538 539 540 541 542 543
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
544
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
560
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
561 562
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
563
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
564 565 566 567 568 569 570
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
571
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
572 573 574 575 576 577 578
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
579 580
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
581 582 583 584 585 586 587
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
588
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
589 590 591
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
592

L
Linus Torvalds 已提交
593 594 595 596
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
597
		trace_mm_vmscan_writepage(page);
598
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
599 600 601 602 603 604
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

605
/*
N
Nick Piggin 已提交
606 607
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
608
 */
609 610
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
611
{
612 613 614
	unsigned long flags;
	struct mem_cgroup *memcg;

615 616
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
617

618 619
	memcg = mem_cgroup_begin_page_stat(page);
	spin_lock_irqsave(&mapping->tree_lock, flags);
620
	/*
N
Nick Piggin 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
644
	 */
N
Nick Piggin 已提交
645
	if (!page_freeze_refs(page, 2))
646
		goto cannot_free;
N
Nick Piggin 已提交
647 648 649
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
650
		goto cannot_free;
N
Nick Piggin 已提交
651
	}
652 653 654

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
655
		mem_cgroup_swapout(page, swap);
656
		__delete_from_swap_cache(page);
657 658
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
		mem_cgroup_end_page_stat(memcg);
659
		swapcache_free(swap);
N
Nick Piggin 已提交
660
	} else {
661
		void (*freepage)(struct page *);
662
		void *shadow = NULL;
663 664

		freepage = mapping->a_ops->freepage;
665 666 667 668 669 670 671 672 673 674 675 676 677
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
		 */
		if (reclaimed && page_is_file_cache(page) &&
		    !mapping_exiting(mapping))
			shadow = workingset_eviction(mapping, page);
678 679 680
		__delete_from_page_cache(page, shadow, memcg);
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
		mem_cgroup_end_page_stat(memcg);
681 682 683

		if (freepage != NULL)
			freepage(page);
684 685 686 687 688
	}

	return 1;

cannot_free:
689 690
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
	mem_cgroup_end_page_stat(memcg);
691 692 693
	return 0;
}

N
Nick Piggin 已提交
694 695 696 697 698 699 700 701
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
702
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
703 704 705 706 707 708 709 710 711 712 713
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
714 715 716 717 718 719 720 721 722 723 724
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
725
	bool is_unevictable;
726
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
727

728
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
729 730 731 732

redo:
	ClearPageUnevictable(page);

733
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
734 735 736 737 738 739
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
740
		is_unevictable = false;
741
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
742 743 744 745 746
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
747
		is_unevictable = true;
L
Lee Schermerhorn 已提交
748
		add_page_to_unevictable_list(page);
749
		/*
750 751 752
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
753
		 * isolation/check_move_unevictable_pages,
754
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
755 756
		 * the page back to the evictable list.
		 *
757
		 * The other side is TestClearPageMlocked() or shmem_lock().
758 759
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
760 761 762 763 764 765 766
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
767
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
768 769 770 771 772 773 774 775 776 777
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

778
	if (was_unevictable && !is_unevictable)
779
		count_vm_event(UNEVICTABLE_PGRESCUED);
780
	else if (!was_unevictable && is_unevictable)
781 782
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
783 784 785
	put_page(page);		/* drop ref from isolate */
}

786 787 788
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
789
	PAGEREF_KEEP,
790 791 792 793 794 795
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
796
	int referenced_ptes, referenced_page;
797 798
	unsigned long vm_flags;

799 800
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
801
	referenced_page = TestClearPageReferenced(page);
802 803 804 805 806 807 808 809

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

810
	if (referenced_ptes) {
811
		if (PageSwapBacked(page))
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

829
		if (referenced_page || referenced_ptes > 1)
830 831
			return PAGEREF_ACTIVATE;

832 833 834 835 836 837
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

838 839
		return PAGEREF_KEEP;
	}
840 841

	/* Reclaim if clean, defer dirty pages to writeback */
842
	if (referenced_page && !PageSwapBacked(page))
843 844 845
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
846 847
}

848 849 850 851
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
852 853
	struct address_space *mapping;

854 855 856 857 858 859 860 861 862 863 864 865 866
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
867 868 869 870 871 872 873 874

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
875 876
}

L
Linus Torvalds 已提交
877
/*
A
Andrew Morton 已提交
878
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
879
 */
A
Andrew Morton 已提交
880
static unsigned long shrink_page_list(struct list_head *page_list,
881
				      struct zone *zone,
882
				      struct scan_control *sc,
883
				      enum ttu_flags ttu_flags,
884
				      unsigned long *ret_nr_dirty,
885
				      unsigned long *ret_nr_unqueued_dirty,
886
				      unsigned long *ret_nr_congested,
887
				      unsigned long *ret_nr_writeback,
888
				      unsigned long *ret_nr_immediate,
889
				      bool force_reclaim)
L
Linus Torvalds 已提交
890 891
{
	LIST_HEAD(ret_pages);
892
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
893
	int pgactivate = 0;
894
	unsigned long nr_unqueued_dirty = 0;
895 896
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
897
	unsigned long nr_reclaimed = 0;
898
	unsigned long nr_writeback = 0;
899
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
900 901 902 903 904 905 906

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
907
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
908
		bool dirty, writeback;
L
Linus Torvalds 已提交
909 910 911 912 913 914

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
915
		if (!trylock_page(page))
L
Linus Torvalds 已提交
916 917
			goto keep;

918 919
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
920 921

		sc->nr_scanned++;
922

923
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
924
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
925

926
		if (!sc->may_unmap && page_mapped(page))
927 928
			goto keep_locked;

L
Linus Torvalds 已提交
929 930 931 932
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

933 934 935
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

936 937 938 939 940 941 942 943 944 945 946 947 948
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

949 950 951 952 953 954
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
955
		mapping = page_mapping(page);
956
		if (((dirty || writeback) && mapping &&
957
		     inode_write_congested(mapping->host)) ||
958
		    (writeback && PageReclaim(page)))
959 960
			nr_congested++;

961 962 963 964 965 966 967 968 969 970 971
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
972 973
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
974
		 *
975
		 * 2) Global or new memcg reclaim encounters a page that is
976 977 978
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
979
		 *    reclaim and continue scanning.
980
		 *
981 982
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
983 984 985 986 987
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
988
		 * 3) Legacy memcg encounters a page that is already marked
989 990 991 992 993
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
994
		if (PageWriteback(page)) {
995 996 997
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
J
Johannes Weiner 已提交
998
			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
999 1000
				nr_immediate++;
				goto keep_locked;
1001 1002

			/* Case 2 above */
1003
			} else if (sane_reclaim(sc) ||
1004
			    !PageReclaim(page) || !may_enter_fs) {
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1017
				nr_writeback++;
1018
				goto keep_locked;
1019 1020 1021

			/* Case 3 above */
			} else {
1022
				unlock_page(page);
1023
				wait_on_page_writeback(page);
1024 1025 1026
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1027
			}
1028
		}
L
Linus Torvalds 已提交
1029

1030 1031 1032
		if (!force_reclaim)
			references = page_check_references(page, sc);

1033 1034
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1035
			goto activate_locked;
1036 1037
		case PAGEREF_KEEP:
			goto keep_locked;
1038 1039 1040 1041
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1042 1043 1044 1045 1046

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1047
		if (PageAnon(page) && !PageSwapCache(page)) {
1048 1049
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1050
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1051
				goto activate_locked;
1052
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1053

1054 1055 1056
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
1057 1058 1059 1060 1061 1062

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
1063 1064
			switch (try_to_unmap(page,
					ttu_flags|TTU_BATCH_FLUSH)) {
L
Linus Torvalds 已提交
1065 1066 1067 1068
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1069 1070
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
1071 1072 1073 1074 1075 1076
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1077 1078
			/*
			 * Only kswapd can writeback filesystem pages to
1079 1080
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1081
			 */
1082
			if (page_is_file_cache(page) &&
1083
					(!current_is_kswapd() ||
J
Johannes Weiner 已提交
1084
					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1085 1086 1087 1088 1089 1090 1091 1092 1093
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1094 1095 1096
				goto keep_locked;
			}

1097
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1098
				goto keep_locked;
1099
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1100
				goto keep_locked;
1101
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1102 1103
				goto keep_locked;

1104 1105 1106 1107 1108 1109
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1110
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1111 1112 1113 1114 1115
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1116
				if (PageWriteback(page))
1117
					goto keep;
1118
				if (PageDirty(page))
L
Linus Torvalds 已提交
1119
					goto keep;
1120

L
Linus Torvalds 已提交
1121 1122 1123 1124
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1125
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1145
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1156
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1157 1158
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1175 1176
		}

1177
		if (!mapping || !__remove_mapping(mapping, page, true))
1178
			goto keep_locked;
L
Linus Torvalds 已提交
1179

N
Nick Piggin 已提交
1180 1181 1182 1183 1184 1185 1186 1187
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1188
free_it:
1189
		nr_reclaimed++;
1190 1191 1192 1193 1194 1195

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1196 1197
		continue;

N
Nick Piggin 已提交
1198
cull_mlocked:
1199 1200
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1201
		unlock_page(page);
1202
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1203 1204
		continue;

L
Linus Torvalds 已提交
1205
activate_locked:
1206 1207
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1208
			try_to_free_swap(page);
1209
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1210 1211 1212 1213 1214 1215
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1216
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1217
	}
1218

1219
	mem_cgroup_uncharge_list(&free_pages);
1220
	try_to_unmap_flush();
1221
	free_hot_cold_page_list(&free_pages, true);
1222

L
Linus Torvalds 已提交
1223
	list_splice(&ret_pages, page_list);
1224
	count_vm_events(PGACTIVATE, pgactivate);
1225

1226 1227
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1228
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1229
	*ret_nr_writeback += nr_writeback;
1230
	*ret_nr_immediate += nr_immediate;
1231
	return nr_reclaimed;
L
Linus Torvalds 已提交
1232 1233
}

1234 1235 1236 1237 1238 1239 1240 1241
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1242
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1243 1244 1245 1246
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1247 1248
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1249 1250 1251 1252 1253 1254
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1255 1256
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1257
	list_splice(&clean_pages, page_list);
1258
	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1259 1260 1261
	return ret;
}

A
Andy Whitcroft 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1272
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1273 1274 1275 1276 1277 1278 1279
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1280 1281
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1282 1283
		return ret;

A
Andy Whitcroft 已提交
1284
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1319

1320 1321 1322
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1347
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1348
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1349
 * @nr_scanned:	The number of pages that were scanned.
1350
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1351
 * @mode:	One of the LRU isolation modes
1352
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1353 1354 1355
 *
 * returns how many pages were moved onto *@dst.
 */
1356
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1357
		struct lruvec *lruvec, struct list_head *dst,
1358
		unsigned long *nr_scanned, struct scan_control *sc,
1359
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1360
{
H
Hugh Dickins 已提交
1361
	struct list_head *src = &lruvec->lists[lru];
1362
	unsigned long nr_taken = 0;
1363
	unsigned long scan;
L
Linus Torvalds 已提交
1364

1365 1366
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
					!list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1367
		struct page *page;
1368
		int nr_pages;
A
Andy Whitcroft 已提交
1369

L
Linus Torvalds 已提交
1370 1371 1372
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1373
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1374

1375
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1376
		case 0:
1377 1378
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1379
			list_move(&page->lru, dst);
1380
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1381 1382 1383 1384 1385 1386
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1387

A
Andy Whitcroft 已提交
1388 1389 1390
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1391 1392
	}

H
Hugh Dickins 已提交
1393
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1394 1395
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1396 1397 1398
	return nr_taken;
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1410 1411 1412
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1428
	VM_BUG_ON_PAGE(!page_count(page), page);
1429

1430 1431
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1432
		struct lruvec *lruvec;
1433 1434

		spin_lock_irq(&zone->lru_lock);
1435
		lruvec = mem_cgroup_page_lruvec(page, zone);
1436
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1437
			int lru = page_lru(page);
1438
			get_page(page);
1439
			ClearPageLRU(page);
1440 1441
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1442 1443 1444 1445 1446 1447
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1448
/*
F
Fengguang Wu 已提交
1449 1450 1451 1452 1453
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1454 1455 1456 1457 1458 1459 1460 1461 1462
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1463
	if (!sane_reclaim(sc))
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1474 1475 1476 1477 1478
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1479
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1480 1481
		inactive >>= 3;

1482 1483 1484
	return isolated > inactive;
}

1485
static noinline_for_stack void
H
Hugh Dickins 已提交
1486
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1487
{
1488 1489
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1490
	LIST_HEAD(pages_to_free);
1491 1492 1493 1494 1495

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1496
		struct page *page = lru_to_page(page_list);
1497
		int lru;
1498

1499
		VM_BUG_ON_PAGE(PageLRU(page), page);
1500
		list_del(&page->lru);
1501
		if (unlikely(!page_evictable(page))) {
1502 1503 1504 1505 1506
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1507 1508 1509

		lruvec = mem_cgroup_page_lruvec(page, zone);

1510
		SetPageLRU(page);
1511
		lru = page_lru(page);
1512 1513
		add_page_to_lru_list(page, lruvec, lru);

1514 1515
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1516 1517
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1518
		}
1519 1520 1521
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1522
			del_page_from_lru_list(page, lruvec, lru);
1523 1524 1525

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1526
				mem_cgroup_uncharge(page);
1527 1528 1529 1530
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1531 1532 1533
		}
	}

1534 1535 1536 1537
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1538 1539
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1553
/*
A
Andrew Morton 已提交
1554 1555
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1556
 */
1557
static noinline_for_stack unsigned long
1558
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1559
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1560 1561
{
	LIST_HEAD(page_list);
1562
	unsigned long nr_scanned;
1563
	unsigned long nr_reclaimed = 0;
1564
	unsigned long nr_taken;
1565 1566
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1567
	unsigned long nr_unqueued_dirty = 0;
1568
	unsigned long nr_writeback = 0;
1569
	unsigned long nr_immediate = 0;
1570
	isolate_mode_t isolate_mode = 0;
1571
	int file = is_file_lru(lru);
1572 1573
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1574

1575
	while (unlikely(too_many_isolated(zone, file, sc))) {
1576
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1577 1578 1579 1580 1581 1582

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1583
	lru_add_drain();
1584 1585

	if (!sc->may_unmap)
1586
		isolate_mode |= ISOLATE_UNMAPPED;
1587
	if (!sc->may_writepage)
1588
		isolate_mode |= ISOLATE_CLEAN;
1589

L
Linus Torvalds 已提交
1590
	spin_lock_irq(&zone->lru_lock);
1591

1592 1593
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1594 1595 1596 1597

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1598
	if (global_reclaim(sc)) {
1599
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1600
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1601
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1602
		else
H
Hugh Dickins 已提交
1603
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1604
	}
1605
	spin_unlock_irq(&zone->lru_lock);
1606

1607
	if (nr_taken == 0)
1608
		return 0;
A
Andy Whitcroft 已提交
1609

1610
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1611 1612 1613
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1614

1615 1616
	spin_lock_irq(&zone->lru_lock);

1617
	reclaim_stat->recent_scanned[file] += nr_taken;
1618

Y
Ying Han 已提交
1619 1620 1621 1622 1623 1624 1625 1626
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1627

1628
	putback_inactive_pages(lruvec, &page_list);
1629

1630
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1631 1632 1633

	spin_unlock_irq(&zone->lru_lock);

1634
	mem_cgroup_uncharge_list(&page_list);
1635
	free_hot_cold_page_list(&page_list, true);
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1647 1648 1649
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1650
	 */
1651
	if (nr_writeback && nr_writeback == nr_taken)
J
Johannes Weiner 已提交
1652
		set_bit(ZONE_WRITEBACK, &zone->flags);
1653

1654
	/*
1655 1656
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1657
	 */
1658
	if (sane_reclaim(sc)) {
1659 1660 1661 1662 1663
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
J
Johannes Weiner 已提交
1664
			set_bit(ZONE_CONGESTED, &zone->flags);
1665

1666 1667 1668
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
J
Johannes Weiner 已提交
1669 1670
		 * the zone ZONE_DIRTY and kswapd will start writing pages from
		 * reclaim context.
1671 1672
		 */
		if (nr_unqueued_dirty == nr_taken)
J
Johannes Weiner 已提交
1673
			set_bit(ZONE_DIRTY, &zone->flags);
1674 1675

		/*
1676 1677 1678
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1679 1680
		 * they are written so also forcibly stall.
		 */
1681
		if (nr_immediate && current_may_throttle())
1682
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1683
	}
1684

1685 1686 1687 1688 1689
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1690 1691
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
1692 1693
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1694 1695 1696
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1697
		sc->priority,
M
Mel Gorman 已提交
1698
		trace_shrink_flags(file));
1699
	return nr_reclaimed;
L
Linus Torvalds 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1719

1720
static void move_active_pages_to_lru(struct lruvec *lruvec,
1721
				     struct list_head *list,
1722
				     struct list_head *pages_to_free,
1723 1724
				     enum lru_list lru)
{
1725
	struct zone *zone = lruvec_zone(lruvec);
1726 1727
	unsigned long pgmoved = 0;
	struct page *page;
1728
	int nr_pages;
1729 1730 1731

	while (!list_empty(list)) {
		page = lru_to_page(list);
1732
		lruvec = mem_cgroup_page_lruvec(page, zone);
1733

1734
		VM_BUG_ON_PAGE(PageLRU(page), page);
1735 1736
		SetPageLRU(page);

1737 1738
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1739
		list_move(&page->lru, &lruvec->lists[lru]);
1740
		pgmoved += nr_pages;
1741

1742 1743 1744
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1745
			del_page_from_lru_list(page, lruvec, lru);
1746 1747 1748

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1749
				mem_cgroup_uncharge(page);
1750 1751 1752 1753
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1754 1755 1756 1757 1758 1759
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1760

H
Hugh Dickins 已提交
1761
static void shrink_active_list(unsigned long nr_to_scan,
1762
			       struct lruvec *lruvec,
1763
			       struct scan_control *sc,
1764
			       enum lru_list lru)
L
Linus Torvalds 已提交
1765
{
1766
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1767
	unsigned long nr_scanned;
1768
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1769
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1770
	LIST_HEAD(l_active);
1771
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1772
	struct page *page;
1773
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1774
	unsigned long nr_rotated = 0;
1775
	isolate_mode_t isolate_mode = 0;
1776
	int file = is_file_lru(lru);
1777
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1778 1779

	lru_add_drain();
1780 1781

	if (!sc->may_unmap)
1782
		isolate_mode |= ISOLATE_UNMAPPED;
1783
	if (!sc->may_writepage)
1784
		isolate_mode |= ISOLATE_CLEAN;
1785

L
Linus Torvalds 已提交
1786
	spin_lock_irq(&zone->lru_lock);
1787

1788 1789
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1790
	if (global_reclaim(sc))
1791
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1792

1793
	reclaim_stat->recent_scanned[file] += nr_taken;
1794

H
Hugh Dickins 已提交
1795
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1796
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1797
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802 1803
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1804

1805
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1806 1807 1808 1809
			putback_lru_page(page);
			continue;
		}

1810 1811 1812 1813 1814 1815 1816 1817
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1818 1819
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1820
			nr_rotated += hpage_nr_pages(page);
1821 1822 1823 1824 1825 1826 1827 1828 1829
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1830
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1831 1832 1833 1834
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1835

1836
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1837 1838 1839
		list_add(&page->lru, &l_inactive);
	}

1840
	/*
1841
	 * Move pages back to the lru list.
1842
	 */
1843
	spin_lock_irq(&zone->lru_lock);
1844
	/*
1845 1846 1847
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1848
	 * get_scan_count.
1849
	 */
1850
	reclaim_stat->recent_rotated[file] += nr_rotated;
1851

1852 1853
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1854
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1855
	spin_unlock_irq(&zone->lru_lock);
1856

1857
	mem_cgroup_uncharge_list(&l_hold);
1858
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1859 1860
}

1861
#ifdef CONFIG_SWAP
1862
static bool inactive_anon_is_low_global(struct zone *zone)
1863 1864 1865 1866 1867 1868
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

1869
	return inactive * zone->inactive_ratio < active;
1870 1871
}

1872 1873
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1874
 * @lruvec: LRU vector to check
1875 1876 1877 1878
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1879
static bool inactive_anon_is_low(struct lruvec *lruvec)
1880
{
1881 1882 1883 1884 1885
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
1886
		return false;
1887

1888
	if (!mem_cgroup_disabled())
1889
		return mem_cgroup_inactive_anon_is_low(lruvec);
1890

1891
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1892
}
1893
#else
1894
static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1895
{
1896
	return false;
1897 1898
}
#endif
1899

1900 1901
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1902
 * @lruvec: LRU vector to check
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1914
static bool inactive_file_is_low(struct lruvec *lruvec)
1915
{
1916 1917 1918 1919 1920
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1921

1922
	return active > inactive;
1923 1924
}

1925
static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1926
{
H
Hugh Dickins 已提交
1927
	if (is_file_lru(lru))
1928
		return inactive_file_is_low(lruvec);
1929
	else
1930
		return inactive_anon_is_low(lruvec);
1931 1932
}

1933
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1934
				 struct lruvec *lruvec, struct scan_control *sc)
1935
{
1936
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1937
		if (inactive_list_is_low(lruvec, lru))
1938
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1939 1940 1941
		return 0;
	}

1942
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1943 1944
}

1945 1946 1947 1948 1949 1950 1951
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1952 1953 1954 1955 1956 1957
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1958 1959
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1960
 */
1961
static void get_scan_count(struct lruvec *lruvec, int swappiness,
1962 1963
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
1964
{
1965 1966 1967 1968
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1969
	unsigned long anon_prio, file_prio;
1970
	enum scan_balance scan_balance;
1971
	unsigned long anon, file;
1972
	bool force_scan = false;
1973
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1974
	enum lru_list lru;
1975 1976
	bool some_scanned;
	int pass;
1977

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1988 1989 1990 1991 1992 1993
	if (current_is_kswapd()) {
		if (!zone_reclaimable(zone))
			force_scan = true;
		if (!mem_cgroup_lruvec_online(lruvec))
			force_scan = true;
	}
1994
	if (!global_reclaim(sc))
1995
		force_scan = true;
1996 1997

	/* If we have no swap space, do not bother scanning anon pages. */
1998
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1999
		scan_balance = SCAN_FILE;
2000 2001
		goto out;
	}
2002

2003 2004 2005 2006 2007 2008 2009
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2010
	if (!global_reclaim(sc) && !swappiness) {
2011
		scan_balance = SCAN_FILE;
2012 2013 2014 2015 2016 2017 2018 2019
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2020
	if (!sc->priority && swappiness) {
2021
		scan_balance = SCAN_EQUAL;
2022 2023 2024
		goto out;
	}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
2035 2036 2037 2038 2039 2040
		unsigned long zonefile;
		unsigned long zonefree;

		zonefree = zone_page_state(zone, NR_FREE_PAGES);
		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
			   zone_page_state(zone, NR_INACTIVE_FILE);
2041

2042
		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2043 2044 2045 2046 2047
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2048 2049 2050 2051 2052
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
2053
		scan_balance = SCAN_FILE;
2054 2055 2056
		goto out;
	}

2057 2058
	scan_balance = SCAN_FRACT;

2059 2060 2061 2062
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2063
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2064
	file_prio = 200 - anon_prio;
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2077 2078 2079 2080 2081 2082

	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);

2083
	spin_lock_irq(&zone->lru_lock);
2084 2085 2086
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2087 2088
	}

2089 2090 2091
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2092 2093 2094
	}

	/*
2095 2096 2097
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2098
	 */
2099
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2100
	ap /= reclaim_stat->recent_rotated[0] + 1;
2101

2102
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2103
	fp /= reclaim_stat->recent_rotated[1] + 1;
2104
	spin_unlock_irq(&zone->lru_lock);
2105

2106 2107 2108 2109
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2110 2111 2112
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2113
		*lru_pages = 0;
2114 2115 2116 2117
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2118

2119 2120
			size = get_lru_size(lruvec, lru);
			scan = size >> sc->priority;
2121

2122 2123
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2124

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2140 2141
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2142
					scan = 0;
2143
				}
2144 2145 2146 2147 2148
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2149 2150

			*lru_pages += size;
2151
			nr[lru] = scan;
2152

2153
			/*
2154 2155
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2156
			 */
2157
			some_scanned |= !!scan;
2158
		}
2159
	}
2160
}
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
static void init_tlb_ubc(void)
{
	/*
	 * This deliberately does not clear the cpumask as it's expensive
	 * and unnecessary. If there happens to be data in there then the
	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
	 * then will be cleared.
	 */
	current->tlb_ubc.flush_required = false;
}
#else
static inline void init_tlb_ubc(void)
{
}
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */

2179 2180 2181
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2182
static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2183
			  struct scan_control *sc, unsigned long *lru_pages)
2184 2185
{
	unsigned long nr[NR_LRU_LISTS];
2186
	unsigned long targets[NR_LRU_LISTS];
2187 2188 2189 2190 2191
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2192
	bool scan_adjusted;
2193

2194
	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2195

2196 2197 2198
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2213 2214
	init_tlb_ubc();

2215 2216 2217
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2218 2219 2220
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2221 2222 2223 2224 2225 2226 2227 2228 2229
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2230 2231 2232 2233 2234 2235

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2236
		 * requested. Ensure that the anon and file LRUs are scanned
2237 2238 2239 2240 2241 2242 2243
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2244 2245 2246 2247 2248 2249 2250 2251 2252
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2299
/* Use reclaim/compaction for costly allocs or under memory pressure */
2300
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2301
{
2302
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2303
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2304
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2305 2306 2307 2308 2309
		return true;

	return false;
}

2310
/*
M
Mel Gorman 已提交
2311 2312 2313 2314 2315
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2316
 */
2317
static inline bool should_continue_reclaim(struct zone *zone,
2318 2319 2320 2321 2322 2323 2324 2325
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2326
	if (!in_reclaim_compaction(sc))
2327 2328
		return false;

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2351 2352 2353 2354 2355 2356

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2357
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2358
	if (get_nr_swap_pages() > 0)
2359
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2360 2361 2362 2363 2364
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2365
	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2366 2367 2368 2369 2370 2371 2372 2373
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2374 2375
static bool shrink_zone(struct zone *zone, struct scan_control *sc,
			bool is_classzone)
L
Linus Torvalds 已提交
2376
{
2377
	struct reclaim_state *reclaim_state = current->reclaim_state;
2378
	unsigned long nr_reclaimed, nr_scanned;
2379
	bool reclaimable = false;
L
Linus Torvalds 已提交
2380

2381 2382 2383 2384 2385 2386
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2387
		unsigned long zone_lru_pages = 0;
2388
		struct mem_cgroup *memcg;
2389

2390 2391
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2392

2393 2394
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2395
			unsigned long lru_pages;
2396
			unsigned long scanned;
2397
			struct lruvec *lruvec;
2398
			int swappiness;
2399

2400 2401 2402 2403 2404 2405
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2406
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2407
			swappiness = mem_cgroup_swappiness(memcg);
2408
			scanned = sc->nr_scanned;
2409

2410 2411
			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
			zone_lru_pages += lru_pages;
2412

2413 2414 2415 2416 2417
			if (memcg && is_classzone)
				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2418
			/*
2419 2420
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2421
			 * zone.
2422 2423 2424 2425 2426
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2427
			 */
2428 2429
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2430 2431 2432
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2433
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2434

2435 2436 2437 2438
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2439 2440 2441 2442 2443 2444 2445 2446
		if (global_reclaim(sc) && is_classzone)
			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
				    sc->nr_scanned - nr_scanned,
				    zone_lru_pages);

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2447 2448
		}

2449 2450 2451 2452
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2453 2454 2455
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2456 2457
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2458 2459

	return reclaimable;
2460 2461
}

2462 2463 2464 2465
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2466
static inline bool compaction_ready(struct zone *zone, int order)
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2477 2478
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2479
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2480
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2481 2482 2483 2484 2485

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2486
	if (compaction_deferred(zone, order))
2487 2488
		return watermark_ok;

2489 2490 2491 2492
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
2493
	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2494 2495 2496 2497 2498
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2499 2500 2501 2502 2503
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2504 2505
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2506 2507
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2508 2509 2510
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2511 2512 2513
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2514 2515
 *
 * Returns true if a zone was reclaimable.
L
Linus Torvalds 已提交
2516
 */
2517
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2518
{
2519
	struct zoneref *z;
2520
	struct zone *zone;
2521 2522
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2523
	gfp_t orig_mask;
2524
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2525
	bool reclaimable = false;
2526

2527 2528 2529 2530 2531
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2532
	orig_mask = sc->gfp_mask;
2533 2534 2535
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2536
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2537 2538 2539
					requested_highidx, sc->nodemask) {
		enum zone_type classzone_idx;

2540
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2541
			continue;
2542 2543 2544 2545 2546 2547

		classzone_idx = requested_highidx;
		while (!populated_zone(zone->zone_pgdat->node_zones +
							classzone_idx))
			classzone_idx--;

2548 2549 2550 2551
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2552
		if (global_reclaim(sc)) {
2553 2554
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2555
				continue;
2556

2557 2558
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2559
				continue;	/* Let kswapd poll it */
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
			    zonelist_zone_idx(z) <= requested_highidx &&
			    compaction_ready(zone, sc->order)) {
				sc->compaction_ready = true;
				continue;
2576
			}
2577

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2590 2591
			if (nr_soft_reclaimed)
				reclaimable = true;
2592
			/* need some check for avoid more shrink_zone() */
2593
		}
2594

2595
		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2596 2597 2598 2599 2600
			reclaimable = true;

		if (global_reclaim(sc) &&
		    !reclaimable && zone_reclaimable(zone))
			reclaimable = true;
L
Linus Torvalds 已提交
2601
	}
2602

2603 2604 2605 2606 2607
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
2608

2609
	return reclaimable;
L
Linus Torvalds 已提交
2610
}
2611

L
Linus Torvalds 已提交
2612 2613 2614 2615 2616 2617 2618 2619
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2620 2621 2622 2623
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2624 2625 2626
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2627
 */
2628
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2629
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2630
{
2631
	int initial_priority = sc->priority;
2632
	unsigned long total_scanned = 0;
2633
	unsigned long writeback_threshold;
2634
	bool zones_reclaimable;
2635
retry:
2636 2637
	delayacct_freepages_start();

2638
	if (global_reclaim(sc))
2639
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2640

2641
	do {
2642 2643
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2644
		sc->nr_scanned = 0;
2645
		zones_reclaimable = shrink_zones(zonelist, sc);
2646

2647
		total_scanned += sc->nr_scanned;
2648
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2649 2650 2651 2652
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2653

2654 2655 2656 2657 2658 2659 2660
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2661 2662 2663 2664 2665 2666 2667
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2668 2669
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2670 2671
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2672
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2673
		}
2674
	} while (--sc->priority >= 0);
2675

2676 2677
	delayacct_freepages_end();

2678 2679 2680
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2681
	/* Aborted reclaim to try compaction? don't OOM, then */
2682
	if (sc->compaction_ready)
2683 2684
		return 1;

2685 2686 2687 2688 2689 2690 2691
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2692 2693
	/* Any of the zones still reclaimable?  Don't OOM. */
	if (zones_reclaimable)
2694 2695 2696
		return 1;

	return 0;
L
Linus Torvalds 已提交
2697 2698
}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2709 2710
		if (!populated_zone(zone) ||
		    zone_reclaimable_pages(zone) == 0)
2711 2712
			continue;

2713 2714 2715 2716
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2717 2718 2719 2720
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2737 2738 2739 2740
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2741
 */
2742
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2743 2744
					nodemask_t *nodemask)
{
2745
	struct zoneref *z;
2746
	struct zone *zone;
2747
	pg_data_t *pgdat = NULL;
2748 2749 2750 2751 2752 2753 2754 2755 2756

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2757 2758 2759 2760 2761 2762 2763 2764
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2765

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2781
					gfp_zone(gfp_mask), nodemask) {
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2794
		goto out;
2795

2796 2797 2798
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2810 2811

		goto check_pending;
2812 2813 2814 2815 2816
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2817 2818 2819 2820 2821 2822 2823

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2824 2825
}

2826
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2827
				gfp_t gfp_mask, nodemask_t *nodemask)
2828
{
2829
	unsigned long nr_reclaimed;
2830
	struct scan_control sc = {
2831
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2832
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2833 2834 2835
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2836
		.may_writepage = !laptop_mode,
2837
		.may_unmap = 1,
2838
		.may_swap = 1,
2839 2840
	};

2841
	/*
2842 2843 2844
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2845
	 */
2846
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2847 2848
		return 1;

2849 2850 2851 2852
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2853
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2854 2855 2856 2857

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2858 2859
}

A
Andrew Morton 已提交
2860
#ifdef CONFIG_MEMCG
2861

2862
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2863
						gfp_t gfp_mask, bool noswap,
2864 2865
						struct zone *zone,
						unsigned long *nr_scanned)
2866 2867
{
	struct scan_control sc = {
2868
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2869
		.target_mem_cgroup = memcg,
2870 2871 2872 2873
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
	};
2874
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2875
	int swappiness = mem_cgroup_swappiness(memcg);
2876
	unsigned long lru_pages;
2877

2878 2879
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2880

2881
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2882 2883 2884
						      sc.may_writepage,
						      sc.gfp_mask);

2885 2886 2887 2888 2889 2890 2891
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2892
	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2893 2894 2895

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2896
	*nr_scanned = sc.nr_scanned;
2897 2898 2899
	return sc.nr_reclaimed;
}

2900
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2901
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2902
					   gfp_t gfp_mask,
2903
					   bool may_swap)
2904
{
2905
	struct zonelist *zonelist;
2906
	unsigned long nr_reclaimed;
2907
	int nid;
2908
	struct scan_control sc = {
2909
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2910 2911
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2912 2913 2914 2915
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2916
		.may_swap = may_swap,
2917
	};
2918

2919 2920 2921 2922 2923
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2924
	nid = mem_cgroup_select_victim_node(memcg);
2925 2926

	zonelist = NODE_DATA(nid)->node_zonelists;
2927 2928 2929 2930 2931

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2932
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2933 2934 2935 2936

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2937 2938 2939
}
#endif

2940
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2941
{
2942
	struct mem_cgroup *memcg;
2943

2944 2945 2946 2947 2948
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2949
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2950

2951
		if (inactive_anon_is_low(lruvec))
2952
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2953
					   sc, LRU_ACTIVE_ANON);
2954 2955 2956

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2957 2958
}

2959 2960 2961 2962
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2963
				    balance_gap, classzone_idx))
2964 2965
		return false;

2966 2967
	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
				order, 0, classzone_idx) == COMPACT_SKIPPED)
2968 2969 2970 2971 2972
		return false;

	return true;
}

2973
/*
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2984 2985 2986 2987
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2988
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2989 2990 2991 2992
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2993
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2994
{
2995
	unsigned long managed_pages = 0;
2996
	unsigned long balanced_pages = 0;
2997 2998
	int i;

2999 3000 3001
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
3002

3003 3004 3005
		if (!populated_zone(zone))
			continue;

3006
		managed_pages += zone->managed_pages;
3007 3008 3009 3010 3011 3012 3013 3014

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
3015
		if (!zone_reclaimable(zone)) {
3016
			balanced_pages += zone->managed_pages;
3017 3018 3019 3020
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
3021
			balanced_pages += zone->managed_pages;
3022 3023 3024 3025 3026
		else if (!order)
			return false;
	}

	if (order)
3027
		return balanced_pages >= (managed_pages >> 2);
3028 3029
	else
		return true;
3030 3031
}

3032 3033 3034 3035 3036 3037 3038
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3039
					int classzone_idx)
3040 3041 3042
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
3043 3044 3045
		return false;

	/*
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3057
	 */
3058 3059
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3060

3061
	return pgdat_balanced(pgdat, order, classzone_idx);
3062 3063
}

3064 3065 3066
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
3067 3068
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3069 3070
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3071
 */
3072
static bool kswapd_shrink_zone(struct zone *zone,
3073
			       int classzone_idx,
3074
			       struct scan_control *sc,
3075
			       unsigned long *nr_attempted)
3076
{
3077 3078 3079
	int testorder = sc->order;
	unsigned long balance_gap;
	bool lowmem_pressure;
3080 3081 3082

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3083 3084 3085 3086 3087 3088 3089 3090

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3091 3092
			compaction_suitable(zone, sc->order, 0, classzone_idx)
							!= COMPACT_SKIPPED)
3093 3094 3095 3096 3097 3098 3099 3100
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
3101 3102
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

3113
	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3114

3115 3116 3117
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

J
Johannes Weiner 已提交
3118
	clear_bit(ZONE_WRITEBACK, &zone->flags);
3119

3120 3121 3122 3123 3124 3125
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
3126
	if (zone_reclaimable(zone) &&
3127
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
J
Johannes Weiner 已提交
3128 3129
		clear_bit(ZONE_CONGESTED, &zone->flags);
		clear_bit(ZONE_DIRTY, &zone->flags);
3130 3131
	}

3132
	return sc->nr_scanned >= sc->nr_to_reclaim;
3133 3134
}

L
Linus Torvalds 已提交
3135 3136
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
3137
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
3138
 *
3139
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3150 3151 3152 3153 3154
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
3155
 */
3156
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3157
							int *classzone_idx)
L
Linus Torvalds 已提交
3158 3159
{
	int i;
3160
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3161 3162
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3163 3164
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3165
		.order = order,
3166
		.priority = DEF_PRIORITY,
3167
		.may_writepage = !laptop_mode,
3168
		.may_unmap = 1,
3169
		.may_swap = 1,
3170
	};
3171
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3172

3173
	do {
3174
		unsigned long nr_attempted = 0;
3175
		bool raise_priority = true;
3176
		bool pgdat_needs_compaction = (order > 0);
3177 3178

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3179

3180 3181 3182 3183 3184 3185
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
3186

3187 3188
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
3189

3190 3191
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
3192
				continue;
L
Linus Torvalds 已提交
3193

3194 3195 3196 3197
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3198
			age_active_anon(zone, &sc);
3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3211
			if (!zone_balanced(zone, order, 0, 0)) {
3212
				end_zone = i;
A
Andrew Morton 已提交
3213
				break;
3214
			} else {
3215 3216 3217 3218
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
J
Johannes Weiner 已提交
3219 3220
				clear_bit(ZONE_CONGESTED, &zone->flags);
				clear_bit(ZONE_DIRTY, &zone->flags);
L
Linus Torvalds 已提交
3221 3222
			}
		}
3223

3224
		if (i < 0)
A
Andrew Morton 已提交
3225 3226
			goto out;

L
Linus Torvalds 已提交
3227 3228 3229
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
			if (!populated_zone(zone))
				continue;

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3243 3244
		}

3245 3246 3247 3248 3249 3250 3251
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3264
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3265 3266
				continue;

3267 3268
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3269 3270 3271
				continue;

			sc.nr_scanned = 0;
3272

3273 3274 3275 3276 3277 3278 3279 3280 3281
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3282
			/*
3283 3284 3285 3286
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3287
			 */
3288 3289
			if (kswapd_shrink_zone(zone, end_zone,
					       &sc, &nr_attempted))
3290
				raise_priority = false;
L
Linus Torvalds 已提交
3291
		}
3292 3293 3294 3295 3296 3297 3298 3299

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3300
			wake_up_all(&pgdat->pfmemalloc_wait);
3301

L
Linus Torvalds 已提交
3302
		/*
3303 3304 3305 3306 3307 3308
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3309
		 */
3310 3311
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3312

3313 3314 3315
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3316

3317 3318 3319 3320 3321 3322 3323
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3324
		/*
3325 3326
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3327
		 */
3328 3329
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3330
	} while (sc.priority >= 1 &&
3331
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3332

3333
out:
3334
	/*
3335
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3336 3337 3338 3339
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3340
	*classzone_idx = end_zone;
3341
	return order;
L
Linus Torvalds 已提交
3342 3343
}

3344
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3355
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3356 3357 3358 3359 3360 3361 3362 3363 3364
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3365
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3377

3378 3379 3380 3381 3382 3383 3384 3385
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3386 3387 3388
		if (!kthread_should_stop())
			schedule();

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3399 3400
/*
 * The background pageout daemon, started as a kernel thread
3401
 * from the init process.
L
Linus Torvalds 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3414
	unsigned long order, new_order;
3415
	unsigned balanced_order;
3416
	int classzone_idx, new_classzone_idx;
3417
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3418 3419
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3420

L
Linus Torvalds 已提交
3421 3422 3423
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3424
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3425

3426 3427
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3428
	if (!cpumask_empty(cpumask))
3429
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3444
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3445
	set_freezable();
L
Linus Torvalds 已提交
3446

3447
	order = new_order = 0;
3448
	balanced_order = 0;
3449
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3450
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3451
	for ( ; ; ) {
3452
		bool ret;
3453

3454 3455 3456 3457 3458
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3459 3460
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3461 3462 3463 3464 3465 3466
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3467
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3468 3469
			/*
			 * Don't sleep if someone wants a larger 'order'
3470
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3471 3472
			 */
			order = new_order;
3473
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3474
		} else {
3475 3476
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3477
			order = pgdat->kswapd_max_order;
3478
			classzone_idx = pgdat->classzone_idx;
3479 3480
			new_order = order;
			new_classzone_idx = classzone_idx;
3481
			pgdat->kswapd_max_order = 0;
3482
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3483 3484
		}

3485 3486 3487 3488 3489 3490 3491 3492
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3493 3494
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3495 3496 3497
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3498
		}
L
Linus Torvalds 已提交
3499
	}
3500

3501
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3502
	current->reclaim_state = NULL;
3503 3504
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3505 3506 3507 3508 3509 3510
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3511
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3512 3513 3514
{
	pg_data_t *pgdat;

3515
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3516 3517
		return;

3518
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3519
		return;
3520
	pgdat = zone->zone_pgdat;
3521
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3522
		pgdat->kswapd_max_order = order;
3523 3524
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3525
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3526
		return;
3527
	if (zone_balanced(zone, order, 0, 0))
3528 3529 3530
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3531
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3532 3533
}

3534
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3535
/*
3536
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3537 3538 3539 3540 3541
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3542
 */
3543
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3544
{
3545 3546
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3547
		.nr_to_reclaim = nr_to_reclaim,
3548
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3549
		.priority = DEF_PRIORITY,
3550
		.may_writepage = 1,
3551 3552
		.may_unmap = 1,
		.may_swap = 1,
3553
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3554
	};
3555
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3556 3557
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3558

3559 3560 3561 3562
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3563

3564
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3565

3566 3567 3568
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3569

3570
	return nr_reclaimed;
L
Linus Torvalds 已提交
3571
}
3572
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3573 3574 3575 3576 3577

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3578 3579
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3580
{
3581
	int nid;
L
Linus Torvalds 已提交
3582

3583
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3584
		for_each_node_state(nid, N_MEMORY) {
3585
			pg_data_t *pgdat = NODE_DATA(nid);
3586 3587 3588
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3589

3590
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3591
				/* One of our CPUs online: restore mask */
3592
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3593 3594 3595 3596 3597
		}
	}
	return NOTIFY_OK;
}

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3614 3615
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3616
		pgdat->kswapd = NULL;
3617 3618 3619 3620
	}
	return ret;
}

3621
/*
3622
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3623
 * hold mem_hotplug_begin/end().
3624 3625 3626 3627 3628
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3629
	if (kswapd) {
3630
		kthread_stop(kswapd);
3631 3632
		NODE_DATA(nid)->kswapd = NULL;
	}
3633 3634
}

L
Linus Torvalds 已提交
3635 3636
static int __init kswapd_init(void)
{
3637
	int nid;
3638

L
Linus Torvalds 已提交
3639
	swap_setup();
3640
	for_each_node_state(nid, N_MEMORY)
3641
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3642 3643 3644 3645 3646
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3657
#define RECLAIM_OFF 0
3658
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3659
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3660
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3661

3662 3663 3664 3665 3666 3667 3668
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3669 3670 3671 3672 3673 3674
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3675 3676 3677 3678 3679 3680
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3696
static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3697
{
3698 3699
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3700 3701

	/*
3702
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3703 3704 3705 3706
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
3707
	if (zone_reclaim_mode & RECLAIM_UNMAP)
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3723 3724 3725
/*
 * Try to free up some pages from this zone through reclaim.
 */
3726
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3727
{
3728
	/* Minimum pages needed in order to stay on node */
3729
	const unsigned long nr_pages = 1 << order;
3730 3731
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3732
	struct scan_control sc = {
3733
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3734
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3735
		.order = order,
3736
		.priority = ZONE_RECLAIM_PRIORITY,
3737
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3738
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3739
		.may_swap = 1,
3740
	};
3741 3742

	cond_resched();
3743
	/*
3744
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3745
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3746
	 * and RECLAIM_UNMAP.
3747 3748
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3749
	lockdep_set_current_reclaim_state(gfp_mask);
3750 3751
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3752

3753
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3754 3755 3756 3757 3758
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3759
			shrink_zone(zone, &sc, true);
3760
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3761
	}
3762

3763
	p->reclaim_state = NULL;
3764
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3765
	lockdep_clear_current_reclaim_state();
3766
	return sc.nr_reclaimed >= nr_pages;
3767
}
3768 3769 3770 3771

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3772
	int ret;
3773 3774

	/*
3775 3776
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3777
	 *
3778 3779 3780 3781 3782
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3783
	 */
3784 3785
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3786
		return ZONE_RECLAIM_FULL;
3787

3788
	if (!zone_reclaimable(zone))
3789
		return ZONE_RECLAIM_FULL;
3790

3791
	/*
3792
	 * Do not scan if the allocation should not be delayed.
3793
	 */
3794
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3795
		return ZONE_RECLAIM_NOSCAN;
3796 3797 3798 3799 3800 3801 3802

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3803
	node_id = zone_to_nid(zone);
3804
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3805
		return ZONE_RECLAIM_NOSCAN;
3806

J
Johannes Weiner 已提交
3807
	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3808 3809
		return ZONE_RECLAIM_NOSCAN;

3810
	ret = __zone_reclaim(zone, gfp_mask, order);
J
Johannes Weiner 已提交
3811
	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3812

3813 3814 3815
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3816
	return ret;
3817
}
3818
#endif
L
Lee Schermerhorn 已提交
3819 3820 3821 3822 3823 3824

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3825
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3826 3827
 *
 * Reasons page might not be evictable:
3828
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3829
 * (2) page is part of an mlocked VMA
3830
 *
L
Lee Schermerhorn 已提交
3831
 */
3832
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3833
{
3834
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3835
}
3836

3837
#ifdef CONFIG_SHMEM
3838
/**
3839 3840 3841
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3842
 *
3843
 * Checks pages for evictability and moves them to the appropriate lru list.
3844 3845
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3846
 */
3847
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3848
{
3849
	struct lruvec *lruvec;
3850 3851 3852 3853
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3854

3855 3856 3857
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3858

3859 3860 3861 3862 3863 3864 3865 3866
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3867
		lruvec = mem_cgroup_page_lruvec(page, zone);
3868

3869 3870
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3871

3872
		if (page_evictable(page)) {
3873 3874
			enum lru_list lru = page_lru_base_type(page);

3875
			VM_BUG_ON_PAGE(PageActive(page), page);
3876
			ClearPageUnevictable(page);
3877 3878
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3879
			pgrescued++;
3880
		}
3881
	}
3882

3883 3884 3885 3886
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3887 3888
	}
}
3889
#endif /* CONFIG_SHMEM */