vmscan.c 102.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142
#else
143 144 145 146
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
147 148
#endif

149
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150
{
151
	if (!mem_cgroup_disabled())
152
		return mem_cgroup_get_lru_size(lruvec, lru);
153

154
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 156
}

L
Linus Torvalds 已提交
157 158 159
/*
 * Add a shrinker callback to be called from the vm
 */
160
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
161
{
162
	atomic_long_set(&shrinker->nr_in_batch, 0);
163 164 165
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
166
}
167
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
168 169 170 171

/*
 * Remove one
 */
172
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
173 174 175 176 177
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
178
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
179

180 181 182 183 184 185 186 187
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
197
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
198 199 200 201 202 203 204
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
205 206
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
207
 */
208
unsigned long shrink_slab(struct shrink_control *shrink,
209
			  unsigned long nr_pages_scanned,
210
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
211 212
{
	struct shrinker *shrinker;
213
	unsigned long ret = 0;
L
Linus Torvalds 已提交
214

215 216
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
217

218 219 220 221 222
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
223 224 225

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
226 227
		long total_scan;
		long max_pass;
228
		int shrink_ret = 0;
229 230
		long nr;
		long new_nr;
231 232
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
233

234 235 236 237
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

238 239 240 241 242
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
243
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 245

		total_scan = nr;
246
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
247
		delta *= max_pass;
L
Linus Torvalds 已提交
248
		do_div(delta, lru_pages + 1);
249 250
		total_scan += delta;
		if (total_scan < 0) {
251 252
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
253 254
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
255 256
		}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

272 273 274 275 276
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
277 278
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
279

280
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 282 283
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

284
		while (total_scan >= batch_size) {
285
			int nr_before;
L
Linus Torvalds 已提交
286

287 288
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
289
							batch_size);
L
Linus Torvalds 已提交
290 291
			if (shrink_ret == -1)
				break;
292 293
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
294 295
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
296 297 298 299

			cond_resched();
		}

300 301 302 303 304
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
305 306 307 308 309
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 311

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
312 313
	}
	up_read(&shrinker_rwsem);
314 315
out:
	cond_resched();
316
	return ret;
L
Linus Torvalds 已提交
317 318 319 320
}

static inline int is_page_cache_freeable(struct page *page)
{
321 322 323 324 325
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
326
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
327 328
}

329 330
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
331
{
332
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
356
	lock_page(page);
357 358
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
359 360 361
	unlock_page(page);
}

362 363 364 365 366 367 368 369 370 371 372 373
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
374
/*
A
Andrew Morton 已提交
375 376
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
377
 */
378
static pageout_t pageout(struct page *page, struct address_space *mapping,
379
			 struct scan_control *sc)
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
388
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
404
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
405 406
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
407
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
408 409 410 411 412 413 414
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
415
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
416 417 418 419 420 421 422
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
423 424
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
425 426 427 428 429 430 431
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
432
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
433 434 435
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
436

L
Linus Torvalds 已提交
437 438 439 440
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
441
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
443 444 445 446 447 448
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

449
/*
N
Nick Piggin 已提交
450 451
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
452
 */
N
Nick Piggin 已提交
453
static int __remove_mapping(struct address_space *mapping, struct page *page)
454
{
455 456
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
457

N
Nick Piggin 已提交
458
	spin_lock_irq(&mapping->tree_lock);
459
	/*
N
Nick Piggin 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
483
	 */
N
Nick Piggin 已提交
484
	if (!page_freeze_refs(page, 2))
485
		goto cannot_free;
N
Nick Piggin 已提交
486 487 488
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
489
		goto cannot_free;
N
Nick Piggin 已提交
490
	}
491 492 493 494

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
495
		spin_unlock_irq(&mapping->tree_lock);
496
		swapcache_free(swap, page);
N
Nick Piggin 已提交
497
	} else {
498 499 500 501
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

502
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
503
		spin_unlock_irq(&mapping->tree_lock);
504
		mem_cgroup_uncharge_cache_page(page);
505 506 507

		if (freepage != NULL)
			freepage(page);
508 509 510 511 512
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
513
	spin_unlock_irq(&mapping->tree_lock);
514 515 516
	return 0;
}

N
Nick Piggin 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
550
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
551 552 553 554 555 556

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

557
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
558 559 560 561 562 563
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
564
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
565 566 567 568 569 570 571 572
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
573
		/*
574 575 576
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
577
		 * isolation/check_move_unevictable_pages,
578
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 580
		 * the page back to the evictable list.
		 *
581
		 * The other side is TestClearPageMlocked() or shmem_lock().
582 583
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
584 585 586 587 588 589 590
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
591
	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
L
Lee Schermerhorn 已提交
592 593 594 595 596 597 598 599 600 601
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

602 603 604 605 606
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
607 608 609
	put_page(page);		/* drop ref from isolate */
}

610 611 612
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
613
	PAGEREF_KEEP,
614 615 616 617 618 619
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
620
	int referenced_ptes, referenced_page;
621 622
	unsigned long vm_flags;

623 624
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
625
	referenced_page = TestClearPageReferenced(page);
626 627 628 629 630 631 632 633

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

634
	if (referenced_ptes) {
635
		if (PageSwapBacked(page))
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

653
		if (referenced_page || referenced_ptes > 1)
654 655
			return PAGEREF_ACTIVATE;

656 657 658 659 660 661
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

662 663
		return PAGEREF_KEEP;
	}
664 665

	/* Reclaim if clean, defer dirty pages to writeback */
666
	if (referenced_page && !PageSwapBacked(page))
667 668 669
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
670 671
}

L
Linus Torvalds 已提交
672
/*
A
Andrew Morton 已提交
673
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
674
 */
A
Andrew Morton 已提交
675
static unsigned long shrink_page_list(struct list_head *page_list,
676
				      struct zone *zone,
677
				      struct scan_control *sc,
678
				      enum ttu_flags ttu_flags,
679
				      unsigned long *ret_nr_dirty,
680 681
				      unsigned long *ret_nr_writeback,
				      bool force_reclaim)
L
Linus Torvalds 已提交
682 683
{
	LIST_HEAD(ret_pages);
684
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
685
	int pgactivate = 0;
686 687
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
688
	unsigned long nr_reclaimed = 0;
689
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
690 691 692

	cond_resched();

693
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
694 695 696 697
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
698
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
L
Linus Torvalds 已提交
699 700 701 702 703 704

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
705
		if (!trylock_page(page))
L
Linus Torvalds 已提交
706 707
			goto keep;

N
Nick Piggin 已提交
708
		VM_BUG_ON(PageActive(page));
709
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
710 711

		sc->nr_scanned++;
712

713
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
714
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
715

716
		if (!sc->may_unmap && page_mapped(page))
717 718
			goto keep_locked;

L
Linus Torvalds 已提交
719 720 721 722
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

723 724 725 726
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
727 728 729
			/*
			 * memcg doesn't have any dirty pages throttling so we
			 * could easily OOM just because too many pages are in
730
			 * writeback and there is nothing else to reclaim.
731
			 *
732
			 * Check __GFP_IO, certainly because a loop driver
733 734 735 736
			 * thread might enter reclaim, and deadlock if it waits
			 * on a page for which it is needed to do the write
			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
			 * but more thought would probably show more reasons.
737 738 739 740 741 742
			 *
			 * Don't require __GFP_FS, since we're not going into
			 * the FS, just waiting on its writeback completion.
			 * Worryingly, ext4 gfs2 and xfs allocate pages with
			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
			 * testing may_enter_fs here is liable to OOM on them.
743
			 */
744 745 746 747 748 749 750 751 752 753 754 755 756 757
			if (global_reclaim(sc) ||
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
758
				nr_writeback++;
759
				goto keep_locked;
760
			}
761
			wait_on_page_writeback(page);
762
		}
L
Linus Torvalds 已提交
763

764 765 766
		if (!force_reclaim)
			references = page_check_references(page, sc);

767 768
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
769
			goto activate_locked;
770 771
		case PAGEREF_KEEP:
			goto keep_locked;
772 773 774 775
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
776 777 778 779 780

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
781
		if (PageAnon(page) && !PageSwapCache(page)) {
782 783
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
784
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
785
				goto activate_locked;
786
			may_enter_fs = 1;
N
Nick Piggin 已提交
787
		}
L
Linus Torvalds 已提交
788 789 790 791 792 793 794 795

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
796
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
797 798 799 800
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
801 802
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
803 804 805 806 807 808
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
809 810
			nr_dirty++;

811 812
			/*
			 * Only kswapd can writeback filesystem pages to
813 814
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
815
			 */
816
			if (page_is_file_cache(page) &&
817 818
					(!current_is_kswapd() ||
					 sc->priority >= DEF_PRIORITY - 2)) {
819 820 821 822 823 824 825 826 827
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

828 829 830
				goto keep_locked;
			}

831
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
832
				goto keep_locked;
833
			if (!may_enter_fs)
L
Linus Torvalds 已提交
834
				goto keep_locked;
835
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
836 837 838
				goto keep_locked;

			/* Page is dirty, try to write it out here */
839
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
840
			case PAGE_KEEP:
841
				nr_congested++;
L
Linus Torvalds 已提交
842 843 844 845
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
846
				if (PageWriteback(page))
847
					goto keep;
848
				if (PageDirty(page))
L
Linus Torvalds 已提交
849
					goto keep;
850

L
Linus Torvalds 已提交
851 852 853 854
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
855
				if (!trylock_page(page))
L
Linus Torvalds 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
875
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
876 877 878 879 880 881 882 883 884 885
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
886
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
887 888
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
905 906
		}

N
Nick Piggin 已提交
907
		if (!mapping || !__remove_mapping(mapping, page))
908
			goto keep_locked;
L
Linus Torvalds 已提交
909

N
Nick Piggin 已提交
910 911 912 913 914 915 916 917
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
918
free_it:
919
		nr_reclaimed++;
920 921 922 923 924 925

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
926 927
		continue;

N
Nick Piggin 已提交
928
cull_mlocked:
929 930
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
931 932 933 934
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
935
activate_locked:
936 937
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
938
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
939
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
940 941 942 943 944 945
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
946
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
947
	}
948

949 950 951 952 953 954
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
955
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
956
		zone_set_flag(zone, ZONE_CONGESTED);
957

958
	free_hot_cold_page_list(&free_pages, 1);
959

L
Linus Torvalds 已提交
960
	list_splice(&ret_pages, page_list);
961
	count_vm_events(PGACTIVATE, pgactivate);
962
	mem_cgroup_uncharge_end();
963 964
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
965
	return nr_reclaimed;
L
Linus Torvalds 已提交
966 967
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
	unsigned long ret, dummy1, dummy2;
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
				TTU_UNMAP|TTU_IGNORE_ACCESS,
				&dummy1, &dummy2, true);
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1005
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1006 1007 1008 1009 1010 1011 1012
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1013 1014
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1015 1016
		return ret;

A
Andy Whitcroft 已提交
1017
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1052

1053 1054 1055
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1080
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1081
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1082
 * @nr_scanned:	The number of pages that were scanned.
1083
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1084
 * @mode:	One of the LRU isolation modes
1085
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1086 1087 1088
 *
 * returns how many pages were moved onto *@dst.
 */
1089
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1090
		struct lruvec *lruvec, struct list_head *dst,
1091
		unsigned long *nr_scanned, struct scan_control *sc,
1092
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1093
{
H
Hugh Dickins 已提交
1094
	struct list_head *src = &lruvec->lists[lru];
1095
	unsigned long nr_taken = 0;
1096
	unsigned long scan;
L
Linus Torvalds 已提交
1097

1098
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1099
		struct page *page;
1100
		int nr_pages;
A
Andy Whitcroft 已提交
1101

L
Linus Torvalds 已提交
1102 1103 1104
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1105
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1106

1107
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1108
		case 0:
1109 1110
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1111
			list_move(&page->lru, dst);
1112
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1113 1114 1115 1116 1117 1118
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1119

A
Andy Whitcroft 已提交
1120 1121 1122
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1123 1124
	}

H
Hugh Dickins 已提交
1125
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1126 1127
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1128 1129 1130
	return nr_taken;
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1142 1143 1144
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1160 1161
	VM_BUG_ON(!page_count(page));

1162 1163
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1164
		struct lruvec *lruvec;
1165 1166

		spin_lock_irq(&zone->lru_lock);
1167
		lruvec = mem_cgroup_page_lruvec(page, zone);
1168
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1169
			int lru = page_lru(page);
1170
			get_page(page);
1171
			ClearPageLRU(page);
1172 1173
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1174 1175 1176 1177 1178 1179
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1180
/*
F
Fengguang Wu 已提交
1181 1182 1183 1184 1185
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1186 1187 1188 1189 1190 1191 1192 1193 1194
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1195
	if (!global_reclaim(sc))
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1206 1207 1208 1209 1210 1211 1212 1213
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1214 1215 1216
	return isolated > inactive;
}

1217
static noinline_for_stack void
H
Hugh Dickins 已提交
1218
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1219
{
1220 1221
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1222
	LIST_HEAD(pages_to_free);
1223 1224 1225 1226 1227

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1228
		struct page *page = lru_to_page(page_list);
1229
		int lru;
1230

1231 1232
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1233
		if (unlikely(!page_evictable(page))) {
1234 1235 1236 1237 1238
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1239 1240 1241

		lruvec = mem_cgroup_page_lruvec(page, zone);

1242
		SetPageLRU(page);
1243
		lru = page_lru(page);
1244 1245
		add_page_to_lru_list(page, lruvec, lru);

1246 1247
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1248 1249
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1250
		}
1251 1252 1253
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1254
			del_page_from_lru_list(page, lruvec, lru);
1255 1256 1257 1258 1259 1260 1261

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1262 1263 1264
		}
	}

1265 1266 1267 1268
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1269 1270
}

L
Linus Torvalds 已提交
1271
/*
A
Andrew Morton 已提交
1272 1273
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1274
 */
1275
static noinline_for_stack unsigned long
1276
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1277
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1278 1279
{
	LIST_HEAD(page_list);
1280
	unsigned long nr_scanned;
1281
	unsigned long nr_reclaimed = 0;
1282
	unsigned long nr_taken;
1283 1284
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1285
	isolate_mode_t isolate_mode = 0;
1286
	int file = is_file_lru(lru);
1287 1288
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1289

1290
	while (unlikely(too_many_isolated(zone, file, sc))) {
1291
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1292 1293 1294 1295 1296 1297

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1298
	lru_add_drain();
1299 1300

	if (!sc->may_unmap)
1301
		isolate_mode |= ISOLATE_UNMAPPED;
1302
	if (!sc->may_writepage)
1303
		isolate_mode |= ISOLATE_CLEAN;
1304

L
Linus Torvalds 已提交
1305
	spin_lock_irq(&zone->lru_lock);
1306

1307 1308
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1309 1310 1311 1312

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1313
	if (global_reclaim(sc)) {
1314 1315
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1316
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1317
		else
H
Hugh Dickins 已提交
1318
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1319
	}
1320
	spin_unlock_irq(&zone->lru_lock);
1321

1322
	if (nr_taken == 0)
1323
		return 0;
A
Andy Whitcroft 已提交
1324

1325 1326
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
					&nr_dirty, &nr_writeback, false);
1327

1328 1329
	spin_lock_irq(&zone->lru_lock);

1330
	reclaim_stat->recent_scanned[file] += nr_taken;
1331

Y
Ying Han 已提交
1332 1333 1334 1335 1336 1337 1338 1339
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1340

1341
	putback_inactive_pages(lruvec, &page_list);
1342

1343
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1344 1345 1346 1347

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1372 1373
	if (nr_writeback && nr_writeback >=
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1374 1375
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1376 1377 1378
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1379
		sc->priority,
M
Mel Gorman 已提交
1380
		trace_shrink_flags(file));
1381
	return nr_reclaimed;
L
Linus Torvalds 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1401

1402
static void move_active_pages_to_lru(struct lruvec *lruvec,
1403
				     struct list_head *list,
1404
				     struct list_head *pages_to_free,
1405 1406
				     enum lru_list lru)
{
1407
	struct zone *zone = lruvec_zone(lruvec);
1408 1409
	unsigned long pgmoved = 0;
	struct page *page;
1410
	int nr_pages;
1411 1412 1413

	while (!list_empty(list)) {
		page = lru_to_page(list);
1414
		lruvec = mem_cgroup_page_lruvec(page, zone);
1415 1416 1417 1418

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1419 1420
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1421
		list_move(&page->lru, &lruvec->lists[lru]);
1422
		pgmoved += nr_pages;
1423

1424 1425 1426
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1427
			del_page_from_lru_list(page, lruvec, lru);
1428 1429 1430 1431 1432 1433 1434

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1435 1436 1437 1438 1439 1440
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1441

H
Hugh Dickins 已提交
1442
static void shrink_active_list(unsigned long nr_to_scan,
1443
			       struct lruvec *lruvec,
1444
			       struct scan_control *sc,
1445
			       enum lru_list lru)
L
Linus Torvalds 已提交
1446
{
1447
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1448
	unsigned long nr_scanned;
1449
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1450
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1451
	LIST_HEAD(l_active);
1452
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1453
	struct page *page;
1454
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1455
	unsigned long nr_rotated = 0;
1456
	isolate_mode_t isolate_mode = 0;
1457
	int file = is_file_lru(lru);
1458
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1459 1460

	lru_add_drain();
1461 1462

	if (!sc->may_unmap)
1463
		isolate_mode |= ISOLATE_UNMAPPED;
1464
	if (!sc->may_writepage)
1465
		isolate_mode |= ISOLATE_CLEAN;
1466

L
Linus Torvalds 已提交
1467
	spin_lock_irq(&zone->lru_lock);
1468

1469 1470
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1471
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1472
		zone->pages_scanned += nr_scanned;
1473

1474
	reclaim_stat->recent_scanned[file] += nr_taken;
1475

H
Hugh Dickins 已提交
1476
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1477
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1478
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1479 1480 1481 1482 1483 1484
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1485

1486
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1487 1488 1489 1490
			putback_lru_page(page);
			continue;
		}

1491 1492 1493 1494 1495 1496 1497 1498
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1499 1500
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1501
			nr_rotated += hpage_nr_pages(page);
1502 1503 1504 1505 1506 1507 1508 1509 1510
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1511
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1512 1513 1514 1515
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1516

1517
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1518 1519 1520
		list_add(&page->lru, &l_inactive);
	}

1521
	/*
1522
	 * Move pages back to the lru list.
1523
	 */
1524
	spin_lock_irq(&zone->lru_lock);
1525
	/*
1526 1527 1528 1529
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1530
	 */
1531
	reclaim_stat->recent_rotated[file] += nr_rotated;
1532

1533 1534
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1535
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1536
	spin_unlock_irq(&zone->lru_lock);
1537 1538

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1539 1540
}

1541
#ifdef CONFIG_SWAP
1542
static int inactive_anon_is_low_global(struct zone *zone)
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1555 1556
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1557
 * @lruvec: LRU vector to check
1558 1559 1560 1561
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1562
static int inactive_anon_is_low(struct lruvec *lruvec)
1563
{
1564 1565 1566 1567 1568 1569 1570
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1571
	if (!mem_cgroup_disabled())
1572
		return mem_cgroup_inactive_anon_is_low(lruvec);
1573

1574
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1575
}
1576
#else
1577
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1578 1579 1580 1581
{
	return 0;
}
#endif
1582

1583 1584
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1585
 * @lruvec: LRU vector to check
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1597
static int inactive_file_is_low(struct lruvec *lruvec)
1598
{
1599 1600 1601 1602 1603
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1604

1605
	return active > inactive;
1606 1607
}

H
Hugh Dickins 已提交
1608
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1609
{
H
Hugh Dickins 已提交
1610
	if (is_file_lru(lru))
1611
		return inactive_file_is_low(lruvec);
1612
	else
1613
		return inactive_anon_is_low(lruvec);
1614 1615
}

1616
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1617
				 struct lruvec *lruvec, struct scan_control *sc)
1618
{
1619
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1620
		if (inactive_list_is_low(lruvec, lru))
1621
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1622 1623 1624
		return 0;
	}

1625
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1626 1627
}

1628
static int vmscan_swappiness(struct scan_control *sc)
1629
{
1630
	if (global_reclaim(sc))
1631
		return vm_swappiness;
1632
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1633 1634
}

1635 1636 1637 1638 1639 1640 1641
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1642 1643 1644 1645 1646 1647
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1648 1649
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1650
 */
1651
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1652
			   unsigned long *nr)
1653
{
1654 1655 1656 1657
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1658
	unsigned long anon_prio, file_prio;
1659 1660 1661
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1662
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1663
	enum lru_list lru;
1664

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1675
	if (current_is_kswapd() && zone->all_unreclaimable)
1676
		force_scan = true;
1677
	if (!global_reclaim(sc))
1678
		force_scan = true;
1679 1680

	/* If we have no swap space, do not bother scanning anon pages. */
1681
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1682
		scan_balance = SCAN_FILE;
1683 1684
		goto out;
	}
1685

1686 1687 1688 1689 1690 1691 1692 1693
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1694
		scan_balance = SCAN_FILE;
1695 1696 1697 1698 1699 1700 1701 1702 1703
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1704
		scan_balance = SCAN_EQUAL;
1705 1706 1707
		goto out;
	}

1708 1709 1710 1711
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1712

1713 1714 1715 1716 1717 1718
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1719
	if (global_reclaim(sc)) {
1720
		free = zone_page_state(zone, NR_FREE_PAGES);
1721
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1722
			scan_balance = SCAN_ANON;
1723
			goto out;
1724
		}
1725 1726
	}

1727 1728 1729 1730 1731
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1732
		scan_balance = SCAN_FILE;
1733 1734 1735
		goto out;
	}

1736 1737
	scan_balance = SCAN_FRACT;

1738 1739 1740 1741
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1742
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1743
	file_prio = 200 - anon_prio;
1744

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1756
	spin_lock_irq(&zone->lru_lock);
1757 1758 1759
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1760 1761
	}

1762 1763 1764
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1765 1766 1767
	}

	/*
1768 1769 1770
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1771
	 */
1772
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1773
	ap /= reclaim_stat->recent_rotated[0] + 1;
1774

1775
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1776
	fp /= reclaim_stat->recent_rotated[1] + 1;
1777
	spin_unlock_irq(&zone->lru_lock);
1778

1779 1780 1781 1782
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1783 1784
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1785
		unsigned long size;
1786
		unsigned long scan;
1787

1788
		size = get_lru_size(lruvec, lru);
1789
		scan = size >> sc->priority;
1790

1791 1792
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1815
		nr[lru] = scan;
1816
	}
1817
}
1818

1819 1820 1821 1822 1823 1824
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1825
	unsigned long targets[NR_LRU_LISTS];
1826 1827 1828 1829 1830
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
1831
	bool scan_adjusted = false;
1832 1833 1834

	get_scan_count(lruvec, sc, nr);

1835 1836 1837
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

1838 1839 1840
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
1841 1842 1843
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

1844 1845 1846 1847 1848 1849 1850 1851 1852
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
1853 1854 1855 1856

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

1857
		/*
1858 1859 1860 1861
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
1862
		 */
1863
		if (global_reclaim(sc) && !current_is_kswapd())
1864
			break;
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
1922
/* Use reclaim/compaction for costly allocs or under memory pressure */
1923
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
1924
{
1925
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
1926
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1927
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
1928 1929 1930 1931 1932
		return true;

	return false;
}

1933
/*
M
Mel Gorman 已提交
1934 1935 1936 1937 1938
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1939
 */
1940
static inline bool should_continue_reclaim(struct zone *zone,
1941 1942 1943 1944 1945 1946 1947 1948
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1949
	if (!in_reclaim_compaction(sc))
1950 1951
		return false;

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1974 1975 1976 1977 1978 1979

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1980
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
1981
	if (get_nr_swap_pages() > 0)
1982
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
1983 1984 1985 1986 1987
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1988
	switch (compaction_suitable(zone, sc->order)) {
1989 1990 1991 1992 1993 1994 1995 1996
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

1997
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
1998
{
1999
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2000

2001 2002 2003 2004 2005 2006 2007
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
		struct mem_cgroup *memcg;
2008

2009 2010
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2011

2012 2013 2014
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
			struct lruvec *lruvec;
2015

2016
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2017

2018
			shrink_lruvec(lruvec, sc);
2019

2020
			/*
2021 2022
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2023
			 * zone.
2024 2025 2026 2027 2028
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2029
			 */
2030 2031
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2032 2033 2034 2035 2036
				mem_cgroup_iter_break(root, memcg);
				break;
			}
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2037 2038 2039 2040 2041

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2042 2043
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2044 2045
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2063
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2064 2065 2066 2067 2068 2069 2070 2071
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2072
	if (compaction_deferred(zone, sc->order))
2073 2074 2075 2076 2077 2078 2079 2080 2081
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2082 2083 2084 2085 2086
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2087 2088
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2089 2090
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2091 2092 2093
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2094 2095 2096
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2097 2098
 *
 * This function returns true if a zone is being reclaimed for a costly
2099
 * high-order allocation and compaction is ready to begin. This indicates to
2100 2101
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2102
 */
2103
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2104
{
2105
	struct zoneref *z;
2106
	struct zone *zone;
2107 2108
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2109
	bool aborted_reclaim = false;
2110

2111 2112 2113 2114 2115 2116 2117 2118
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2119 2120
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2121
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2122
			continue;
2123 2124 2125 2126
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2127
		if (global_reclaim(sc)) {
2128 2129
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2130 2131
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
2132
				continue;	/* Let kswapd poll it */
2133
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2134
				/*
2135 2136 2137 2138 2139
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2140 2141
				 * noticeable problem, like transparent huge
				 * page allocations.
2142
				 */
2143
				if (compaction_ready(zone, sc)) {
2144
					aborted_reclaim = true;
2145
					continue;
2146
				}
2147
			}
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2161
		}
2162

2163
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2164
	}
2165

2166
	return aborted_reclaim;
2167 2168 2169 2170 2171 2172 2173
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2174
/* All zones in zonelist are unreclaimable? */
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2187 2188
		if (!zone->all_unreclaimable)
			return false;
2189 2190
	}

2191
	return true;
L
Linus Torvalds 已提交
2192
}
2193

L
Linus Torvalds 已提交
2194 2195 2196 2197 2198 2199 2200 2201
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2202 2203 2204 2205
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2206 2207 2208
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2209
 */
2210
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2211 2212
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2213
{
2214
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2215
	struct reclaim_state *reclaim_state = current->reclaim_state;
2216
	struct zoneref *z;
2217
	struct zone *zone;
2218
	unsigned long writeback_threshold;
2219
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2220

2221 2222
	delayacct_freepages_start();

2223
	if (global_reclaim(sc))
2224
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2225

2226
	do {
2227 2228
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2229
		sc->nr_scanned = 0;
2230
		aborted_reclaim = shrink_zones(zonelist, sc);
2231

2232 2233 2234 2235
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2236
		if (global_reclaim(sc)) {
2237
			unsigned long lru_pages = 0;
2238 2239
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2240 2241 2242 2243 2244 2245
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2246
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2247
			if (reclaim_state) {
2248
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2249 2250
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2251
		}
2252
		total_scanned += sc->nr_scanned;
2253
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2254 2255
			goto out;

2256 2257 2258 2259 2260 2261 2262
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2263 2264 2265 2266 2267 2268 2269
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2270 2271
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2272 2273
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2274
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2275 2276 2277
		}

		/* Take a nap, wait for some writeback to complete */
2278
		if (!sc->hibernation_mode && sc->nr_scanned &&
2279
		    sc->priority < DEF_PRIORITY - 2) {
2280 2281 2282
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2283 2284
						&cpuset_current_mems_allowed,
						&preferred_zone);
2285 2286
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2287
	} while (--sc->priority >= 0);
2288

L
Linus Torvalds 已提交
2289
out:
2290 2291
	delayacct_freepages_end();

2292 2293 2294
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2295 2296 2297 2298 2299 2300 2301 2302
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2303 2304
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2305 2306
		return 1;

2307
	/* top priority shrink_zones still had more to do? don't OOM, then */
2308
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2309 2310 2311
		return 1;

	return 0;
L
Linus Torvalds 已提交
2312 2313
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2344 2345 2346 2347
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2348
 */
2349
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2364 2365 2366 2367 2368 2369 2370 2371
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2372 2373 2374 2375 2376

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2377
		goto out;
2378

2379 2380 2381
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2393 2394

		goto check_pending;
2395 2396 2397 2398 2399
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2400 2401 2402 2403 2404 2405 2406

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2407 2408
}

2409
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2410
				gfp_t gfp_mask, nodemask_t *nodemask)
2411
{
2412
	unsigned long nr_reclaimed;
2413
	struct scan_control sc = {
2414
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2415
		.may_writepage = !laptop_mode,
2416
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2417
		.may_unmap = 1,
2418
		.may_swap = 1,
2419
		.order = order,
2420
		.priority = DEF_PRIORITY,
2421
		.target_mem_cgroup = NULL,
2422
		.nodemask = nodemask,
2423
	};
2424 2425 2426
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2427

2428
	/*
2429 2430 2431
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2432
	 */
2433
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2434 2435
		return 1;

2436 2437 2438 2439
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2440
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2441 2442 2443 2444

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2445 2446
}

A
Andrew Morton 已提交
2447
#ifdef CONFIG_MEMCG
2448

2449
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2450
						gfp_t gfp_mask, bool noswap,
2451 2452
						struct zone *zone,
						unsigned long *nr_scanned)
2453 2454
{
	struct scan_control sc = {
2455
		.nr_scanned = 0,
2456
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2457 2458 2459 2460
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2461
		.priority = 0,
2462
		.target_mem_cgroup = memcg,
2463
	};
2464
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2465

2466 2467
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2468

2469
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2470 2471 2472
						      sc.may_writepage,
						      sc.gfp_mask);

2473 2474 2475 2476 2477 2478 2479
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2480
	shrink_lruvec(lruvec, &sc);
2481 2482 2483

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2484
	*nr_scanned = sc.nr_scanned;
2485 2486 2487
	return sc.nr_reclaimed;
}

2488
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2489
					   gfp_t gfp_mask,
2490
					   bool noswap)
2491
{
2492
	struct zonelist *zonelist;
2493
	unsigned long nr_reclaimed;
2494
	int nid;
2495 2496
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2497
		.may_unmap = 1,
2498
		.may_swap = !noswap,
2499
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2500
		.order = 0,
2501
		.priority = DEF_PRIORITY,
2502
		.target_mem_cgroup = memcg,
2503
		.nodemask = NULL, /* we don't care the placement */
2504 2505 2506 2507 2508
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2509 2510
	};

2511 2512 2513 2514 2515
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2516
	nid = mem_cgroup_select_victim_node(memcg);
2517 2518

	zonelist = NODE_DATA(nid)->node_zonelists;
2519 2520 2521 2522 2523

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2524
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2525 2526 2527 2528

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2529 2530 2531
}
#endif

2532
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2533
{
2534
	struct mem_cgroup *memcg;
2535

2536 2537 2538 2539 2540
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2541
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2542

2543
		if (inactive_anon_is_low(lruvec))
2544
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2545
					   sc, LRU_ACTIVE_ANON);
2546 2547 2548

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2549 2550
}

2551 2552 2553 2554 2555 2556 2557
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2558 2559
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2560 2561 2562 2563 2564
		return false;

	return true;
}

2565
/*
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2576 2577 2578 2579
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2580
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2581 2582 2583 2584
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2585
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2586
{
2587
	unsigned long managed_pages = 0;
2588
	unsigned long balanced_pages = 0;
2589 2590
	int i;

2591 2592 2593
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2594

2595 2596 2597
		if (!populated_zone(zone))
			continue;

2598
		managed_pages += zone->managed_pages;
2599 2600 2601 2602 2603 2604 2605 2606 2607

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
		if (zone->all_unreclaimable) {
2608
			balanced_pages += zone->managed_pages;
2609 2610 2611 2612
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2613
			balanced_pages += zone->managed_pages;
2614 2615 2616 2617 2618
		else if (!order)
			return false;
	}

	if (order)
2619
		return balanced_pages >= (managed_pages >> 2);
2620 2621
	else
		return true;
2622 2623
}

2624 2625 2626 2627 2628 2629 2630
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2631
					int classzone_idx)
2632 2633 2634
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2650

2651
	return pgdat_balanced(pgdat, order, classzone_idx);
2652 2653
}

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
 */
static void kswapd_shrink_zone(struct zone *zone,
			       struct scan_control *sc,
			       unsigned long lru_pages)
{
	unsigned long nr_slab;
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
	shrink_zone(zone, sc);

	reclaim_state->reclaimed_slab = 0;
	nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

	if (nr_slab == 0 && !zone_reclaimable(zone))
		zone->all_unreclaimable = 1;
}

L
Linus Torvalds 已提交
2680 2681
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2682
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2683
 *
2684
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2695 2696 2697 2698 2699
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2700
 */
2701
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2702
							int *classzone_idx)
L
Linus Torvalds 已提交
2703
{
2704
	bool pgdat_is_balanced = false;
L
Linus Torvalds 已提交
2705
	int i;
2706
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2707 2708
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2709 2710
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2711
		.may_unmap = 1,
2712
		.may_swap = 1,
A
Andy Whitcroft 已提交
2713
		.order = order,
2714
		.target_mem_cgroup = NULL,
2715
	};
L
Linus Torvalds 已提交
2716
loop_again:
2717
	sc.priority = DEF_PRIORITY;
2718
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2719
	sc.may_writepage = !laptop_mode;
2720
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2721

2722
	do {
L
Linus Torvalds 已提交
2723 2724
		unsigned long lru_pages = 0;

2725 2726 2727 2728 2729 2730
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2731

2732 2733
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2734

2735 2736
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2737
				continue;
L
Linus Torvalds 已提交
2738

2739 2740 2741 2742
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2743
			age_active_anon(zone, &sc);
2744

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2756
			if (!zone_balanced(zone, order, 0, 0)) {
2757
				end_zone = i;
A
Andrew Morton 已提交
2758
				break;
2759 2760 2761
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2762 2763
			}
		}
2764 2765 2766

		if (i < 0) {
			pgdat_is_balanced = true;
A
Andrew Morton 已提交
2767
			goto out;
2768
		}
A
Andrew Morton 已提交
2769

L
Linus Torvalds 已提交
2770 2771 2772
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2773
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2787
			int testorder;
2788
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2789

2790
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2791 2792
				continue;

2793 2794
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2795 2796 2797
				continue;

			sc.nr_scanned = 0;
2798

2799
			nr_soft_scanned = 0;
2800 2801 2802
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2803 2804 2805 2806
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
2807

2808
			/*
2809 2810 2811 2812 2813 2814
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2815
			 */
2816
			balance_gap = min(low_wmark_pages(zone),
2817
				(zone->managed_pages +
2818 2819
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2820 2821 2822 2823 2824 2825 2826 2827
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
2828
			if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2829 2830 2831 2832
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2833
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2834
			    !zone_balanced(zone, testorder,
2835 2836
					   balance_gap, end_zone))
				kswapd_shrink_zone(zone, &sc, lru_pages);
2837

L
Linus Torvalds 已提交
2838
			/*
2839 2840
			 * If we're getting trouble reclaiming, start doing
			 * writepage even in laptop mode.
L
Linus Torvalds 已提交
2841
			 */
2842
			if (sc.priority < DEF_PRIORITY - 2)
L
Linus Torvalds 已提交
2843
				sc.may_writepage = 1;
2844

2845 2846 2847
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2848
				continue;
2849
			}
2850

2851
			if (zone_balanced(zone, testorder, 0, end_zone))
2852 2853 2854 2855 2856
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
2857
				 * speculatively avoid congestion waits
2858 2859
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2860
		}
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

2871 2872
		if (pgdat_balanced(pgdat, order, *classzone_idx)) {
			pgdat_is_balanced = true;
L
Linus Torvalds 已提交
2873
			break;		/* kswapd: all done */
2874 2875
		}

L
Linus Torvalds 已提交
2876 2877 2878 2879 2880 2881
		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2882
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2883
			break;
2884
	} while (--sc.priority >= 0);
2885

2886 2887
out:
	if (!pgdat_is_balanced) {
L
Linus Torvalds 已提交
2888
		cond_resched();
2889 2890 2891

		try_to_freeze();

2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2909 2910 2911
		goto loop_again;
	}

2912 2913 2914 2915 2916 2917 2918 2919 2920
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2921 2922
		int zones_need_compaction = 1;

2923 2924 2925 2926 2927 2928
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

2929 2930 2931 2932
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;
2933
		}
2934 2935 2936

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2937 2938
	}

2939
	/*
2940
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2941 2942 2943 2944
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2945
	*classzone_idx = end_zone;
2946
	return order;
L
Linus Torvalds 已提交
2947 2948
}

2949
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2960
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2961 2962 2963 2964 2965 2966 2967 2968 2969
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2970
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2982

2983 2984 2985 2986 2987 2988 2989 2990
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

2991 2992 2993
		if (!kthread_should_stop())
			schedule();

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3004 3005
/*
 * The background pageout daemon, started as a kernel thread
3006
 * from the init process.
L
Linus Torvalds 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3019
	unsigned long order, new_order;
3020
	unsigned balanced_order;
3021
	int classzone_idx, new_classzone_idx;
3022
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3023 3024
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3025

L
Linus Torvalds 已提交
3026 3027 3028
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3029
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3030

3031 3032
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3033
	if (!cpumask_empty(cpumask))
3034
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3049
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3050
	set_freezable();
L
Linus Torvalds 已提交
3051

3052
	order = new_order = 0;
3053
	balanced_order = 0;
3054
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3055
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3056
	for ( ; ; ) {
3057
		bool ret;
3058

3059 3060 3061 3062 3063
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3064 3065
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3066 3067 3068 3069 3070 3071
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3072
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3073 3074
			/*
			 * Don't sleep if someone wants a larger 'order'
3075
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3076 3077
			 */
			order = new_order;
3078
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3079
		} else {
3080 3081
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3082
			order = pgdat->kswapd_max_order;
3083
			classzone_idx = pgdat->classzone_idx;
3084 3085
			new_order = order;
			new_classzone_idx = classzone_idx;
3086
			pgdat->kswapd_max_order = 0;
3087
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3088 3089
		}

3090 3091 3092 3093 3094 3095 3096 3097
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3098 3099
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3100 3101 3102
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3103
		}
L
Linus Torvalds 已提交
3104
	}
3105 3106

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3107 3108 3109 3110 3111 3112
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3113
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3114 3115 3116
{
	pg_data_t *pgdat;

3117
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3118 3119
		return;

3120
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3121
		return;
3122
	pgdat = zone->zone_pgdat;
3123
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3124
		pgdat->kswapd_max_order = order;
3125 3126
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3127
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3128
		return;
3129 3130 3131 3132
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3133
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3134 3135
}

3136 3137 3138 3139 3140 3141 3142 3143
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3144
{
3145 3146 3147 3148 3149
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3150
	if (get_nr_swap_pages() > 0)
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

3164
	if (get_nr_swap_pages() > 0)
3165 3166 3167 3168
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3169 3170
}

3171
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3172
/*
3173
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3174 3175 3176 3177 3178
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3179
 */
3180
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3181
{
3182 3183
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3184 3185 3186
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3187
		.may_writepage = 1,
3188 3189 3190
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3191
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3192
	};
3193 3194 3195 3196
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3197 3198
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3199

3200 3201 3202 3203
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3204

3205
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3206

3207 3208 3209
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3210

3211
	return nr_reclaimed;
L
Linus Torvalds 已提交
3212
}
3213
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3214 3215 3216 3217 3218

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3219 3220
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3221
{
3222
	int nid;
L
Linus Torvalds 已提交
3223

3224
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3225
		for_each_node_state(nid, N_MEMORY) {
3226
			pg_data_t *pgdat = NODE_DATA(nid);
3227 3228 3229
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3230

3231
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3232
				/* One of our CPUs online: restore mask */
3233
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3234 3235 3236 3237 3238
		}
	}
	return NOTIFY_OK;
}

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3255 3256
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3257
		pgdat->kswapd = NULL;
3258 3259 3260 3261
	}
	return ret;
}

3262
/*
3263 3264
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3265 3266 3267 3268 3269
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3270
	if (kswapd) {
3271
		kthread_stop(kswapd);
3272 3273
		NODE_DATA(nid)->kswapd = NULL;
	}
3274 3275
}

L
Linus Torvalds 已提交
3276 3277
static int __init kswapd_init(void)
{
3278
	int nid;
3279

L
Linus Torvalds 已提交
3280
	swap_setup();
3281
	for_each_node_state(nid, N_MEMORY)
3282
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3283 3284 3285 3286 3287
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3298
#define RECLAIM_OFF 0
3299
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3300 3301 3302
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3303 3304 3305 3306 3307 3308 3309
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3310 3311 3312 3313 3314 3315
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3316 3317 3318 3319 3320 3321
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3364 3365 3366
/*
 * Try to free up some pages from this zone through reclaim.
 */
3367
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3368
{
3369
	/* Minimum pages needed in order to stay on node */
3370
	const unsigned long nr_pages = 1 << order;
3371 3372
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3373 3374
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3375
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3376
		.may_swap = 1,
3377
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3378
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3379
		.order = order,
3380
		.priority = ZONE_RECLAIM_PRIORITY,
3381
	};
3382 3383 3384
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3385
	unsigned long nr_slab_pages0, nr_slab_pages1;
3386 3387

	cond_resched();
3388 3389 3390 3391 3392 3393
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3394
	lockdep_set_current_reclaim_state(gfp_mask);
3395 3396
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3397

3398
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3399 3400 3401 3402 3403
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3404 3405
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3406
	}
3407

3408 3409
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3410
		/*
3411
		 * shrink_slab() does not currently allow us to determine how
3412 3413 3414 3415
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3416
		 *
3417 3418
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3419
		 */
3420 3421 3422 3423
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3424
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3425 3426 3427 3428 3429 3430 3431 3432
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3433 3434 3435 3436 3437

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3438 3439 3440
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3441 3442
	}

3443
	p->reclaim_state = NULL;
3444
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3445
	lockdep_clear_current_reclaim_state();
3446
	return sc.nr_reclaimed >= nr_pages;
3447
}
3448 3449 3450 3451

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3452
	int ret;
3453 3454

	/*
3455 3456
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3457
	 *
3458 3459 3460 3461 3462
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3463
	 */
3464 3465
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3466
		return ZONE_RECLAIM_FULL;
3467

3468
	if (zone->all_unreclaimable)
3469
		return ZONE_RECLAIM_FULL;
3470

3471
	/*
3472
	 * Do not scan if the allocation should not be delayed.
3473
	 */
3474
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3475
		return ZONE_RECLAIM_NOSCAN;
3476 3477 3478 3479 3480 3481 3482

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3483
	node_id = zone_to_nid(zone);
3484
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3485
		return ZONE_RECLAIM_NOSCAN;
3486 3487

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3488 3489
		return ZONE_RECLAIM_NOSCAN;

3490 3491 3492
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3493 3494 3495
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3496
	return ret;
3497
}
3498
#endif
L
Lee Schermerhorn 已提交
3499 3500 3501 3502 3503 3504

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3505
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3506 3507
 *
 * Reasons page might not be evictable:
3508
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3509
 * (2) page is part of an mlocked VMA
3510
 *
L
Lee Schermerhorn 已提交
3511
 */
3512
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3513
{
3514
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3515
}
3516

3517
#ifdef CONFIG_SHMEM
3518
/**
3519 3520 3521
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3522
 *
3523
 * Checks pages for evictability and moves them to the appropriate lru list.
3524 3525
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3526
 */
3527
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3528
{
3529
	struct lruvec *lruvec;
3530 3531 3532 3533
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3534

3535 3536 3537
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3538

3539 3540 3541 3542 3543 3544 3545 3546
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3547
		lruvec = mem_cgroup_page_lruvec(page, zone);
3548

3549 3550
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3551

3552
		if (page_evictable(page)) {
3553 3554 3555 3556
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3557 3558
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3559
			pgrescued++;
3560
		}
3561
	}
3562

3563 3564 3565 3566
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3567 3568
	}
}
3569
#endif /* CONFIG_SHMEM */
3570

3571
static void warn_scan_unevictable_pages(void)
3572
{
3573
	printk_once(KERN_WARNING
3574
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3575
		    "disabled for lack of a legitimate use case.  If you have "
3576 3577
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3578 3579 3580 3581 3582 3583 3584 3585 3586
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3587
			   void __user *buffer,
3588 3589
			   size_t *length, loff_t *ppos)
{
3590
	warn_scan_unevictable_pages();
3591
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3592 3593 3594 3595
	scan_unevictable_pages = 0;
	return 0;
}

3596
#ifdef CONFIG_NUMA
3597 3598 3599 3600 3601
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3602 3603
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3604 3605
					  char *buf)
{
3606
	warn_scan_unevictable_pages();
3607 3608 3609
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3610 3611
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3612 3613
					const char *buf, size_t count)
{
3614
	warn_scan_unevictable_pages();
3615 3616 3617 3618
	return 1;
}


3619
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3620 3621 3622 3623 3624
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3625
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3626 3627 3628 3629
}

void scan_unevictable_unregister_node(struct node *node)
{
3630
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3631
}
3632
#endif