helper.c 143.5 KB
Newer Older
B
bellard 已提交
1
#include "cpu.h"
2
#include "exec/gdbstub.h"
L
Lluís 已提交
3
#include "helper.h"
4
#include "qemu/host-utils.h"
5
#include "sysemu/arch_init.h"
6
#include "sysemu/sysemu.h"
7
#include "qemu/bitops.h"
P
Peter Maydell 已提交
8

9 10 11
#ifndef CONFIG_USER_ONLY
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
                                int access_type, int is_user,
A
Avi Kivity 已提交
12
                                hwaddr *phys_ptr, int *prot,
13 14 15
                                target_ulong *page_size);
#endif

16
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

43
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
63
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
64 65 66 67
    }
    return 0;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

110 111 112
static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
                    uint64_t *value)
{
113 114 115 116 117
    if (ri->type & ARM_CP_64BIT) {
        *value = CPREG_FIELD64(env, ri);
    } else {
        *value = CPREG_FIELD32(env, ri);
    }
118 119 120 121 122 123
    return 0;
}

static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                     uint64_t value)
{
124 125 126 127 128
    if (ri->type & ARM_CP_64BIT) {
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
129 130 131
    return 0;
}

132 133 134 135 136 137 138 139 140 141 142 143 144
static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t *v)
{
    /* Raw read of a coprocessor register (as needed for migration, etc)
     * return true on success, false if the read is impossible for some reason.
     */
    if (ri->type & ARM_CP_CONST) {
        *v = ri->resetvalue;
    } else if (ri->raw_readfn) {
        return (ri->raw_readfn(env, ri, v) == 0);
    } else if (ri->readfn) {
        return (ri->readfn(env, ri, v) == 0);
    } else {
145
        raw_read(env, ri, v);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    }
    return true;
}

static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
                             int64_t v)
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Return true on success, false if the write is impossible for some reason.
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
        return true;
    } else if (ri->raw_writefn) {
        return (ri->raw_writefn(env, ri, v) == 0);
    } else if (ri->writefn) {
        return (ri->writefn(env, ri, v) == 0);
    } else {
166
        raw_write(env, ri, v);
167 168 169 170 171 172 173 174 175 176 177 178 179 180
    }
    return true;
}

bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
        uint64_t v;
181
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
        if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
            ok = false;
            continue;
        }
        cpu->cpreg_values[i] = v;
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        uint64_t readback;
        const ARMCPRegInfo *ri;

209
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
        if (!write_raw_cp_reg(&cpu->env, ri, v) ||
            !read_raw_cp_reg(&cpu->env, ri, &readback) ||
            readback != v) {
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
237
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
253
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
254 255 256 257 258 259 260 261

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
262 263
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
264

265 266 267 268 269 270 271
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
272 273
}

274 275 276 277 278 279 280
static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
{
    GList **plist = udata;

    *plist = g_list_prepend(*plist, key);
}

281 282 283 284 285
void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
286
    GList *keys = NULL;
287 288
    int arraylen;

289 290
    g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

312 313 314 315 316 317 318
static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    env->cp15.c3 = value;
    tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
    return 0;
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    if (env->cp15.c13_fcse != value) {
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
        tlb_flush(env, 1);
        env->cp15.c13_fcse = value;
    }
    return 0;
}
static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
        tlb_flush(env, 1);
    }
    env->cp15.c13_context = value;
    return 0;
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    /* Invalidate all (TLBIALL) */
    tlb_flush(env, 1);
    return 0;
}

static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
    tlb_flush_page(env, value & TARGET_PAGE_MASK);
    return 0;
}

static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    /* Invalidate by ASID (TLBIASID) */
    tlb_flush(env, value == 0);
    return 0;
}

static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
    tlb_flush_page(env, value & TARGET_PAGE_MASK);
    return 0;
}

376 377 378 379 380 381 382
static const ARMCPRegInfo cp_reginfo[] = {
    /* DBGDIDR: just RAZ. In particular this means the "debug architecture
     * version" bits will read as a reserved value, which should cause
     * Linux to not try to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
383 384 385 386
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR", .cp = 15,
      .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
387
      .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
388 389
    { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
390
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
391
    { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
392
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context),
393
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
394 395 396 397 398
    /* ??? This covers not just the impdef TLB lockdown registers but also
     * some v7VMSA registers relating to TEX remap, so it is overly broad.
     */
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
399 400 401 402
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
403 404
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
      .type = ARM_CP_NO_MIGRATE },
405
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
406 407
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
      .type = ARM_CP_NO_MIGRATE },
408
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
409 410
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
      .type = ARM_CP_NO_MIGRATE },
411
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
412 413
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
      .type = ARM_CP_NO_MIGRATE },
414 415 416 417
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
418 419 420
    REGINFO_SENTINEL
};

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
436 437 438 439 440 441 442 443 444 445
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
446 447
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
448 449
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
450 451 452
    REGINFO_SENTINEL
};

453 454 455 456 457 458 459 460 461 462
static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    if (env->cp15.c1_coproc != value) {
        env->cp15.c1_coproc = value;
        /* ??? Is this safe when called from within a TB?  */
        tb_flush(env);
    }
    return 0;
}

463 464 465 466 467 468 469
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
470
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
471
      .access = PL0_W, .type = ARM_CP_NOP },
472
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
473
      .access = PL0_W, .type = ARM_CP_NOP },
474 475 476 477 478 479 480 481
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
482 483 484
    { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
      .resetvalue = 0, .writefn = cpacr_write },
485 486 487
    REGINFO_SENTINEL
};

488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t *value)
{
    /* Generic performance monitor register read function for where
     * user access may be allowed by PMUSERENR.
     */
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
        return EXCP_UDEF;
    }
    *value = CPREG_FIELD32(env, ri);
    return 0;
}

static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
{
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
        return EXCP_UDEF;
    }
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
    return 0;
}

static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
        return EXCP_UDEF;
    }
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
    return 0;
}

static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
        return EXCP_UDEF;
    }
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
    return 0;
}

static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
        return EXCP_UDEF;
    }
    env->cp15.c9_pmovsr &= ~value;
    return 0;
}

static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
        return EXCP_UDEF;
    }
    env->cp15.c9_pmxevtyper = value & 0xff;
    return 0;
}

static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
    return 0;
}

static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
    return 0;
}

static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
    return 0;
}

N
Nathan Rossi 已提交
580 581 582 583 584 585 586
static int vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
{
    env->cp15.c12_vbar = value & ~0x1Ful;
    return 0;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t *value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    *value = cpu->ccsidr[env->cp15.c0_cssel];
    return 0;
}

static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    env->cp15.c0_cssel = value & 0xf;
    return 0;
}

602 603 604 605 606 607
static const ARMCPRegInfo v7_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
     * debug components
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
608
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
609
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
610 611 612
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
613 614 615 616 617 618 619 620 621 622 623 624 625 626
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
627 628
      .readfn = pmreg_read, .writefn = pmcntenset_write,
      .raw_readfn = raw_read, .raw_writefn = raw_write },
629 630
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
631 632
      .readfn = pmreg_read, .writefn = pmcntenclr_write,
      .type = ARM_CP_NO_MIGRATE },
633 634
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
635 636
      .readfn = pmreg_read, .writefn = pmovsr_write,
      .raw_readfn = raw_read, .raw_writefn = raw_write },
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
     * respect PMUSERENR.
     */
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
     * We choose to RAZ/WI. XXX should respect PMUSERENR.
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    /* Unimplemented, RAZ/WI. XXX PMUSERENR */
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
653 654
      .readfn = pmreg_read, .writefn = pmxevtyper_write,
      .raw_readfn = raw_read, .raw_writefn = raw_write },
655 656 657 658 659 660 661
    /* Unimplemented, RAZ/WI. XXX PMUSERENR */
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
662
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
663 664 665 666
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
667
      .writefn = pmintenset_write, .raw_writefn = raw_write },
668
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
669
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
670
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
671
      .resetvalue = 0, .writefn = pmintenclr_write, },
N
Nathan Rossi 已提交
672 673 674 675
    { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
      .resetvalue = 0 },
676 677 678
    { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
      .resetvalue = 0, },
679
    { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
680
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
681 682 683 684 685 686 687 688
    { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
      .writefn = csselr_write, .resetvalue = 0 },
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
    { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
689 690 691
    REGINFO_SENTINEL
};

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    value &= 1;
    env->teecr = value;
    return 0;
}

static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t *value)
{
    /* This is a helper function because the user access rights
     * depend on the value of the TEECR.
     */
    if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
        return EXCP_UDEF;
    }
    *value = env->teehbr;
    return 0;
}

static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
        return EXCP_UDEF;
    }
    env->teehbr = value;
    return 0;
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
729
      .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
730 731 732 733
      .readfn = teehbr_read, .writefn = teehbr_write },
    REGINFO_SENTINEL
};

734
static const ARMCPRegInfo v6k_cp_reginfo[] = {
735 736 737 738
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
739 740
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
741 742 743 744 745 746
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
747 748
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
749 750 751 752
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
753
      .access = PL1_RW,
754
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
755 756 757
    REGINFO_SENTINEL
};

758 759 760 761
#ifndef CONFIG_USER_ONLY

static uint64_t gt_get_countervalue(CPUARMState *env)
{
762
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
        int istatus = count >= gt->cval;
        uint64_t nexttick;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (istatus && !(gt->ctl & 2)));
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
            nexttick = gt->cval;
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
796
        timer_mod(cpu->gt_timer[timeridx], nexttick);
797 798 799 800
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
801
        timer_del(cpu->gt_timer[timeridx]);
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    }
}

static int gt_cntfrq_read(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t *value)
{
    /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
    if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
        return EXCP_UDEF;
    }
    *value = env->cp15.c14_cntfrq;
    return 0;
}

static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->opc1 & 1;

821
    timer_del(cpu->gt_timer[timeridx]);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
}

static int gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t *value)
{
    int timeridx = ri->opc1 & 1;

    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return EXCP_UDEF;
    }
    *value = gt_get_countervalue(env);
    return 0;
}

static int gt_cval_read(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t *value)
{
    int timeridx = ri->opc1 & 1;

    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return EXCP_UDEF;
    }
    *value = env->cp15.c14_timer[timeridx].cval;
    return 0;
}

static int gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    int timeridx = ri->opc1 & 1;

    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
    return 0;
}
static int gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t *value)
{
    int timeridx = ri->crm & 1;

    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return EXCP_UDEF;
    }
    *value = (uint32_t)(env->cp15.c14_timer[timeridx].cval -
                        gt_get_countervalue(env));
    return 0;
}

static int gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    int timeridx = ri->crm & 1;

    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
        + sextract64(value, 0, 32);
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
    return 0;
}

static int gt_ctl_read(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t *value)
{
    int timeridx = ri->crm & 1;

    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return EXCP_UDEF;
    }
    *value = env->cp15.c14_timer[timeridx].ctl;
    return 0;
}

static int gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->crm & 1;
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

    env->cp15.c14_timer[timeridx].ctl = value & 3;
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
    } else if ((oldval & value) & 2) {
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (oldval & 4) && (value & 2));
    }
    return 0;
}

void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
      .readfn = gt_cntfrq_read, .raw_readfn = raw_read,
    },
    /* overall control: mostly access permissions */
    { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
      .readfn = gt_ctl_read, .writefn = gt_ctl_write,
      .raw_readfn = raw_read, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
      .readfn = gt_ctl_read, .writefn = gt_ctl_write,
      .raw_readfn = raw_read, .raw_writefn = raw_write,
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_64BIT | ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
      .resetvalue = 0,
      .readfn = gt_cval_read, .writefn = gt_cval_write,
      .raw_readfn = raw_read, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_64BIT | ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0,
      .readfn = gt_cval_read, .writefn = gt_cval_write,
      .raw_readfn = raw_read, .raw_writefn = raw_write,
    },
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
1004
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1005 1006
 * so instead just don't register any of them.
 */
1007 1008 1009 1010
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

1011 1012
#endif

1013 1014
static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
1015 1016 1017
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        env->cp15.c7_par = value;
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
1018 1019 1020 1021 1022 1023 1024 1025 1026
        env->cp15.c7_par = value & 0xfffff6ff;
    } else {
        env->cp15.c7_par = value & 0xfffff1ff;
    }
    return 0;
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
1027 1028 1029 1030 1031 1032 1033 1034

/* Return true if extended addresses are enabled, ie this is an
 * LPAE implementation and we are using the long-descriptor translation
 * table format because the TTBCR EAE bit is set.
 */
static inline bool extended_addresses_enabled(CPUARMState *env)
{
    return arm_feature(env, ARM_FEATURE_LPAE)
1035
        && (env->cp15.c2_control & (1U << 31));
1036 1037
}

1038 1039
static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
A
Avi Kivity 已提交
1040
    hwaddr phys_addr;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    target_ulong page_size;
    int prot;
    int ret, is_user = ri->opc2 & 2;
    int access_type = ri->opc2 & 1;

    if (ri->opc2 & 4) {
        /* Other states are only available with TrustZone */
        return EXCP_UDEF;
    }
    ret = get_phys_addr(env, value, access_type, is_user,
                        &phys_addr, &prot, &page_size);
1052 1053 1054 1055 1056 1057 1058 1059 1060
    if (extended_addresses_enabled(env)) {
        /* ret is a DFSR/IFSR value for the long descriptor
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
        uint64_t par64 = (1 << 11); /* LPAE bit always set */
        if (ret == 0) {
            par64 |= phys_addr & ~0xfffULL;
            /* We don't set the ATTR or SH fields in the PAR. */
1061
        } else {
1062 1063 1064 1065 1066 1067
            par64 |= 1; /* F */
            par64 |= (ret & 0x3f) << 1; /* FS */
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
1068
        }
1069 1070
        env->cp15.c7_par = par64;
        env->cp15.c7_par_hi = par64 >> 32;
1071
    } else {
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
        /* ret is a DFSR/IFSR value for the short descriptor
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
        if (ret == 0) {
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
                env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
            } else {
                env->cp15.c7_par = phys_addr & 0xfffff000;
            }
        } else {
            env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
                ((ret & (12 << 1)) >> 6) |
                ((ret & 0xf) << 1) | 1;
        }
        env->cp15.c7_par_hi = 0;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    }
    return 0;
}
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1102
      .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1103 1104 1105 1106
#endif
    REGINFO_SENTINEL
};

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    env->cp15.c5_data = extended_mpu_ap_bits(value);
    return 0;
}

static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t *value)
{
    *value = simple_mpu_ap_bits(env->cp15.c5_data);
    return 0;
}

static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    env->cp15.c5_insn = extended_mpu_ap_bits(value);
    return 0;
}

static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t *value)
{
    *value = simple_mpu_ap_bits(env->cp15.c5_insn);
    return 0;
}

1165 1166 1167
static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t *value)
{
1168
    if (ri->crm >= 8) {
1169 1170 1171 1172 1173 1174 1175 1176 1177
        return EXCP_UDEF;
    }
    *value = env->cp15.c6_region[ri->crm];
    return 0;
}

static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
1178
    if (ri->crm >= 8) {
1179 1180 1181 1182 1183 1184
        return EXCP_UDEF;
    }
    env->cp15.c6_region[ri->crm] = value;
    return 0;
}

1185 1186
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1187
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1188 1189 1190
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1191
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1192 1193 1194 1195 1196 1197 1198 1199
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1200 1201 1202 1203 1204 1205
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1206 1207 1208 1209
    /* Protection region base and size registers */
    { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW,
      .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
1210 1211 1212
    REGINFO_SENTINEL
};

1213 1214
static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1215
{
1216 1217
    int maskshift = extract32(value, 0, 3);

1218
    if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1219 1220 1221 1222 1223 1224 1225 1226 1227
        value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
    } else {
        value &= 7;
    }
    /* Note that we always calculate c2_mask and c2_base_mask, but
     * they are only used for short-descriptor tables (ie if EAE is 0);
     * for long-descriptor tables the TTBCR fields are used differently
     * and the c2_mask and c2_base_mask values are meaningless.
     */
1228
    env->cp15.c2_control = value;
1229 1230
    env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1231 1232 1233
    return 0;
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
        tlb_flush(env, 1);
    }
    return vmsa_ttbcr_raw_write(env, ri, value);
}

1246 1247 1248 1249 1250 1251 1252
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c2_base_mask = 0xffffc000u;
    env->cp15.c2_control = 0;
    env->cp15.c2_mask = 0;
}

1253 1254 1255 1256 1257 1258 1259
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1260 1261 1262 1263 1264
    { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
    { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
1265
      .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
1266 1267
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_ttbcr_write,
1268
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
1269
      .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1270 1271 1272
    { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
      .resetvalue = 0, },
1273 1274 1275
    REGINFO_SENTINEL
};

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
    return 0;
}

static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    env->cp15.c15_threadid = value & 0xffff;
    return 0;
}

static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    /* Wait-for-interrupt (deprecated) */
1297
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1298 1299 1300
    return 0;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
    return 0;
}

1312 1313 1314 1315
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1334
      .type = ARM_CP_NO_MIGRATE,
1335 1336 1337 1338 1339 1340
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
1341
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1342 1343
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1344
      .writefn = omap_cachemaint_write },
1345 1346 1347
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    REGINFO_SENTINEL
};

static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    value &= 0x3fff;
    if (env->cp15.c15_cpar != value) {
        /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
        tb_flush(env);
        env->cp15.c15_cpar = value;
    }
    return 0;
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
1368 1369 1370 1371
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1383 1384
      .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1385
      .resetvalue = 0 },
1386 1387 1388
    REGINFO_SENTINEL
};

1389 1390 1391
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1392 1393
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1394 1395 1396 1397 1398 1399
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1400 1401
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1415 1416 1417 1418 1419 1420 1421 1422
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1423 1424
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1425
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1426 1427
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1428 1429 1430
    REGINFO_SENTINEL
};

1431 1432 1433 1434
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1435 1436
      .access = PL1_RW, .resetvalue = 0,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1437 1438 1439
    REGINFO_SENTINEL
};

P
Peter Maydell 已提交
1440 1441 1442
static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t *value)
{
1443 1444
    CPUState *cs = CPU(arm_env_get_cpu(env));
    uint32_t mpidr = cs->cpu_index;
P
Peter Maydell 已提交
1445 1446 1447 1448
    /* We don't support setting cluster ID ([8..11])
     * so these bits always RAZ.
     */
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
1449
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
         * bit 30. (For instance, A9UP.) However we do
         * not currently model any of those cores.
         */
    }
    *value = mpidr;
    return 0;
}

static const ARMCPRegInfo mpidr_cp_reginfo[] = {
    { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1462
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
P
Peter Maydell 已提交
1463 1464 1465
    REGINFO_SENTINEL
};

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
{
    *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
    return 0;
}

static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    env->cp15.c7_par_hi = value >> 32;
    env->cp15.c7_par = value;
    return 0;
}

static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c7_par_hi = 0;
    env->cp15.c7_par = 0;
}

static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t *value)
{
    *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
    return 0;
}

1492 1493
static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1494 1495 1496
{
    env->cp15.c2_base0_hi = value >> 32;
    env->cp15.c2_base0 = value;
1497 1498 1499 1500 1501 1502
    return 0;
}

static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
1503 1504
    /* Writes to the 64 bit format TTBRs may change the ASID */
    tlb_flush(env, 1);
1505
    return ttbr064_raw_write(env, ri, value);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
}

static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c2_base0_hi = 0;
    env->cp15.c2_base0 = 0;
}

static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t *value)
{
    *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
    return 0;
}

static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    env->cp15.c2_base1_hi = value >> 32;
    env->cp15.c2_base1 = value;
    return 0;
}

static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c2_base1_hi = 0;
    env->cp15.c2_base1 = 0;
}

1535
static const ARMCPRegInfo lpae_cp_reginfo[] = {
1536
    /* NOP AMAIR0/1: the override is because these clash with the rather
1537 1538 1539 1540 1541 1542 1543 1544
     * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
     */
    { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
1545 1546 1547 1548 1549
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1550 1551 1552 1553 1554
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
      .access = PL1_RW, .type = ARM_CP_64BIT,
      .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
      .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1555 1556
      .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
      .resetfn = ttbr064_reset },
1557 1558 1559
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
      .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
      .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1560 1561 1562
    REGINFO_SENTINEL
};

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static int aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t *value)
{
    *value = vfp_get_fpcr(env);
    return 0;
}

static int aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    vfp_set_fpcr(env, value);
    return 0;
}

static int aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t *value)
{
    *value = vfp_get_fpsr(env);
    return 0;
}

static int aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    vfp_set_fpsr(env, value);
    return 0;
}

static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    /* This claims a 32 byte cacheline size for icache and dcache, VIPT icache.
     * It will eventually need to have a CPU-specified reset value.
     */
    { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
      .access = PL0_R, .type = ARM_CP_CONST,
      .resetvalue = 0x80030003 },
    /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
     * For system mode the DZP bit here will need to be computed, not constant.
     */
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
      .access = PL0_R, .type = ARM_CP_CONST,
      .resetvalue = 0x10 },
    REGINFO_SENTINEL
};

1621 1622 1623 1624 1625 1626 1627 1628 1629
static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    env->cp15.c1_sys = value;
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
    tlb_flush(env, 1);
    return 0;
}

1630 1631 1632 1633 1634 1635 1636 1637 1638
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

1639
    define_arm_cp_regs(cpu, cp_reginfo);
1640
    if (arm_feature(env, ARM_FEATURE_V6)) {
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
            { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_pfr0 },
            { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_pfr1 },
            { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_dfr0 },
            { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_afr0 },
            { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr0 },
            { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr1 },
            { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr2 },
            { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr3 },
            { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar0 },
            { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar1 },
            { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar2 },
            { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar3 },
            { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar4 },
            { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar5 },
            /* 6..7 are as yet unallocated and must RAZ */
            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
1695 1696 1697 1698
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
1699 1700 1701
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
1702
    if (arm_feature(env, ARM_FEATURE_V7)) {
1703 1704 1705 1706 1707 1708 1709
        /* v7 performance monitor control register: same implementor
         * field as main ID register, and we implement no event counters.
         */
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
            .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1710 1711
            .readfn = pmreg_read, .writefn = pmcr_write,
            .raw_readfn = raw_read, .raw_writefn = raw_write,
1712
        };
1713 1714 1715 1716
        ARMCPRegInfo clidr = {
            .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
1717
        define_one_arm_cp_reg(cpu, &pmcr);
1718
        define_one_arm_cp_reg(cpu, &clidr);
1719
        define_arm_cp_regs(cpu, v7_cp_reginfo);
1720 1721
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1722
    }
1723 1724 1725
    if (arm_feature(env, ARM_FEATURE_V8)) {
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
    if (arm_feature(env, ARM_FEATURE_MPU)) {
        /* These are the MPU registers prior to PMSAv6. Any new
         * PMSA core later than the ARM946 will require that we
         * implement the PMSAv6 or PMSAv7 registers, which are
         * completely different.
         */
        assert(!arm_feature(env, ARM_FEATURE_V6));
        define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
1737 1738 1739
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
1740 1741 1742
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
1743 1744 1745
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
1746 1747 1748 1749 1750 1751 1752 1753 1754
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
1755 1756 1757
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
1758 1759 1760
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
1761 1762 1763 1764 1765 1766
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
1767 1768 1769
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
1770 1771 1772 1773 1774 1775 1776 1777 1778
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
        ARMCPRegInfo id_cp_reginfo[] = {
            /* Note that the MIDR isn't a simple constant register because
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
1779 1780 1781 1782
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
1783 1784
             */
            { .name = "MIDR",
1785
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1786
              .access = PL1_R, .resetvalue = cpu->midr,
1787
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1788 1789
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
1826 1827 1828
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
1829 1830 1831 1832 1833 1834
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
        }
1835
        define_arm_cp_regs(cpu, id_cp_reginfo);
1836 1837
    }

1838 1839 1840 1841
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

1842 1843 1844 1845 1846 1847 1848 1849 1850
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
        ARMCPRegInfo auxcr = {
            .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
            .access = PL1_RW, .type = ARM_CP_CONST,
            .resetvalue = cpu->reset_auxcr
        };
        define_one_arm_cp_reg(cpu, &auxcr);
    }

1851 1852 1853 1854 1855 1856 1857 1858 1859
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
        ARMCPRegInfo cbar = {
            .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
            .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
            .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
        };
        define_one_arm_cp_reg(cpu, &cbar);
    }

1860 1861 1862 1863 1864
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
            .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
            .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1865 1866
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
1877 1878
}

1879
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
1880
{
1881
    ARMCPU *cpu;
1882
    ObjectClass *oc;
P
pbrook 已提交
1883

1884 1885
    oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
    if (!oc) {
B
bellard 已提交
1886
        return NULL;
1887
    }
1888
    cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1889 1890 1891

    /* TODO this should be set centrally, once possible */
    object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1892

1893 1894 1895 1896 1897
    return cpu;
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
1898
    CPUState *cs = CPU(cpu);
1899 1900
    CPUARMState *env = &cpu->env;

1901 1902 1903 1904 1905
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
1906
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
1907 1908
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1909
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
1910 1911
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1912
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
1913 1914
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
1915 1916
}

1917 1918
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
1919
{
1920 1921 1922
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
1923

1924 1925
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
1926
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1927
        return 1;
A
Andreas Färber 已提交
1928
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1929 1930 1931
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
1932 1933 1934
    }
}

1935
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
1936
{
1937
    ObjectClass *oc = data;
1938
    CPUListState *s = user_data;
A
Andreas Färber 已提交
1939 1940
    const char *typename;
    char *name;
P
pbrook 已提交
1941

A
Andreas Färber 已提交
1942 1943
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1944
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
1945 1946
                      name);
    g_free(name);
1947 1948 1949 1950
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
1951
    CPUListState s = {
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
1962 1963 1964 1965 1966 1967
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
1968 1969
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

2001
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2002 2003
                                   void *opaque, int state,
                                   int crm, int opc1, int opc2)
2004 2005 2006 2007 2008 2009 2010
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
    if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
        /* The AArch32 view of a shared register sees the lower 32 bits
         * of a 64 bit backing field. It is not migratable as the AArch64
         * view handles that. AArch64 also handles reset.
         * We assume it is a cp15 register.
         */
        r2->cp = 15;
        r2->type |= ARM_CP_NO_MIGRATE;
        r2->resetfn = arm_cp_reset_ignore;
#ifdef HOST_WORDS_BIGENDIAN
        if (r2->fieldoffset) {
            r2->fieldoffset += sizeof(uint32_t);
        }
#endif
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
         */
        if (r->cp == 0) {
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
        *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
    }
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
    if (opaque) {
        r2->opaque = opaque;
    }
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
     * NO_MIGRATE so we don't try to transfer the register
     * multiple times. Special registers (ie NOP/WFI) are
     * never migratable.
     */
    if ((r->type & ARM_CP_SPECIAL) ||
        ((r->crm == CP_ANY) && crm != 0) ||
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
        r2->type |= ARM_CP_NO_MIGRATE;
    }

    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
2105
     */
2106
    int crm, opc1, opc2, state;
2107 2108 2109 2110 2111 2112 2113 2114
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
            assert(r->fieldoffset || r->readfn);
        }
        if (r->access & PL3_W) {
            assert(r->fieldoffset || r->writefn);
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2177 2178 2179 2180 2181 2182 2183 2184
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
                    add_cpreg_to_hashtable(cpu, r, opaque, state,
                                           crm, opc1, opc2);
                }
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

2200
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2201
{
2202
    return g_hash_table_lookup(cpregs, &encoded_cp);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
}

int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    /* Helper coprocessor write function for write-ignore registers */
    return 0;
}

int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
{
    /* Helper coprocessor write function for read-as-zero registers */
    *value = 0;
    return 0;
}

2219 2220 2221 2222 2223
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

2224
static int bad_mode_switch(CPUARMState *env, int mode)
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        return 0;
    default:
        return 1;
    }
}

2244 2245 2246
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
2247 2248
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2249 2250 2251 2252 2253 2254 2255 2256 2257
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
        | (env->GE << 16);
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
2258 2259
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2280 2281 2282 2283 2284 2285 2286 2287 2288
        if (bad_mode_switch(env, val & CPSR_M)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
             * We choose to ignore the attempt and leave the CPSR M field
             * untouched.
             */
            mask &= ~CPSR_M;
        } else {
            switch_mode(env, val & CPSR_M);
        }
2289 2290 2291 2292 2293
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
2311 2312
uint32_t HELPER(clz)(uint32_t x)
{
2313
    return clz32(x);
P
pbrook 已提交
2314 2315
}

P
pbrook 已提交
2316 2317 2318 2319
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
2320 2321
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    x =  ((x & 0xff000000) >> 24)
       | ((x & 0x00ff0000) >> 8)
       | ((x & 0x0000ff00) << 8)
       | ((x & 0x000000ff) << 24);
    x =  ((x & 0xf0f0f0f0) >> 4)
       | ((x & 0x0f0f0f0f) << 4);
    x =  ((x & 0x88888888) >> 3)
       | ((x & 0x44444444) >> 1)
       | ((x & 0x22222222) << 1)
       | ((x & 0x11111111) << 3);
    return x;
}

2347
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
2348

2349
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
2350
{
2351 2352 2353
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

B
bellard 已提交
2354 2355 2356
    env->exception_index = -1;
}

2357
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
2358
                              int mmu_idx)
B
bellard 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
{
    if (rw == 2) {
        env->exception_index = EXCP_PREFETCH_ABORT;
        env->cp15.c6_insn = address;
    } else {
        env->exception_index = EXCP_DATA_ABORT;
        env->cp15.c6_data = address;
    }
    return 1;
}

P
pbrook 已提交
2370
/* These should probably raise undefined insn exceptions.  */
2371
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
2372 2373 2374 2375
{
    cpu_abort(env, "v7m_mrs %d\n", reg);
}

2376
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
2377 2378 2379 2380 2381
{
    cpu_abort(env, "v7m_mrs %d\n", reg);
    return 0;
}

2382
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
2383 2384 2385 2386 2387
{
    if (mode != ARM_CPU_MODE_USR)
        cpu_abort(env, "Tried to switch out of user mode\n");
}

2388
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
2389 2390 2391 2392
{
    cpu_abort(env, "banked r13 write\n");
}

2393
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
2394 2395 2396 2397 2398
{
    cpu_abort(env, "banked r13 read\n");
    return 0;
}

B
bellard 已提交
2399 2400 2401
#else

/* Map CPU modes onto saved register banks.  */
2402
int bank_number(int mode)
B
bellard 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
{
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
        return 0;
    case ARM_CPU_MODE_SVC:
        return 1;
    case ARM_CPU_MODE_ABT:
        return 2;
    case ARM_CPU_MODE_UND:
        return 3;
    case ARM_CPU_MODE_IRQ:
        return 4;
    case ARM_CPU_MODE_FIQ:
        return 5;
    }
2419
    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
B
bellard 已提交
2420 2421
}

2422
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
2433
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
2434 2435
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
2436
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
2437 2438
    }

2439
    i = bank_number(old_mode);
B
bellard 已提交
2440 2441 2442 2443
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

2444
    i = bank_number(mode);
B
bellard 已提交
2445 2446 2447 2448 2449
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

P
pbrook 已提交
2450 2451 2452 2453 2454 2455 2456 2457
static void v7m_push(CPUARMState *env, uint32_t val)
{
    env->regs[13] -= 4;
    stl_phys(env->regs[13], val);
}

static uint32_t v7m_pop(CPUARMState *env)
{
2458
    CPUState *cs = ENV_GET_CPU(env);
P
pbrook 已提交
2459
    uint32_t val;
2460
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
static void switch_v7m_sp(CPUARMState *env, int process)
{
    uint32_t tmp;
    if (env->v7m.current_sp != process) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
        env->v7m.current_sp = process;
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
    if (env->v7m.exception != 0)
P
Paul Brook 已提交
2484
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
P
pbrook 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
/* Exception names for debug logging; note that not all of these
 * precisely correspond to architectural exceptions.
 */
static const char * const excnames[] = {
    [EXCP_UDEF] = "Undefined Instruction",
    [EXCP_SWI] = "SVC",
    [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
    [EXCP_DATA_ABORT] = "Data Abort",
    [EXCP_IRQ] = "IRQ",
    [EXCP_FIQ] = "FIQ",
    [EXCP_BKPT] = "Breakpoint",
    [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
    [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
    [EXCP_STREX] = "QEMU intercept of STREX",
};

static inline void arm_log_exception(int idx)
{
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        const char *exc = NULL;

        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
            exc = excnames[idx];
        }
        if (!exc) {
            exc = "unknown";
        }
        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
    }
}

2539
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
2540
{
2541 2542
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
2543 2544 2545 2546
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

2547 2548
    arm_log_exception(env->exception_index);

P
pbrook 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
    lr = 0xfffffff1;
    if (env->v7m.current_sp)
        lr |= 4;
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
    switch (env->exception_index) {
    case EXCP_UDEF:
P
Paul Brook 已提交
2561
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
P
pbrook 已提交
2562 2563
        return;
    case EXCP_SWI:
2564
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
2565
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
P
pbrook 已提交
2566 2567 2568
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
P
Paul Brook 已提交
2569
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
P
pbrook 已提交
2570 2571
        return;
    case EXCP_BKPT:
P
pbrook 已提交
2572 2573
        if (semihosting_enabled) {
            int nr;
2574
            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
2575 2576 2577
            if (nr == 0xab) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
2578
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
2579 2580 2581
                return;
            }
        }
P
Paul Brook 已提交
2582
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
P
pbrook 已提交
2583 2584
        return;
    case EXCP_IRQ:
P
Paul Brook 已提交
2585
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
P
pbrook 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
        return; /* Never happens.  Keep compiler happy.  */
    }

    /* Align stack pointer.  */
    /* ??? Should only do this if Configuration Control Register
       STACKALIGN bit is set.  */
    if (env->regs[13] & 4) {
P
pbrook 已提交
2599
        env->regs[13] -= 4;
P
pbrook 已提交
2600 2601
        xpsr |= 0x200;
    }
B
balrog 已提交
2602
    /* Switch to the handler mode.  */
P
pbrook 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
2612 2613
    /* Clear IT bits */
    env->condexec_bits = 0;
P
pbrook 已提交
2614
    env->regs[14] = lr;
2615
    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
P
pbrook 已提交
2616 2617 2618 2619
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

B
bellard 已提交
2620
/* Handle a CPU exception.  */
2621
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
2622
{
2623 2624
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
2625 2626 2627 2628 2629
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;

2630 2631
    assert(!IS_M(env));

2632 2633
    arm_log_exception(env->exception_index);

B
bellard 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
    /* TODO: Vectored interrupt controller.  */
    switch (env->exception_index) {
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
2646 2647 2648
        if (semihosting_enabled) {
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
2649 2650
                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
                    & 0xff;
2651
            } else {
2652
                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
P
Paul Brook 已提交
2653
                    & 0xffffff;
2654 2655 2656 2657 2658 2659 2660
            }
            /* Only intercept calls from privileged modes, to provide some
               semblance of security.  */
            if (((mask == 0x123456 && !env->thumb)
                    || (mask == 0xab && env->thumb))
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[0] = do_arm_semihosting(env);
2661
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2662 2663 2664
                return;
            }
        }
B
bellard 已提交
2665 2666 2667
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
2668
        /* The PC already points to the next instruction.  */
B
bellard 已提交
2669 2670
        offset = 0;
        break;
P
pbrook 已提交
2671
    case EXCP_BKPT:
P
pbrook 已提交
2672
        /* See if this is a semihosting syscall.  */
P
pbrook 已提交
2673
        if (env->thumb && semihosting_enabled) {
2674
            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
2675 2676 2677 2678
            if (mask == 0xab
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
2679
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
2680 2681 2682
                return;
            }
        }
2683
        env->cp15.c5_insn = 2;
P
pbrook 已提交
2684 2685
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
2686 2687
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
                      env->cp15.c5_insn, env->cp15.c6_insn);
B
bellard 已提交
2688 2689 2690 2691 2692 2693
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
2694 2695
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
                      env->cp15.c5_data, env->cp15.c6_data);
B
bellard 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 4;
        break;
    default:
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
        return; /* Never happens.  Keep compiler happy.  */
    }
    /* High vectors.  */
    if (env->cp15.c1_sys & (1 << 13)) {
N
Nathan Rossi 已提交
2721
        /* when enabled, base address cannot be remapped.  */
B
bellard 已提交
2722
        addr += 0xffff0000;
N
Nathan Rossi 已提交
2723 2724 2725 2726 2727 2728 2729 2730 2731
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
         * This register is only followed in non-monitor mode, and has a secure
         * and un-secure copy. Since the cpu is always in a un-secure operation
         * and is never in monitor mode this feature is always active.
         * Note: only bits 31:5 are valid.
         */
        addr += env->cp15.c12_vbar;
B
bellard 已提交
2732 2733 2734
    }
    switch_mode (env, new_mode);
    env->spsr = cpsr_read(env);
P
pbrook 已提交
2735 2736
    /* Clear IT bits.  */
    env->condexec_bits = 0;
2737
    /* Switch to the new mode, and to the correct instruction set.  */
2738
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
B
bellard 已提交
2739
    env->uncached_cpsr |= mask;
2740 2741 2742 2743 2744
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
        env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
    }
B
bellard 已提交
2745 2746
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
2747
    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
B
bellard 已提交
2748 2749 2750 2751 2752
}

/* Check section/page access permissions.
   Returns the page protection flags, or zero if the access is not
   permitted.  */
2753
static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2754
                           int access_type, int is_user)
B
bellard 已提交
2755
{
P
pbrook 已提交
2756 2757
  int prot_ro;

2758
  if (domain_prot == 3) {
B
bellard 已提交
2759
    return PAGE_READ | PAGE_WRITE;
2760
  }
B
bellard 已提交
2761

P
pbrook 已提交
2762 2763 2764 2765 2766
  if (access_type == 1)
      prot_ro = 0;
  else
      prot_ro = PAGE_READ;

B
bellard 已提交
2767 2768
  switch (ap) {
  case 0:
P
pbrook 已提交
2769
      if (access_type == 1)
B
bellard 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
          return 0;
      switch ((env->cp15.c1_sys >> 8) & 3) {
      case 1:
          return is_user ? 0 : PAGE_READ;
      case 2:
          return PAGE_READ;
      default:
          return 0;
      }
  case 1:
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
  case 2:
      if (is_user)
P
pbrook 已提交
2783
          return prot_ro;
B
bellard 已提交
2784 2785 2786 2787
      else
          return PAGE_READ | PAGE_WRITE;
  case 3:
      return PAGE_READ | PAGE_WRITE;
P
pbrook 已提交
2788
  case 4: /* Reserved.  */
P
pbrook 已提交
2789 2790 2791 2792 2793
      return 0;
  case 5:
      return is_user ? 0 : prot_ro;
  case 6:
      return prot_ro;
P
pbrook 已提交
2794
  case 7:
2795
      if (!arm_feature (env, ARM_FEATURE_V6K))
P
pbrook 已提交
2796 2797
          return 0;
      return prot_ro;
B
bellard 已提交
2798 2799 2800 2801 2802
  default:
      abort();
  }
}

2803
static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
{
    uint32_t table;

    if (address & env->cp15.c2_mask)
        table = env->cp15.c2_base1 & 0xffffc000;
    else
        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;

    table |= (address >> 18) & 0x3ffc;
    return table;
}

2816
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
2817
                            int is_user, hwaddr *phys_ptr,
2818
                            int *prot, target_ulong *page_size)
B
bellard 已提交
2819
{
2820
    CPUState *cs = ENV_GET_CPU(env);
B
bellard 已提交
2821 2822 2823 2824 2825 2826
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
    int domain;
2827
    int domain_prot;
A
Avi Kivity 已提交
2828
    hwaddr phys_addr;
B
bellard 已提交
2829

P
pbrook 已提交
2830 2831
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
2832
    table = get_level1_table_address(env, address);
2833
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
2834
    type = (desc & 3);
2835 2836
    domain = (desc >> 5) & 0x0f;
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
P
pbrook 已提交
2837
    if (type == 0) {
2838
        /* Section translation fault.  */
P
pbrook 已提交
2839 2840 2841
        code = 5;
        goto do_fault;
    }
2842
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
2854
        *page_size = 1024 * 1024;
P
pbrook 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863
    } else {
        /* Lookup l2 entry.  */
	if (type == 1) {
	    /* Coarse pagetable.  */
	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
	} else {
	    /* Fine pagetable.  */
	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
	}
2864
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
2865 2866 2867 2868 2869 2870 2871
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
2872
            *page_size = 0x10000;
P
pbrook 已提交
2873
            break;
P
pbrook 已提交
2874 2875 2876
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
2877
            *page_size = 0x1000;
P
pbrook 已提交
2878
            break;
P
pbrook 已提交
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
        case 3: /* 1k page.  */
	    if (type == 1) {
		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
		} else {
		    /* Page translation fault.  */
		    code = 7;
		    goto do_fault;
		}
	    } else {
		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
	    }
            ap = (desc >> 4) & 3;
P
Paul Brook 已提交
2892
            *page_size = 0x400;
P
pbrook 已提交
2893 2894
            break;
        default:
P
pbrook 已提交
2895 2896
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
2897
        }
P
pbrook 已提交
2898 2899
        code = 15;
    }
2900
    *prot = check_ap(env, ap, domain_prot, access_type, is_user);
P
pbrook 已提交
2901 2902 2903 2904
    if (!*prot) {
        /* Access permission fault.  */
        goto do_fault;
    }
2905
    *prot |= PAGE_EXEC;
P
pbrook 已提交
2906 2907 2908 2909 2910 2911
    *phys_ptr = phys_addr;
    return 0;
do_fault:
    return code | (domain << 4);
}

2912
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
2913
                            int is_user, hwaddr *phys_ptr,
2914
                            int *prot, target_ulong *page_size)
P
pbrook 已提交
2915
{
2916
    CPUState *cs = ENV_GET_CPU(env);
P
pbrook 已提交
2917 2918 2919 2920
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
2921
    uint32_t pxn = 0;
P
pbrook 已提交
2922 2923
    int type;
    int ap;
2924
    int domain = 0;
2925
    int domain_prot;
A
Avi Kivity 已提交
2926
    hwaddr phys_addr;
P
pbrook 已提交
2927 2928 2929

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
2930
    table = get_level1_table_address(env, address);
2931
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
2932
    type = (desc & 3);
2933 2934 2935 2936
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
2937 2938
        code = 5;
        goto do_fault;
2939 2940 2941
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
2942
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
2943
    }
2944 2945
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
    if (domain_prot == 0 || domain_prot == 2) {
2946
        if (type != 1) {
P
pbrook 已提交
2947
            code = 9; /* Section domain fault.  */
2948
        } else {
P
pbrook 已提交
2949
            code = 11; /* Page domain fault.  */
2950
        }
P
pbrook 已提交
2951 2952
        goto do_fault;
    }
2953
    if (type != 1) {
P
pbrook 已提交
2954 2955 2956
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
P
Paul Brook 已提交
2957
            *page_size = 0x1000000;
B
bellard 已提交
2958
        } else {
P
pbrook 已提交
2959 2960
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
2961
            *page_size = 0x100000;
B
bellard 已提交
2962
        }
P
pbrook 已提交
2963 2964
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
2965
        pxn = desc & 1;
P
pbrook 已提交
2966 2967
        code = 13;
    } else {
2968 2969 2970
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
P
pbrook 已提交
2971 2972
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2973
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
2974 2975 2976 2977
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
B
bellard 已提交
2978
            goto do_fault;
P
pbrook 已提交
2979 2980 2981
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
2982
            *page_size = 0x10000;
P
pbrook 已提交
2983 2984 2985 2986
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
2987
            *page_size = 0x1000;
P
pbrook 已提交
2988 2989 2990 2991
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
2992
        }
P
pbrook 已提交
2993 2994
        code = 15;
    }
2995
    if (domain_prot == 3) {
2996 2997
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
2998 2999 3000
        if (pxn && !is_user) {
            xn = 1;
        }
3001 3002
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
3003

3004 3005 3006 3007 3008 3009
        /* The simplified model uses AP[0] as an access control bit.  */
        if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
            /* Access flag fault.  */
            code = (code == 15) ? 6 : 3;
            goto do_fault;
        }
3010
        *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3011 3012 3013 3014 3015 3016 3017
        if (!*prot) {
            /* Access permission fault.  */
            goto do_fault;
        }
        if (!xn) {
            *prot |= PAGE_EXEC;
        }
3018
    }
P
pbrook 已提交
3019
    *phys_ptr = phys_addr;
B
bellard 已提交
3020 3021 3022 3023 3024
    return 0;
do_fault:
    return code | (domain << 4);
}

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
                              int access_type, int is_user,
A
Avi Kivity 已提交
3036
                              hwaddr *phys_ptr, int *prot,
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
                              target_ulong *page_size_ptr)
{
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
    uint32_t level = 1;
    uint32_t epd;
    uint32_t tsz;
    uint64_t ttbr;
    int ttbr_select;
    int n;
A
Avi Kivity 已提交
3047
    hwaddr descaddr;
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
    uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
    uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
    if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
    } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
    } else if (!t1sz) {
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
        ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
        epd = extract32(env->cp15.c2_control, 7, 1);
        tsz = t0sz;
    } else {
        ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
        epd = extract32(env->cp15.c2_control, 23, 1);
        tsz = t1sz;
    }

    if (epd) {
        /* Translation table walk disabled => Translation fault on TLB miss */
        goto do_fault;
    }

    /* If the region is small enough we will skip straight to a 2nd level
     * lookup. This affects the number of bits of the address used in
     * combination with the TTBR to find the first descriptor. ('n' here
     * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
     * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
     */
    if (tsz > 1) {
        level = 2;
        n = 14 - tsz;
    } else {
        n = 5 - tsz;
    }

    /* Clear the vaddr bits which aren't part of the within-region address,
     * so that we don't have to special case things when calculating the
     * first descriptor address.
     */
    address &= (0xffffffffU >> tsz);

    /* Now we can extract the actual base address from the TTBR */
    descaddr = extract64(ttbr, 0, 40);
    descaddr &= ~((1ULL << n) - 1);

    tableattrs = 0;
    for (;;) {
        uint64_t descriptor;

        descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
        descriptor = ldq_phys(descaddr);
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & 0xfffffff000ULL;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
        page_size = (1 << (39 - (9 * level)));
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor and merge with table attrs */
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
        /* Since we're always in the Non-secure state, NSTable is ignored. */
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
    fault_type = permission_fault;
    if (is_user && !(attrs & (1 << 4))) {
        /* Unprivileged access not enabled */
        goto do_fault;
    }
    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
        /* XN or PXN */
        if (access_type == 2) {
            goto do_fault;
        }
        *prot &= ~PAGE_EXEC;
    }
    if (attrs & (1 << 5)) {
        /* Write access forbidden */
        if (access_type == 1) {
            goto do_fault;
        }
        *prot &= ~PAGE_WRITE;
    }

    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
    return 0;

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
    return (1 << 9) | (fault_type << 2) | level;
}

3203 3204
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
                             int access_type, int is_user,
A
Avi Kivity 已提交
3205
                             hwaddr *phys_ptr, int *prot)
P
pbrook 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
{
    int n;
    uint32_t mask;
    uint32_t base;

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
	base = env->cp15.c6_region[n];
	if ((base & 1) == 0)
	    continue;
	mask = 1 << ((base >> 1) & 0x1f);
	/* Keep this shift separate from the above to avoid an
	   (undefined) << 32.  */
	mask = (mask << 1) - 1;
	if (((base ^ address) & ~mask) == 0)
	    break;
    }
    if (n < 0)
	return 2;

    if (access_type == 2) {
	mask = env->cp15.c5_insn;
    } else {
	mask = env->cp15.c5_data;
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
	return 1;
    case 1:
	if (is_user)
	  return 1;
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 2:
	*prot = PAGE_READ;
	if (!is_user)
	    *prot |= PAGE_WRITE;
	break;
    case 3:
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 5:
	if (is_user)
	    return 1;
	*prot = PAGE_READ;
	break;
    case 6:
	*prot = PAGE_READ;
	break;
    default:
	/* Bad permission.  */
	return 1;
    }
3260
    *prot |= PAGE_EXEC;
P
pbrook 已提交
3261 3262 3263
    return 0;
}

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
 * prot and page_size are not filled in, and the return value provides
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
 *  * for MPU based systems we don't bother to return a full FSR format
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
 * @is_user: 0 for privileged access, 1 for user
 * @phys_ptr: set to the physical address corresponding to the virtual address
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
 */
3287
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
P
pbrook 已提交
3288
                                int access_type, int is_user,
A
Avi Kivity 已提交
3289
                                hwaddr *phys_ptr, int *prot,
P
Paul Brook 已提交
3290
                                target_ulong *page_size)
P
pbrook 已提交
3291 3292 3293 3294 3295 3296 3297 3298
{
    /* Fast Context Switch Extension.  */
    if (address < 0x02000000)
        address += env->cp15.c13_fcse;

    if ((env->cp15.c1_sys & 1) == 0) {
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
3299
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
3300
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
3301 3302
        return 0;
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
P
Paul Brook 已提交
3303
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
3304 3305
	return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
				 prot);
3306 3307 3308
    } else if (extended_addresses_enabled(env)) {
        return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
                                  prot, page_size);
P
pbrook 已提交
3309 3310
    } else if (env->cp15.c1_sys & (1 << 23)) {
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
3311
                                prot, page_size);
P
pbrook 已提交
3312 3313
    } else {
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
3314
                                prot, page_size);
P
pbrook 已提交
3315 3316 3317
    }
}

3318
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
3319
                              int access_type, int mmu_idx)
B
bellard 已提交
3320
{
A
Avi Kivity 已提交
3321
    hwaddr phys_addr;
P
Paul Brook 已提交
3322
    target_ulong page_size;
B
bellard 已提交
3323
    int prot;
3324
    int ret, is_user;
B
bellard 已提交
3325

3326
    is_user = mmu_idx == MMU_USER_IDX;
P
Paul Brook 已提交
3327 3328
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
                        &page_size);
B
bellard 已提交
3329 3330
    if (ret == 0) {
        /* Map a single [sub]page.  */
A
Avi Kivity 已提交
3331
        phys_addr &= ~(hwaddr)0x3ff;
B
bellard 已提交
3332
        address &= ~(uint32_t)0x3ff;
3333
        tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
P
Paul Brook 已提交
3334
        return 0;
B
bellard 已提交
3335 3336 3337 3338 3339 3340 3341 3342
    }

    if (access_type == 2) {
        env->cp15.c5_insn = ret;
        env->cp15.c6_insn = address;
        env->exception_index = EXCP_PREFETCH_ABORT;
    } else {
        env->cp15.c5_data = ret;
P
pbrook 已提交
3343 3344
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
            env->cp15.c5_data |= (1 << 11);
B
bellard 已提交
3345 3346 3347 3348 3349 3350
        env->cp15.c6_data = address;
        env->exception_index = EXCP_DATA_ABORT;
    }
    return 1;
}

3351
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
B
bellard 已提交
3352
{
3353
    ARMCPU *cpu = ARM_CPU(cs);
A
Avi Kivity 已提交
3354
    hwaddr phys_addr;
P
Paul Brook 已提交
3355
    target_ulong page_size;
B
bellard 已提交
3356 3357 3358
    int prot;
    int ret;

3359
    ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
B
bellard 已提交
3360

3361
    if (ret != 0) {
B
bellard 已提交
3362
        return -1;
3363
    }
B
bellard 已提交
3364 3365 3366 3367

    return phys_addr;
}

3368
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
3369
{
3370 3371 3372
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
3373
        env->banked_r13[bank_number(mode)] = val;
3374
    }
P
pbrook 已提交
3375 3376
}

3377
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
3378
{
3379 3380 3381
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
3382
        return env->banked_r13[bank_number(mode)];
3383
    }
P
pbrook 已提交
3384 3385
}

3386
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
{
    switch (reg) {
    case 0: /* APSR */
        return xpsr_read(env) & 0xf8000000;
    case 1: /* IAPSR */
        return xpsr_read(env) & 0xf80001ff;
    case 2: /* EAPSR */
        return xpsr_read(env) & 0xff00fc00;
    case 3: /* xPSR */
        return xpsr_read(env) & 0xff00fdff;
    case 5: /* IPSR */
        return xpsr_read(env) & 0x000001ff;
    case 6: /* EPSR */
        return xpsr_read(env) & 0x0700fc00;
    case 7: /* IEPSR */
        return xpsr_read(env) & 0x0700edff;
    case 8: /* MSP */
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
    case 9: /* PSP */
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
    case 16: /* PRIMASK */
        return (env->uncached_cpsr & CPSR_I) != 0;
3409 3410
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
3411
        return env->v7m.basepri;
3412 3413
    case 19: /* FAULTMASK */
        return (env->uncached_cpsr & CPSR_F) != 0;
P
pbrook 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422
    case 20: /* CONTROL */
        return env->v7m.control;
    default:
        /* ??? For debugging only.  */
        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
        return 0;
    }
}

3423
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
{
    switch (reg) {
    case 0: /* APSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 1: /* IAPSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 2: /* EAPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 3: /* xPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 5: /* IPSR */
        /* IPSR bits are readonly.  */
        break;
    case 6: /* EPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 7: /* IEPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 8: /* MSP */
        if (env->v7m.current_sp)
            env->v7m.other_sp = val;
        else
            env->regs[13] = val;
        break;
    case 9: /* PSP */
        if (env->v7m.current_sp)
            env->regs[13] = val;
        else
            env->v7m.other_sp = val;
        break;
    case 16: /* PRIMASK */
        if (val & 1)
            env->uncached_cpsr |= CPSR_I;
        else
            env->uncached_cpsr &= ~CPSR_I;
        break;
3465
    case 17: /* BASEPRI */
P
pbrook 已提交
3466 3467
        env->v7m.basepri = val & 0xff;
        break;
3468
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
3469 3470 3471 3472
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
3473 3474 3475 3476 3477 3478
    case 19: /* FAULTMASK */
        if (val & 1)
            env->uncached_cpsr |= CPSR_F;
        else
            env->uncached_cpsr &= ~CPSR_F;
        break;
P
pbrook 已提交
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
    case 20: /* CONTROL */
        env->v7m.control = val & 3;
        switch_v7m_sp(env, (val & 2) != 0);
        break;
    default:
        /* ??? For debugging only.  */
        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
        return;
    }
}

B
bellard 已提交
3490
#endif
P
pbrook 已提交
3491 3492 3493 3494 3495 3496 3497

/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
3498
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
3513
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
3528
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
3543
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
3567
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
3568 3569 3570 3571 3572 3573 3574 3575
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
3576
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
3577
{
3578
    if (a > b)
P
pbrook 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
3595
    if (a > b)
P
pbrook 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
3612
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
3613 3614 3615 3616 3617 3618 3619
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
3620
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
3641
    if ((sum >> 16) == 1) \
P
pbrook 已提交
3642 3643 3644 3645 3646 3647 3648
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
3649 3650
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
3666
        ge |= 1 << n; \
P
pbrook 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

3736 3737
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
3751
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
3752 3753 3754
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
3755 3756
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
3757 3758 3759
    return target_bits;
}

3760
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
3761 3762 3763 3764 3765 3766 3767 3768
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
3769
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
3770 3771 3772 3773
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

3774
uint32_t vfp_get_fpscr(CPUARMState *env)
3775 3776 3777 3778
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
3794 3795
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
3796 3797 3798
    return host_bits;
}

3799
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
3813
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
3814 3815
            i = float_round_nearest_even;
            break;
3816
        case FPROUNDING_POSINF:
P
pbrook 已提交
3817 3818
            i = float_round_up;
            break;
3819
        case FPROUNDING_NEGINF:
P
pbrook 已提交
3820 3821
            i = float_round_down;
            break;
3822
        case FPROUNDING_ZERO:
P
pbrook 已提交
3823 3824 3825 3826 3827
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
3828
    if (changed & (1 << 24)) {
3829
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3830 3831
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
3832 3833
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
3834

3835
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
3836
    set_float_exception_flags(i, &env->vfp.fp_status);
3837
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
3838 3839
}

3840
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3841 3842 3843 3844
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
3845 3846 3847
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
3848
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
3849
{ \
3850 3851
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
3852
} \
3853
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
3854
{ \
3855 3856
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
3857 3858 3859 3860 3861
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
3862 3863 3864 3865
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
3866 3867 3868 3869 3870 3871 3872 3873 3874
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
3875
    return float64_chs(a);
P
pbrook 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
3885
    return float64_abs(a);
P
pbrook 已提交
3886 3887
}

3888
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
3889 3890 3891 3892
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

3893
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
3894 3895 3896 3897 3898 3899
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
3900
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
3912
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

3928
/* Integer to float and float to integer conversions */
P
pbrook 已提交
3929

3930 3931 3932 3933
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
3934
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
3935 3936
}

3937 3938 3939 3940 3941 3942 3943 3944 3945
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
3946 3947
}

3948 3949 3950 3951
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
3952

3953 3954 3955 3956
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
3957

3958 3959 3960
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
3961 3962

/* floating point conversion */
3963
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
3964
{
3965 3966 3967 3968 3969
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float64_maybe_silence_nan(r);
P
pbrook 已提交
3970 3971
}

3972
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
3973
{
3974 3975 3976 3977 3978
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float32_maybe_silence_nan(r);
P
pbrook 已提交
3979 3980 3981
}

/* VFP3 fixed point conversion.  */
3982
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3983 3984
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
3985
{ \
3986
    float_status *fpst = fpstp; \
3987
    float##fsz tmp; \
3988
    tmp = itype##_to_##float##fsz(x, fpst); \
3989
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3990 3991
}

3992 3993 3994 3995 3996
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
3997 3998 3999 4000
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
4001
{ \
4002
    float_status *fpst = fpstp; \
4003
    int old_exc_flags = get_float_exception_flags(fpst); \
4004 4005
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
4006
        float_raise(float_flag_invalid, fpst); \
4007
        return 0; \
4008
    } \
4009
    tmp = float##fsz##_scalbn(x, shift, fpst); \
4010 4011 4012
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
4013
    return float##fsz##_to_##itype##round(tmp, fpst); \
4014 4015
}

4016 4017
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
4018 4019 4020 4021 4022 4023
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4024

4025 4026
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
4027
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4028 4029
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
4030
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4031 4032
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
4033
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4034 4035
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
4036
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
4037
#undef VFP_CONV_FIX
4038 4039
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
4040

4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
4071
/* Half precision conversions.  */
4072
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
4073 4074
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4075 4076 4077 4078 4079
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
        return float32_maybe_silence_nan(r);
    }
    return r;
P
Paul Brook 已提交
4080 4081
}

4082
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
4083 4084
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4085 4086 4087 4088 4089
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
P
Paul Brook 已提交
4090 4091
}

4092
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4093 4094 4095 4096
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

4097
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4098 4099 4100 4101
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

4102
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4103 4104 4105 4106
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

4107
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4108 4109 4110 4111
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
        return float64_maybe_silence_nan(r);
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

4132
#define float32_two make_float32(0x40000000)
4133 4134
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
4135

4136
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
4137
{
4138 4139 4140
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4141 4142 4143
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
4144 4145 4146
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
4147 4148
}

4149
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
4150
{
4151
    float_status *s = &env->vfp.standard_fp_status;
4152 4153 4154
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4155 4156 4157
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
4158
        return float32_one_point_five;
4159
    }
4160 4161
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
4162 4163
}

P
pbrook 已提交
4164 4165
/* NEON helpers.  */

4166 4167 4168 4169 4170
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)

4171 4172 4173
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
4174
static float64 recip_estimate(float64 a, CPUARMState *env)
4175
{
4176 4177 4178 4179 4180
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
    float_status dummy_status = env->vfp.standard_fp_status;
    float_status *s = &dummy_status;
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

4200
float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
P
pbrook 已提交
4201
{
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
    float_status *s = &env->vfp.standard_fp_status;
    float64 f64;
    uint32_t val32 = float32_val(a);

    int result_exp;
    int a_exp = (val32  & 0x7f800000) >> 23;
    int sign = val32 & 0x80000000;

    if (float32_is_any_nan(a)) {
        if (float32_is_signaling_nan(a)) {
            float_raise(float_flag_invalid, s);
        }
        return float32_default_nan;
    } else if (float32_is_infinity(a)) {
        return float32_set_sign(float32_zero, float32_is_neg(a));
    } else if (float32_is_zero_or_denormal(a)) {
4218 4219 4220
        if (!float32_is_zero(a)) {
            float_raise(float_flag_input_denormal, s);
        }
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
        float_raise(float_flag_divbyzero, s);
        return float32_set_sign(float32_infinity, float32_is_neg(a));
    } else if (a_exp >= 253) {
        float_raise(float_flag_underflow, s);
        return float32_set_sign(float32_zero, float32_is_neg(a));
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(val32 & 0x7fffff) << 29));

    result_exp = 253 - a_exp;

    f64 = recip_estimate(f64, env);

    val32 = sign
        | ((result_exp & 0xff) << 23)
        | ((float64_val(f64) >> 29) & 0x7fffff);
    return make_float32(val32);
P
pbrook 已提交
4239 4240
}

4241 4242 4243
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
4244
static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
4245
{
4246 4247 4248 4249 4250
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
    float_status dummy_status = env->vfp.standard_fp_status;
    float_status *s = &dummy_status;
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

4296
float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
P
pbrook 已提交
4297
{
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
    float_status *s = &env->vfp.standard_fp_status;
    int result_exp;
    float64 f64;
    uint32_t val;
    uint64_t val64;

    val = float32_val(a);

    if (float32_is_any_nan(a)) {
        if (float32_is_signaling_nan(a)) {
            float_raise(float_flag_invalid, s);
        }
        return float32_default_nan;
    } else if (float32_is_zero_or_denormal(a)) {
4312 4313 4314
        if (!float32_is_zero(a)) {
            float_raise(float_flag_input_denormal, s);
        }
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
        float_raise(float_flag_divbyzero, s);
        return float32_set_sign(float32_infinity, float32_is_neg(a));
    } else if (float32_is_neg(a)) {
        float_raise(float_flag_invalid, s);
        return float32_default_nan;
    } else if (float32_is_infinity(a)) {
        return float32_zero;
    }

    /* Normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */
    if ((val & 0x800000) == 0) {
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
                           | (0x3feULL << 52)
                           | ((uint64_t)(val & 0x7fffff) << 29));
    } else {
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
                           | (0x3fdULL << 52)
                           | ((uint64_t)(val & 0x7fffff) << 29));
    }

    result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;

    f64 = recip_sqrt_estimate(f64, env);

    val64 = float64_val(f64);

4342
    val = ((result_exp & 0xff) << 23)
4343 4344
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
4345 4346
}

4347
uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
P
pbrook 已提交
4348
{
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

    f64 = recip_estimate (f64, env);

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
4361 4362
}

4363
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
P
pbrook 已提交
4364
{
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

    f64 = recip_sqrt_estimate(f64, env);

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
4382
}
4383

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}