intel_guc_submission.c 130.2 KB
Newer Older
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2014 Intel Corporation
 */

6
#include <linux/circ_buf.h>
7

8
#include "gem/i915_gem_context.h"
9 10
#include "gt/gen8_engine_cs.h"
#include "gt/intel_breadcrumbs.h"
11
#include "gt/intel_context.h"
12
#include "gt/intel_engine_heartbeat.h"
13 14
#include "gt/intel_engine_pm.h"
#include "gt/intel_engine_regs.h"
15
#include "gt/intel_gpu_commands.h"
16
#include "gt/intel_gt.h"
17
#include "gt/intel_gt_clock_utils.h"
18
#include "gt/intel_gt_irq.h"
19
#include "gt/intel_gt_pm.h"
20
#include "gt/intel_gt_regs.h"
21
#include "gt/intel_gt_requests.h"
22
#include "gt/intel_lrc.h"
23
#include "gt/intel_lrc_reg.h"
24
#include "gt/intel_mocs.h"
25 26
#include "gt/intel_ring.h"

27
#include "intel_guc_ads.h"
28
#include "intel_guc_submission.h"
29

30
#include "i915_drv.h"
31
#include "i915_trace.h"
32

33
/**
A
Alex Dai 已提交
34
 * DOC: GuC-based command submission
35 36 37 38 39 40 41 42 43
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
 *
M
Matthew Brost 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
 * Command Transport buffers (CTBs):
 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
 * - G2H) are a message interface between the i915 and GuC.
 *
 * Context registration:
 * Before a context can be submitted it must be registered with the GuC via a
 * H2G. A unique guc_id is associated with each context. The context is either
 * registered at request creation time (normal operation) or at submission time
 * (abnormal operation, e.g. after a reset).
 *
 * Context submission:
 * The i915 updates the LRC tail value in memory. The i915 must enable the
 * scheduling of the context within the GuC for the GuC to actually consider it.
 * Therefore, the first time a disabled context is submitted we use a schedule
 * enable H2G, while follow up submissions are done via the context submit H2G,
 * which informs the GuC that a previously enabled context has new work
 * available.
 *
 * Context unpin:
 * To unpin a context a H2G is used to disable scheduling. When the
 * corresponding G2H returns indicating the scheduling disable operation has
 * completed it is safe to unpin the context. While a disable is in flight it
 * isn't safe to resubmit the context so a fence is used to stall all future
 * requests of that context until the G2H is returned.
 *
 * Context deregistration:
 * Before a context can be destroyed or if we steal its guc_id we must
 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
 * safe to submit anything to this guc_id until the deregister completes so a
 * fence is used to stall all requests associated with this guc_id until the
 * corresponding G2H returns indicating the guc_id has been deregistered.
 *
76
 * submission_state.guc_ids:
M
Matthew Brost 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
 * Unique number associated with private GuC context data passed in during
 * context registration / submission / deregistration. 64k available. Simple ida
 * is used for allocation.
 *
 * Stealing guc_ids:
 * If no guc_ids are available they can be stolen from another context at
 * request creation time if that context is unpinned. If a guc_id can't be found
 * we punt this problem to the user as we believe this is near impossible to hit
 * during normal use cases.
 *
 * Locking:
 * In the GuC submission code we have 3 basic spin locks which protect
 * everything. Details about each below.
 *
 * sched_engine->lock
 * This is the submission lock for all contexts that share an i915 schedule
 * engine (sched_engine), thus only one of the contexts which share a
 * sched_engine can be submitting at a time. Currently only one sched_engine is
 * used for all of GuC submission but that could change in the future.
 *
97
 * guc->submission_state.lock
98 99
 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
 * list.
M
Matthew Brost 已提交
100 101 102 103 104 105 106 107 108 109 110
 *
 * ce->guc_state.lock
 * Protects everything under ce->guc_state. Ensures that a context is in the
 * correct state before issuing a H2G. e.g. We don't issue a schedule disable
 * on a disabled context (bad idea), we don't issue a schedule enable when a
 * schedule disable is in flight, etc... Also protects list of inflight requests
 * on the context and the priority management state. Lock is individual to each
 * context.
 *
 * Lock ordering rules:
 * sched_engine->lock -> ce->guc_state.lock
111
 * guc->submission_state.lock -> ce->guc_state.lock
112
 *
M
Matthew Brost 已提交
113 114 115 116 117 118 119 120 121 122
 * Reset races:
 * When a full GT reset is triggered it is assumed that some G2H responses to
 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
 * fatal as we do certain operations upon receiving a G2H (e.g. destroy
 * contexts, release guc_ids, etc...). When this occurs we can scrub the
 * context state and cleanup appropriately, however this is quite racey.
 * To avoid races, the reset code must disable submission before scrubbing for
 * the missing G2H, while the submission code must check for submission being
 * disabled and skip sending H2Gs and updating context states when it is. Both
 * sides must also make sure to hold the relevant locks.
123 124
 */

125 126 127 128 129 130 131
/* GuC Virtual Engine */
struct guc_virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;
};

static struct intel_context *
132 133 134 135 136 137 138
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
		   unsigned long flags);

static struct intel_context *
guc_create_parallel(struct intel_engine_cs **engines,
		    unsigned int num_siblings,
		    unsigned int width);
139

140 141
#define GUC_REQUEST_SIZE 64 /* bytes */

142 143 144 145 146 147 148 149
/*
 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
 * per the GuC submission interface. A different allocation algorithm is used
 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
 * partition the guc_id space. We believe the number of multi-lrc contexts in
 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
 * multi-lrc.
 */
150 151
#define NUMBER_MULTI_LRC_GUC_ID(guc)	\
	((guc)->submission_state.num_guc_ids / 16)
152

153 154
/*
 * Below is a set of functions which control the GuC scheduling state which
155
 * require a lock.
156 157 158
 */
#define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
#define SCHED_STATE_DESTROYED				BIT(1)
159
#define SCHED_STATE_PENDING_DISABLE			BIT(2)
160
#define SCHED_STATE_BANNED				BIT(3)
161 162 163 164
#define SCHED_STATE_ENABLED				BIT(4)
#define SCHED_STATE_PENDING_ENABLE			BIT(5)
#define SCHED_STATE_REGISTERED				BIT(6)
#define SCHED_STATE_BLOCKED_SHIFT			7
165 166
#define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
#define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
167

168 169
static inline void init_sched_state(struct intel_context *ce)
{
170
	lockdep_assert_held(&ce->guc_state.lock);
171
	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
172 173
}

174 175 176
__maybe_unused
static bool sched_state_is_init(struct intel_context *ce)
{
177 178
	/* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */
	return !(ce->guc_state.sched_state &
179
		 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED));
180 181
}

182 183 184 185 186 187 188 189 190 191
static inline bool
context_wait_for_deregister_to_register(struct intel_context *ce)
{
	return ce->guc_state.sched_state &
		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline void
set_context_wait_for_deregister_to_register(struct intel_context *ce)
{
192
	lockdep_assert_held(&ce->guc_state.lock);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	ce->guc_state.sched_state |=
		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline void
clr_context_wait_for_deregister_to_register(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &=
		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline bool
context_destroyed(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
}

static inline void
set_context_destroyed(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static inline bool context_pending_disable(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
}

static inline void set_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
}

static inline void clr_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static inline bool context_banned(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
}

static inline void set_context_banned(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
}

static inline void clr_context_banned(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
static inline bool context_enabled(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
}

static inline void set_context_enabled(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
}

static inline void clr_context_enabled(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
}

static inline bool context_pending_enable(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
}

static inline void set_context_pending_enable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
}

static inline void clr_context_pending_enable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
}

static inline bool context_registered(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
}

static inline void set_context_registered(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
}

static inline void clr_context_registered(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static inline u32 context_blocked(struct intel_context *ce)
{
	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
		SCHED_STATE_BLOCKED_SHIFT;
}

static inline void incr_context_blocked(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;

	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
}

static inline void decr_context_blocked(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */

	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
static inline bool context_has_committed_requests(struct intel_context *ce)
{
	return !!ce->guc_state.number_committed_requests;
}

static inline void incr_context_committed_requests(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	++ce->guc_state.number_committed_requests;
	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
}

static inline void decr_context_committed_requests(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	--ce->guc_state.number_committed_requests;
	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
}

346 347 348 349 350 351
static struct intel_context *
request_to_scheduling_context(struct i915_request *rq)
{
	return intel_context_to_parent(rq->context);
}

352 353
static inline bool context_guc_id_invalid(struct intel_context *ce)
{
354
	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
355 356 357 358
}

static inline void set_context_guc_id_invalid(struct intel_context *ce)
{
359
	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
360 361 362 363 364 365 366
}

static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
{
	return &ce->engine->gt->uc.guc;
}

367 368 369 370 371
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

372 373
/*
 * When using multi-lrc submission a scratch memory area is reserved in the
374 375 376
 * parent's context state for the process descriptor, work queue, and handshake
 * between the parent + children contexts to insert safe preemption points
 * between each of the BBs. Currently the scratch area is sized to a page.
377 378 379
 *
 * The layout of this scratch area is below:
 * 0						guc_process_desc
380 381 382 383
 * + sizeof(struct guc_process_desc)		child go
 * + CACHELINE_BYTES				child join[0]
 * ...
 * + CACHELINE_BYTES				child join[n - 1]
384 385 386 387 388 389 390
 * ...						unused
 * PARENT_SCRATCH_SIZE / 2			work queue start
 * ...						work queue
 * PARENT_SCRATCH_SIZE - 1			work queue end
 */
#define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
#define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

struct sync_semaphore {
	u32 semaphore;
	u8 unused[CACHELINE_BYTES - sizeof(u32)];
};

struct parent_scratch {
	struct guc_process_desc pdesc;

	struct sync_semaphore go;
	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];

	u8 unused[WQ_OFFSET - sizeof(struct guc_process_desc) -
		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];

	u32 wq[WQ_SIZE / sizeof(u32)];
};

static u32 __get_parent_scratch_offset(struct intel_context *ce)
410 411 412 413 414 415 416 417
{
	GEM_BUG_ON(!ce->parallel.guc.parent_page);

	return ce->parallel.guc.parent_page * PAGE_SIZE;
}

static u32 __get_wq_offset(struct intel_context *ce)
{
418 419 420
	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);

	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
421 422
}

423 424
static struct parent_scratch *
__get_parent_scratch(struct intel_context *ce)
425
{
426 427 428
	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);

429 430 431 432 433
	/*
	 * Need to subtract LRC_STATE_OFFSET here as the
	 * parallel.guc.parent_page is the offset into ce->state while
	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
	 */
434
	return (struct parent_scratch *)
435
		(ce->lrc_reg_state +
436
		 ((__get_parent_scratch_offset(ce) -
437 438 439
		   LRC_STATE_OFFSET) / sizeof(u32)));
}

440 441 442 443 444 445 446 447
static struct guc_process_desc *
__get_process_desc(struct intel_context *ce)
{
	struct parent_scratch *ps = __get_parent_scratch(ce);

	return &ps->pdesc;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static u32 *get_wq_pointer(struct guc_process_desc *desc,
			   struct intel_context *ce,
			   u32 wqi_size)
{
	/*
	 * Check for space in work queue. Caching a value of head pointer in
	 * intel_context structure in order reduce the number accesses to shared
	 * GPU memory which may be across a PCIe bus.
	 */
#define AVAILABLE_SPACE	\
	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
	if (wqi_size > AVAILABLE_SPACE) {
		ce->parallel.guc.wqi_head = READ_ONCE(desc->head);

		if (wqi_size > AVAILABLE_SPACE)
			return NULL;
	}
#undef AVAILABLE_SPACE

467
	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
468 469
}

470
static struct guc_lrc_desc *__get_lrc_desc(struct intel_guc *guc, u32 index)
471
{
472
	struct guc_lrc_desc *base = guc->lrc_desc_pool_vaddr;
473

474
	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
475

476
	return &base[index];
477 478
}

479 480 481 482
static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
{
	struct intel_context *ce = xa_load(&guc->context_lookup, id);

483
	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
484 485 486 487

	return ce;
}

488
static int guc_lrc_desc_pool_create(struct intel_guc *guc)
489
{
490 491
	u32 size;
	int ret;
492

493
	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc) *
494
			  GUC_MAX_CONTEXT_ID);
495 496 497 498
	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool,
					     (void **)&guc->lrc_desc_pool_vaddr);
	if (ret)
		return ret;
499

500
	return 0;
501 502
}

503
static void guc_lrc_desc_pool_destroy(struct intel_guc *guc)
504
{
505
	guc->lrc_desc_pool_vaddr = NULL;
506
	i915_vma_unpin_and_release(&guc->lrc_desc_pool, I915_VMA_RELEASE_MAP);
507 508
}

509 510
static inline bool guc_submission_initialized(struct intel_guc *guc)
{
511
	return guc->submission_initialized;
512 513
}

514
static inline void _reset_lrc_desc(struct intel_guc *guc, u32 id)
515
{
516
	struct guc_lrc_desc *desc = __get_lrc_desc(guc, id);
517

518
	memset(desc, 0, sizeof(*desc));
519 520
}

521
static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
522 523 524 525
{
	return __get_context(guc, id);
}

526 527
static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
				      struct intel_context *ce)
528
{
529 530 531 532 533 534 535 536 537
	unsigned long flags;

	/*
	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
	 * lower level functions directly.
	 */
	xa_lock_irqsave(&guc->context_lookup, flags);
	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
	xa_unlock_irqrestore(&guc->context_lookup, flags);
538 539
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
{
	unsigned long flags;

	if (unlikely(!guc_submission_initialized(guc)))
		return;

	_reset_lrc_desc(guc, id);

	/*
	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
	 * the lower level functions directly.
	 */
	xa_lock_irqsave(&guc->context_lookup, flags);
	__xa_erase(&guc->context_lookup, id);
	xa_unlock_irqrestore(&guc->context_lookup, flags);
}

558 559 560 561 562 563
static void decr_outstanding_submission_g2h(struct intel_guc *guc)
{
	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
		wake_up_all(&guc->ct.wq);
}

564 565 566 567 568 569
static int guc_submission_send_busy_loop(struct intel_guc *guc,
					 const u32 *action,
					 u32 len,
					 u32 g2h_len_dw,
					 bool loop)
{
570 571 572 573 574 575
	/*
	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
	 * so we don't handle the case where we don't get a reply because we
	 * aborted the send due to the channel being busy.
	 */
	GEM_BUG_ON(g2h_len_dw && !loop);
576

577
	if (g2h_len_dw)
578 579
		atomic_inc(&guc->outstanding_submission_g2h);

580
	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
581 582
}

583 584 585 586
int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
				   atomic_t *wait_var,
				   bool interruptible,
				   long timeout)
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
{
	const int state = interruptible ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	DEFINE_WAIT(wait);

	might_sleep();
	GEM_BUG_ON(timeout < 0);

	if (!atomic_read(wait_var))
		return 0;

	if (!timeout)
		return -ETIME;

	for (;;) {
		prepare_to_wait(&guc->ct.wq, &wait, state);

		if (!atomic_read(wait_var))
			break;

		if (signal_pending_state(state, current)) {
			timeout = -EINTR;
			break;
		}

		if (!timeout) {
			timeout = -ETIME;
			break;
		}

		timeout = io_schedule_timeout(timeout);
	}
	finish_wait(&guc->ct.wq, &wait);

	return (timeout < 0) ? timeout : 0;
}

int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
{
	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
		return 0;

629 630 631
	return intel_guc_wait_for_pending_msg(guc,
					      &guc->outstanding_submission_g2h,
					      true, timeout);
632 633
}

634
static int try_context_registration(struct intel_context *ce, bool loop);
635

636
static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
637
{
638
	int err = 0;
639
	struct intel_context *ce = request_to_scheduling_context(rq);
640 641
	u32 action[3];
	int len = 0;
642
	u32 g2h_len_dw = 0;
643
	bool enabled;
644

645 646
	lockdep_assert_held(&rq->engine->sched_engine->lock);

647 648 649 650 651 652 653
	/*
	 * Corner case where requests were sitting in the priority list or a
	 * request resubmitted after the context was banned.
	 */
	if (unlikely(intel_context_is_banned(ce))) {
		i915_request_put(i915_request_mark_eio(rq));
		intel_engine_signal_breadcrumbs(ce->engine);
654
		return 0;
655 656
	}

657
	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
658 659
	GEM_BUG_ON(context_guc_id_invalid(ce));

660 661
	spin_lock(&ce->guc_state.lock);

662 663
	/*
	 * The request / context will be run on the hardware when scheduling
664 665
	 * gets enabled in the unblock. For multi-lrc we still submit the
	 * context to move the LRC tails.
666
	 */
667
	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
668 669
		goto out;

670
	enabled = context_enabled(ce) || context_blocked(ce);
671

672 673
	if (!enabled) {
		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
674
		action[len++] = ce->guc_id.id;
675
		action[len++] = GUC_CONTEXT_ENABLE;
676 677
		set_context_pending_enable(ce);
		intel_context_get(ce);
678
		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
679 680
	} else {
		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
681
		action[len++] = ce->guc_id.id;
682
	}
683

684
	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
685
	if (!enabled && !err) {
686
		trace_intel_context_sched_enable(ce);
687
		atomic_inc(&guc->outstanding_submission_g2h);
688
		set_context_enabled(ce);
689 690 691 692 693 694 695 696 697 698 699 700

		/*
		 * Without multi-lrc KMD does the submission step (moving the
		 * lrc tail) so enabling scheduling is sufficient to submit the
		 * context. This isn't the case in multi-lrc submission as the
		 * GuC needs to move the tails, hence the need for another H2G
		 * to submit a multi-lrc context after enabling scheduling.
		 */
		if (intel_context_is_parent(ce)) {
			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
			err = intel_guc_send_nb(guc, action, len - 1, 0);
		}
701 702 703 704
	} else if (!enabled) {
		clr_context_pending_enable(ce);
		intel_context_put(ce);
	}
705 706
	if (likely(!err))
		trace_i915_request_guc_submit(rq);
707

708
out:
709
	spin_unlock(&ce->guc_state.lock);
710
	return err;
711 712
}

713 714 715 716 717 718 719 720 721 722 723 724
static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
{
	int ret = __guc_add_request(guc, rq);

	if (unlikely(ret == -EBUSY)) {
		guc->stalled_request = rq;
		guc->submission_stall_reason = STALL_ADD_REQUEST;
	}

	return ret;
}

725 726 727 728 729 730
static inline void guc_set_lrc_tail(struct i915_request *rq)
{
	rq->context->lrc_reg_state[CTX_RING_TAIL] =
		intel_ring_set_tail(rq->ring, rq->tail);
}

731
static inline int rq_prio(const struct i915_request *rq)
732
{
733
	return rq->sched.attr.priority;
734 735
}

736 737
static bool is_multi_lrc_rq(struct i915_request *rq)
{
738
	return intel_context_is_parallel(rq->context);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
}

static bool can_merge_rq(struct i915_request *rq,
			 struct i915_request *last)
{
	return request_to_scheduling_context(rq) ==
		request_to_scheduling_context(last);
}

static u32 wq_space_until_wrap(struct intel_context *ce)
{
	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
}

static void write_wqi(struct guc_process_desc *desc,
		      struct intel_context *ce,
		      u32 wqi_size)
{
	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));

	/*
	 * Ensure WQI are visible before updating tail
	 */
	intel_guc_write_barrier(ce_to_guc(ce));

	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
		(WQ_SIZE - 1);
	WRITE_ONCE(desc->tail, ce->parallel.guc.wqi_tail);
}

static int guc_wq_noop_append(struct intel_context *ce)
{
	struct guc_process_desc *desc = __get_process_desc(ce);
	u32 *wqi = get_wq_pointer(desc, ce, wq_space_until_wrap(ce));
	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;

	if (!wqi)
		return -EBUSY;

	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));

	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
		FIELD_PREP(WQ_LEN_MASK, len_dw);
	ce->parallel.guc.wqi_tail = 0;

	return 0;
}

static int __guc_wq_item_append(struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);
	struct intel_context *child;
	struct guc_process_desc *desc = __get_process_desc(ce);
	unsigned int wqi_size = (ce->parallel.number_children + 4) *
		sizeof(u32);
	u32 *wqi;
	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
	int ret;

	/* Ensure context is in correct state updating work queue */
	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
	GEM_BUG_ON(context_guc_id_invalid(ce));
	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
802
	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

	/* Insert NOOP if this work queue item will wrap the tail pointer. */
	if (wqi_size > wq_space_until_wrap(ce)) {
		ret = guc_wq_noop_append(ce);
		if (ret)
			return ret;
	}

	wqi = get_wq_pointer(desc, ce, wqi_size);
	if (!wqi)
		return -EBUSY;

	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));

	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
		FIELD_PREP(WQ_LEN_MASK, len_dw);
	*wqi++ = ce->lrc.lrca;
	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
	*wqi++ = 0;	/* fence_id */
	for_each_child(ce, child)
		*wqi++ = child->ring->tail / sizeof(u64);

	write_wqi(desc, ce, wqi_size);

	return 0;
}

static int guc_wq_item_append(struct intel_guc *guc,
			      struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);
	int ret = 0;

	if (likely(!intel_context_is_banned(ce))) {
		ret = __guc_wq_item_append(rq);

		if (unlikely(ret == -EBUSY)) {
			guc->stalled_request = rq;
			guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
		}
	}

	return ret;
}

static bool multi_lrc_submit(struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);

	intel_ring_set_tail(rq->ring, rq->tail);

	/*
	 * We expect the front end (execbuf IOCTL) to set this flag on the last
	 * request generated from a multi-BB submission. This indicates to the
	 * backend (GuC interface) that we should submit this context thus
	 * submitting all the requests generated in parallel.
	 */
	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
		intel_context_is_banned(ce);
}

865
static int guc_dequeue_one_context(struct intel_guc *guc)
866
{
867 868
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	struct i915_request *last = NULL;
869
	bool submit = false;
870
	struct rb_node *rb;
871
	int ret;
872

873
	lockdep_assert_held(&sched_engine->lock);
874

875 876 877
	if (guc->stalled_request) {
		submit = true;
		last = guc->stalled_request;
878 879 880 881 882 883 884 885 886 887 888

		switch (guc->submission_stall_reason) {
		case STALL_REGISTER_CONTEXT:
			goto register_context;
		case STALL_MOVE_LRC_TAIL:
			goto move_lrc_tail;
		case STALL_ADD_REQUEST:
			goto add_request;
		default:
			MISSING_CASE(guc->submission_stall_reason);
		}
889 890
	}

891
	while ((rb = rb_first_cached(&sched_engine->queue))) {
892
		struct i915_priolist *p = to_priolist(rb);
893
		struct i915_request *rq, *rn;
894

895
		priolist_for_each_request_consume(rq, rn, p) {
896 897
			if (last && !can_merge_rq(rq, last))
				goto register_context;
898

899
			list_del_init(&rq->sched.link);
900

901
			__i915_request_submit(rq);
902 903

			trace_i915_request_in(rq, 0);
904
			last = rq;
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919

			if (is_multi_lrc_rq(rq)) {
				/*
				 * We need to coalesce all multi-lrc requests in
				 * a relationship into a single H2G. We are
				 * guaranteed that all of these requests will be
				 * submitted sequentially.
				 */
				if (multi_lrc_submit(rq)) {
					submit = true;
					goto register_context;
				}
			} else {
				submit = true;
			}
920 921
		}

922
		rb_erase_cached(&p->node, &sched_engine->queue);
923
		i915_priolist_free(p);
924
	}
925 926

register_context:
927
	if (submit) {
928 929
		struct intel_context *ce = request_to_scheduling_context(last);

930
		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
931
			     !intel_context_is_banned(ce))) {
932
			ret = try_context_registration(ce, false);
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
			if (unlikely(ret == -EPIPE)) {
				goto deadlk;
			} else if (ret == -EBUSY) {
				guc->stalled_request = last;
				guc->submission_stall_reason =
					STALL_REGISTER_CONTEXT;
				goto schedule_tasklet;
			} else if (ret != 0) {
				GEM_WARN_ON(ret);	/* Unexpected */
				goto deadlk;
			}
		}

move_lrc_tail:
		if (is_multi_lrc_rq(last)) {
			ret = guc_wq_item_append(guc, last);
			if (ret == -EBUSY) {
				goto schedule_tasklet;
			} else if (ret != 0) {
				GEM_WARN_ON(ret);	/* Unexpected */
				goto deadlk;
			}
		} else {
			guc_set_lrc_tail(last);
		}

add_request:
960
		ret = guc_add_request(guc, last);
961 962 963 964 965 966
		if (unlikely(ret == -EPIPE)) {
			goto deadlk;
		} else if (ret == -EBUSY) {
			goto schedule_tasklet;
		} else if (ret != 0) {
			GEM_WARN_ON(ret);	/* Unexpected */
967
			goto deadlk;
968
		}
969
	}
970 971

	guc->stalled_request = NULL;
972
	guc->submission_stall_reason = STALL_NONE;
973
	return submit;
974 975 976 977 978

deadlk:
	sched_engine->tasklet.callback = NULL;
	tasklet_disable_nosync(&sched_engine->tasklet);
	return false;
979 980 981 982

schedule_tasklet:
	tasklet_schedule(&sched_engine->tasklet);
	return false;
983 984
}

985
static void guc_submission_tasklet(struct tasklet_struct *t)
986
{
987 988
	struct i915_sched_engine *sched_engine =
		from_tasklet(sched_engine, t, tasklet);
989
	unsigned long flags;
990
	bool loop;
991

992
	spin_lock_irqsave(&sched_engine->lock, flags);
993

994 995 996
	do {
		loop = guc_dequeue_one_context(sched_engine->private_data);
	} while (loop);
997

998
	i915_sched_engine_reset_on_empty(sched_engine);
999

1000
	spin_unlock_irqrestore(&sched_engine->lock, flags);
1001 1002
}

1003 1004
static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
1005
	if (iir & GT_RENDER_USER_INTERRUPT)
1006 1007 1008
		intel_engine_signal_breadcrumbs(engine);
}

1009 1010 1011
static void __guc_context_destroy(struct intel_context *ce);
static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
static void guc_signal_context_fence(struct intel_context *ce);
1012
static void guc_cancel_context_requests(struct intel_context *ce);
1013
static void guc_blocked_fence_complete(struct intel_context *ce);
1014 1015 1016 1017 1018

static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
{
	struct intel_context *ce;
	unsigned long index, flags;
1019
	bool pending_disable, pending_enable, deregister, destroyed, banned;
1020

1021
	xa_lock_irqsave(&guc->context_lookup, flags);
1022
	xa_for_each(&guc->context_lookup, index, ce) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		/*
		 * Corner case where the ref count on the object is zero but and
		 * deregister G2H was lost. In this case we don't touch the ref
		 * count and finish the destroy of the context.
		 */
		bool do_put = kref_get_unless_zero(&ce->ref);

		xa_unlock(&guc->context_lookup);

		spin_lock(&ce->guc_state.lock);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

		/*
		 * Once we are at this point submission_disabled() is guaranteed
		 * to be visible to all callers who set the below flags (see above
		 * flush and flushes in reset_prepare). If submission_disabled()
		 * is set, the caller shouldn't set these flags.
		 */

		destroyed = context_destroyed(ce);
		pending_enable = context_pending_enable(ce);
		pending_disable = context_pending_disable(ce);
		deregister = context_wait_for_deregister_to_register(ce);
1045
		banned = context_banned(ce);
1046 1047
		init_sched_state(ce);

1048 1049
		spin_unlock(&ce->guc_state.lock);

1050
		if (pending_enable || destroyed || deregister) {
1051
			decr_outstanding_submission_g2h(guc);
1052 1053 1054
			if (deregister)
				guc_signal_context_fence(ce);
			if (destroyed) {
1055
				intel_gt_pm_put_async(guc_to_gt(guc));
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
				release_guc_id(guc, ce);
				__guc_context_destroy(ce);
			}
			if (pending_enable || deregister)
				intel_context_put(ce);
		}

		/* Not mutualy exclusive with above if statement. */
		if (pending_disable) {
			guc_signal_context_fence(ce);
1066 1067 1068 1069
			if (banned) {
				guc_cancel_context_requests(ce);
				intel_engine_signal_breadcrumbs(ce->engine);
			}
1070
			intel_context_sched_disable_unpin(ce);
1071
			decr_outstanding_submission_g2h(guc);
1072 1073

			spin_lock(&ce->guc_state.lock);
1074
			guc_blocked_fence_complete(ce);
1075
			spin_unlock(&ce->guc_state.lock);
1076

1077 1078
			intel_context_put(ce);
		}
1079 1080 1081 1082

		if (do_put)
			intel_context_put(ce);
		xa_lock(&guc->context_lookup);
1083
	}
1084
	xa_unlock_irqrestore(&guc->context_lookup, flags);
1085 1086
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/*
 * GuC stores busyness stats for each engine at context in/out boundaries. A
 * context 'in' logs execution start time, 'out' adds in -> out delta to total.
 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
 * GuC.
 *
 * __i915_pmu_event_read samples engine busyness. When sampling, if context id
 * is valid (!= ~0) and start is non-zero, the engine is considered to be
 * active. For an active engine total busyness = total + (now - start), where
 * 'now' is the time at which the busyness is sampled. For inactive engine,
 * total busyness = total.
 *
 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
 *
 * The start and total values provided by GuC are 32 bits and wrap around in a
 * few minutes. Since perf pmu provides busyness as 64 bit monotonically
 * increasing ns values, there is a need for this implementation to account for
 * overflows and extend the GuC provided values to 64 bits before returning
 * busyness to the user. In order to do that, a worker runs periodically at
 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
 * 27 seconds for a gt clock frequency of 19.2 MHz).
 */

#define WRAP_TIME_CLKS U32_MAX
#define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)

static void
__extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
{
	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);

	if (new_start == lower_32_bits(*prev_start))
		return;

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	/*
	 * When gt is unparked, we update the gt timestamp and start the ping
	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
	 * is unparked, all switched in contexts will have a start time that is
	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
	 *
	 * If neither gt_stamp nor new_start has rolled over, then the
	 * gt_stamp_hi does not need to be adjusted, however if one of them has
	 * rolled over, we need to adjust gt_stamp_hi accordingly.
	 *
	 * The below conditions address the cases of new_start rollover and
	 * gt_stamp_last rollover respectively.
	 */
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	if (new_start < gt_stamp_last &&
	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
		gt_stamp_hi++;

	if (new_start > gt_stamp_last &&
	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
		gt_stamp_hi--;

	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
}

1146 1147 1148
#define record_read(map_, field_) \
	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * GuC updates shared memory and KMD reads it. Since this is not synchronized,
 * we run into a race where the value read is inconsistent. Sometimes the
 * inconsistency is in reading the upper MSB bytes of the last_in value when
 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
 * 24 bits are zero. Since these are non-zero values, it is non-trivial to
 * determine validity of these values. Instead we read the values multiple times
 * until they are consistent. In test runs, 3 attempts results in consistent
 * values. The upper bound is set to 6 attempts and may need to be tuned as per
 * any new occurences.
 */
static void __get_engine_usage_record(struct intel_engine_cs *engine,
				      u32 *last_in, u32 *id, u32 *total)
1162
{
1163
	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1164 1165 1166
	int i = 0;

	do {
1167 1168 1169
		*last_in = record_read(&rec_map, last_switch_in_stamp);
		*id = record_read(&rec_map, current_context_index);
		*total = record_read(&rec_map, total_runtime);
1170

1171 1172 1173
		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
		    record_read(&rec_map, current_context_index) == *id &&
		    record_read(&rec_map, total_runtime) == *total)
1174 1175 1176 1177 1178 1179
			break;
	} while (++i < 6);
}

static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
{
1180 1181
	struct intel_engine_guc_stats *stats = &engine->stats.guc;
	struct intel_guc *guc = &engine->gt->uc.guc;
1182
	u32 last_switch, ctx_id, total;
1183 1184 1185

	lockdep_assert_held(&guc->timestamp.lock);

1186 1187
	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	stats->running = ctx_id != ~0U && last_switch;
	if (stats->running)
		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);

	/*
	 * Instead of adjusting the total for overflow, just add the
	 * difference from previous sample stats->total_gt_clks
	 */
	if (total && total != ~0U) {
		stats->total_gt_clks += (u32)(total - stats->prev_total);
		stats->prev_total = total;
	}
}

1202
static u32 gpm_timestamp_shift(struct intel_gt *gt)
1203
{
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	intel_wakeref_t wakeref;
	u32 reg, shift;

	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);

	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;

	return 3 - shift;
}

static u64 gpm_timestamp(struct intel_gt *gt)
1217
{
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	u32 lo, hi, old_hi, loop = 0;

	hi = intel_uncore_read(gt->uncore, MISC_STATUS1);
	do {
		lo = intel_uncore_read(gt->uncore, MISC_STATUS0);
		old_hi = hi;
		hi = intel_uncore_read(gt->uncore, MISC_STATUS1);
	} while (old_hi != hi && loop++ < 2);

	return ((u64)hi << 32) | lo;
}

static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
{
	struct intel_gt *gt = guc_to_gt(guc);
	u32 gt_stamp_lo, gt_stamp_hi;
	u64 gpm_ts;
1235 1236 1237 1238

	lockdep_assert_held(&guc->timestamp.lock);

	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1239 1240
	gpm_ts = gpm_timestamp(gt) >> guc->timestamp.shift;
	gt_stamp_lo = lower_32_bits(gpm_ts);
1241 1242
	*now = ktime_get();

1243
	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1244 1245
		gt_stamp_hi++;

1246
	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
}

/*
 * Unlike the execlist mode of submission total and active times are in terms of
 * gt clocks. The *now parameter is retained to return the cpu time at which the
 * busyness was sampled.
 */
static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
{
	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
	struct intel_gt *gt = engine->gt;
	struct intel_guc *guc = &gt->uc.guc;
	u64 total, gt_stamp_saved;
	unsigned long flags;
	u32 reset_count;
1263
	bool in_reset;
1264 1265 1266 1267

	spin_lock_irqsave(&guc->timestamp.lock, flags);

	/*
1268 1269 1270 1271 1272 1273
	 * If a reset happened, we risk reading partially updated engine
	 * busyness from GuC, so we just use the driver stored copy of busyness.
	 * Synchronize with gt reset using reset_count and the
	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
	 * usable by checking the flag afterwards.
1274 1275
	 */
	reset_count = i915_reset_count(gpu_error);
1276
	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1277 1278 1279 1280 1281 1282 1283 1284 1285

	*now = ktime_get();

	/*
	 * The active busyness depends on start_gt_clk and gt_stamp.
	 * gt_stamp is updated by i915 only when gt is awake and the
	 * start_gt_clk is derived from GuC state. To get a consistent
	 * view of activity, we query the GuC state only if gt is awake.
	 */
1286
	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1287 1288
		stats_saved = *stats;
		gt_stamp_saved = guc->timestamp.gt_stamp;
1289 1290 1291 1292
		/*
		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
		 * start_gt_clk' calculation below for active engines.
		 */
1293
		guc_update_engine_gt_clks(engine);
1294
		guc_update_pm_timestamp(guc, now);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		intel_gt_pm_put_async(gt);
		if (i915_reset_count(gpu_error) != reset_count) {
			*stats = stats_saved;
			guc->timestamp.gt_stamp = gt_stamp_saved;
		}
	}

	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
	if (stats->running) {
		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;

		total += intel_gt_clock_interval_to_ns(gt, clk);
	}

	spin_unlock_irqrestore(&guc->timestamp.lock, flags);

	return ns_to_ktime(total);
}

static void __reset_guc_busyness_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned long flags;
	ktime_t unused;

	cancel_delayed_work_sync(&guc->timestamp.work);

	spin_lock_irqsave(&guc->timestamp.lock, flags);

1326
	guc_update_pm_timestamp(guc, &unused);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	for_each_engine(engine, gt, id) {
		guc_update_engine_gt_clks(engine);
		engine->stats.guc.prev_total = 0;
	}

	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
}

static void __update_guc_busyness_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
1340
	unsigned long flags;
1341 1342
	ktime_t unused;

1343
	spin_lock_irqsave(&guc->timestamp.lock, flags);
1344 1345 1346

	guc_update_pm_timestamp(guc, &unused);
	for_each_engine(engine, gt, id)
1347
		guc_update_engine_gt_clks(engine);
1348

1349
	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
}

static void guc_timestamp_ping(struct work_struct *wrk)
{
	struct intel_guc *guc = container_of(wrk, typeof(*guc),
					     timestamp.work.work);
	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
	struct intel_gt *gt = guc_to_gt(guc);
	intel_wakeref_t wakeref;
	int srcu, ret;

	/*
	 * Synchronize with gt reset to make sure the worker does not
	 * corrupt the engine/guc stats.
	 */
	ret = intel_gt_reset_trylock(gt, &srcu);
	if (ret)
		return;

	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
		__update_guc_busyness_stats(guc);

	intel_gt_reset_unlock(gt, srcu);

	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);
}

static int guc_action_enable_usage_stats(struct intel_guc *guc)
{
	u32 offset = intel_guc_engine_usage_offset(guc);
	u32 action[] = {
		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
		offset,
		0,
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

static void guc_init_engine_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	intel_wakeref_t wakeref;

	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);

	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
		int ret = guc_action_enable_usage_stats(guc);

		if (ret)
			drm_err(&gt->i915->drm,
				"Failed to enable usage stats: %d!\n", ret);
	}
}

void intel_guc_busyness_park(struct intel_gt *gt)
{
	struct intel_guc *guc = &gt->uc.guc;

	if (!guc_submission_initialized(guc))
		return;

	cancel_delayed_work(&guc->timestamp.work);
	__update_guc_busyness_stats(guc);
}

void intel_guc_busyness_unpark(struct intel_gt *gt)
{
	struct intel_guc *guc = &gt->uc.guc;
1421 1422
	unsigned long flags;
	ktime_t unused;
1423 1424 1425 1426

	if (!guc_submission_initialized(guc))
		return;

1427 1428 1429
	spin_lock_irqsave(&guc->timestamp.lock, flags);
	guc_update_pm_timestamp(guc, &unused);
	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1430 1431 1432 1433
	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);
}

1434 1435 1436 1437 1438 1439
static inline bool
submission_disabled(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;

	return unlikely(!sched_engine ||
1440 1441
			!__tasklet_is_enabled(&sched_engine->tasklet) ||
			intel_gt_is_wedged(guc_to_gt(guc)));
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
}

static void disable_submission(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;

	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
		GEM_BUG_ON(!guc->ct.enabled);
		__tasklet_disable_sync_once(&sched_engine->tasklet);
		sched_engine->tasklet.callback = NULL;
	}
}

static void enable_submission(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&guc->sched_engine->lock, flags);
	sched_engine->tasklet.callback = guc_submission_tasklet;
	wmb();	/* Make sure callback visible */
	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
	    __tasklet_enable(&sched_engine->tasklet)) {
		GEM_BUG_ON(!guc->ct.enabled);

		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&sched_engine->tasklet);
	}
	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
}

static void guc_flush_submissions(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&sched_engine->lock, flags);
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

1482 1483
static void guc_flush_destroyed_contexts(struct intel_guc *guc);

1484
void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1485
{
1486 1487 1488 1489 1490
	if (unlikely(!guc_submission_initialized(guc))) {
		/* Reset called during driver load? GuC not yet initialised! */
		return;
	}

1491
	intel_gt_park_heartbeats(guc_to_gt(guc));
1492 1493
	disable_submission(guc);
	guc->interrupts.disable(guc);
1494
	__reset_guc_busyness_stats(guc);
1495 1496 1497 1498 1499 1500

	/* Flush IRQ handler */
	spin_lock_irq(&guc_to_gt(guc)->irq_lock);
	spin_unlock_irq(&guc_to_gt(guc)->irq_lock);

	guc_flush_submissions(guc);
1501
	guc_flush_destroyed_contexts(guc);
1502
	flush_work(&guc->ct.requests.worker);
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	scrub_guc_desc_for_outstanding_g2h(guc);
}

static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
{
	struct intel_engine_cs *engine;
	intel_engine_mask_t tmp, mask = ve->mask;
	unsigned int num_siblings = 0;

	for_each_engine_masked(engine, ve->gt, mask, tmp)
		if (num_siblings++ == sibling)
			return engine;

	return NULL;
}

static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;

	if (intel_engine_is_virtual(engine))
		engine = guc_virtual_get_sibling(engine, 0);

	return engine;
1530 1531
}

1532
static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1533
{
1534 1535
	struct intel_engine_cs *engine = __context_to_physical_engine(ce);

1536 1537 1538
	if (intel_context_is_banned(ce))
		return;

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	GEM_BUG_ON(!intel_context_is_pinned(ce));

	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub)
		lrc_init_regs(ce, engine, true);

	/* Rerun the request; its payload has been neutered (if guilty). */
	lrc_update_regs(ce, engine, head);
}

1556
static void guc_reset_nop(struct intel_engine_cs *engine)
1557
{
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
}

static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
{
}

static void
__unwind_incomplete_requests(struct intel_context *ce)
{
	struct i915_request *rq, *rn;
	struct list_head *pl;
	int prio = I915_PRIORITY_INVALID;
	struct i915_sched_engine * const sched_engine =
		ce->engine->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&sched_engine->lock, flags);
1575
	spin_lock(&ce->guc_state.lock);
1576
	list_for_each_entry_safe_reverse(rq, rn,
1577
					 &ce->guc_state.requests,
1578
					 sched.link) {
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		if (i915_request_completed(rq))
			continue;

		list_del_init(&rq->sched.link);
		__i915_request_unsubmit(rq);

		/* Push the request back into the queue for later resubmission. */
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != prio) {
			prio = rq_prio(rq);
			pl = i915_sched_lookup_priolist(sched_engine, prio);
		}
		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));

1593
		list_add(&rq->sched.link, pl);
1594 1595
		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	}
1596
	spin_unlock(&ce->guc_state.lock);
1597 1598 1599 1600 1601
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

static void __guc_reset_context(struct intel_context *ce, bool stalled)
{
1602
	bool local_stalled;
1603
	struct i915_request *rq;
1604
	unsigned long flags;
1605
	u32 head;
1606 1607 1608 1609
	int i, number_children = ce->parallel.number_children;
	struct intel_context *parent = ce;

	GEM_BUG_ON(intel_context_is_child(ce));
1610

1611 1612
	intel_context_get(ce);

1613
	/*
1614 1615 1616
	 * GuC will implicitly mark the context as non-schedulable when it sends
	 * the reset notification. Make sure our state reflects this change. The
	 * context will be marked enabled on resubmission.
1617
	 */
1618
	spin_lock_irqsave(&ce->guc_state.lock, flags);
1619
	clr_context_enabled(ce);
1620
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1621

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	/*
	 * For each context in the relationship find the hanging request
	 * resetting each context / request as needed
	 */
	for (i = 0; i < number_children + 1; ++i) {
		if (!intel_context_is_pinned(ce))
			goto next_context;

		local_stalled = false;
		rq = intel_context_find_active_request(ce);
		if (!rq) {
			head = ce->ring->tail;
			goto out_replay;
		}
1636

1637 1638
		if (i915_request_started(rq))
			local_stalled = true;
1639

1640 1641
		GEM_BUG_ON(i915_active_is_idle(&ce->active));
		head = intel_ring_wrap(ce->ring, rq->head);
1642

1643
		__i915_request_reset(rq, local_stalled && stalled);
1644
out_replay:
1645 1646 1647 1648 1649 1650 1651 1652
		guc_reset_state(ce, head, local_stalled && stalled);
next_context:
		if (i != number_children)
			ce = list_next_entry(ce, parallel.child_link);
	}

	__unwind_incomplete_requests(parent);
	intel_context_put(parent);
1653 1654 1655 1656 1657 1658
}

void intel_guc_submission_reset(struct intel_guc *guc, bool stalled)
{
	struct intel_context *ce;
	unsigned long index;
1659
	unsigned long flags;
1660 1661 1662 1663 1664 1665

	if (unlikely(!guc_submission_initialized(guc))) {
		/* Reset called during driver load? GuC not yet initialised! */
		return;
	}

1666 1667 1668 1669 1670 1671 1672
	xa_lock_irqsave(&guc->context_lookup, flags);
	xa_for_each(&guc->context_lookup, index, ce) {
		if (!kref_get_unless_zero(&ce->ref))
			continue;

		xa_unlock(&guc->context_lookup);

1673 1674
		if (intel_context_is_pinned(ce) &&
		    !intel_context_is_child(ce))
1675 1676
			__guc_reset_context(ce, stalled);

1677 1678 1679 1680 1681 1682
		intel_context_put(ce);

		xa_lock(&guc->context_lookup);
	}
	xa_unlock_irqrestore(&guc->context_lookup, flags);

1683 1684
	/* GuC is blown away, drop all references to contexts */
	xa_destroy(&guc->context_lookup);
1685 1686
}

1687 1688 1689 1690 1691 1692 1693 1694
static void guc_cancel_context_requests(struct intel_context *ce)
{
	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
	struct i915_request *rq;
	unsigned long flags;

	/* Mark all executing requests as skipped. */
	spin_lock_irqsave(&sched_engine->lock, flags);
1695 1696
	spin_lock(&ce->guc_state.lock);
	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1697
		i915_request_put(i915_request_mark_eio(rq));
1698
	spin_unlock(&ce->guc_state.lock);
1699 1700 1701 1702 1703
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

static void
guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1704 1705 1706 1707 1708
{
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

1709
	/* Can be called during boot if GuC fails to load */
1710
	if (!sched_engine)
1711 1712
		return;

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
1727
	spin_lock_irqsave(&sched_engine->lock, flags);
1728 1729

	/* Flush the queued requests to the timeline list (for retiring). */
1730
	while ((rb = rb_first_cached(&sched_engine->queue))) {
1731 1732
		struct i915_priolist *p = to_priolist(rb);

1733
		priolist_for_each_request_consume(rq, rn, p) {
1734
			list_del_init(&rq->sched.link);
1735

1736
			__i915_request_submit(rq);
1737 1738

			i915_request_put(i915_request_mark_eio(rq));
1739 1740
		}

1741
		rb_erase_cached(&p->node, &sched_engine->queue);
1742 1743 1744 1745 1746
		i915_priolist_free(p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

1747 1748
	sched_engine->queue_priority_hint = INT_MIN;
	sched_engine->queue = RB_ROOT_CACHED;
1749

1750
	spin_unlock_irqrestore(&sched_engine->lock, flags);
1751 1752
}

1753
void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1754
{
1755 1756
	struct intel_context *ce;
	unsigned long index;
1757 1758 1759 1760 1761 1762 1763 1764
	unsigned long flags;

	xa_lock_irqsave(&guc->context_lookup, flags);
	xa_for_each(&guc->context_lookup, index, ce) {
		if (!kref_get_unless_zero(&ce->ref))
			continue;

		xa_unlock(&guc->context_lookup);
1765

1766 1767
		if (intel_context_is_pinned(ce) &&
		    !intel_context_is_child(ce))
1768 1769
			guc_cancel_context_requests(ce);

1770 1771 1772 1773 1774 1775
		intel_context_put(ce);

		xa_lock(&guc->context_lookup);
	}
	xa_unlock_irqrestore(&guc->context_lookup, flags);

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	guc_cancel_sched_engine_requests(guc->sched_engine);

	/* GuC is blown away, drop all references to contexts */
	xa_destroy(&guc->context_lookup);
}

void intel_guc_submission_reset_finish(struct intel_guc *guc)
{
	/* Reset called during driver load or during wedge? */
	if (unlikely(!guc_submission_initialized(guc) ||
1786
		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1787 1788
		return;
	}
1789

1790 1791 1792 1793 1794 1795 1796 1797 1798
	/*
	 * Technically possible for either of these values to be non-zero here,
	 * but very unlikely + harmless. Regardless let's add a warn so we can
	 * see in CI if this happens frequently / a precursor to taking down the
	 * machine.
	 */
	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
	atomic_set(&guc->outstanding_submission_g2h, 0);

1799
	intel_guc_global_policies_update(guc);
1800
	enable_submission(guc);
1801
	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1802 1803
}

1804
static void destroyed_worker_func(struct work_struct *w);
1805
static void reset_fail_worker_func(struct work_struct *w);
1806

1807
/*
1808 1809
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
1810
 */
1811
int intel_guc_submission_init(struct intel_guc *guc)
1812
{
1813
	struct intel_gt *gt = guc_to_gt(guc);
1814
	int ret;
1815

1816
	if (guc->submission_initialized)
1817
		return 0;
1818

1819
	ret = guc_lrc_desc_pool_create(guc);
1820 1821
	if (ret)
		return ret;
1822 1823 1824 1825
	/*
	 * Keep static analysers happy, let them know that we allocated the
	 * vma after testing that it didn't exist earlier.
	 */
1826
	GEM_BUG_ON(!guc->lrc_desc_pool);
1827

1828
	guc->submission_state.guc_ids_bitmap =
1829
		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1830 1831 1832
	if (!guc->submission_state.guc_ids_bitmap)
		return -ENOMEM;

1833
	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1834
	guc->timestamp.shift = gpm_timestamp_shift(gt);
1835
	guc->submission_initialized = true;
1836

1837
	return 0;
1838 1839
}

1840
void intel_guc_submission_fini(struct intel_guc *guc)
1841
{
1842
	if (!guc->submission_initialized)
1843 1844
		return;

1845
	guc_flush_destroyed_contexts(guc);
1846 1847
	guc_lrc_desc_pool_destroy(guc);
	i915_sched_engine_put(guc->sched_engine);
1848
	bitmap_free(guc->submission_state.guc_ids_bitmap);
1849
	guc->submission_initialized = false;
1850 1851
}

1852 1853 1854
static inline void queue_request(struct i915_sched_engine *sched_engine,
				 struct i915_request *rq,
				 int prio)
1855
{
1856 1857 1858 1859
	GEM_BUG_ON(!list_empty(&rq->sched.link));
	list_add_tail(&rq->sched.link,
		      i915_sched_lookup_priolist(sched_engine, prio));
	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1860
	tasklet_hi_schedule(&sched_engine->tasklet);
1861 1862 1863 1864 1865
}

static int guc_bypass_tasklet_submit(struct intel_guc *guc,
				     struct i915_request *rq)
{
1866
	int ret = 0;
1867 1868 1869 1870 1871

	__i915_request_submit(rq);

	trace_i915_request_in(rq, 0);

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	if (is_multi_lrc_rq(rq)) {
		if (multi_lrc_submit(rq)) {
			ret = guc_wq_item_append(guc, rq);
			if (!ret)
				ret = guc_add_request(guc, rq);
		}
	} else {
		guc_set_lrc_tail(rq);
		ret = guc_add_request(guc, rq);
	}
1882

1883 1884 1885
	if (unlikely(ret == -EPIPE))
		disable_submission(guc);

1886 1887 1888
	return ret;
}

1889 1890 1891 1892 1893 1894 1895
static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
{
	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
	struct intel_context *ce = request_to_scheduling_context(rq);

	return submission_disabled(guc) || guc->stalled_request ||
		!i915_sched_engine_is_empty(sched_engine) ||
1896
		!ctx_id_mapped(guc, ce->guc_id.id);
1897 1898
}

1899 1900 1901 1902 1903 1904 1905 1906 1907
static void guc_submit_request(struct i915_request *rq)
{
	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
	struct intel_guc *guc = &rq->engine->gt->uc.guc;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&sched_engine->lock, flags);

1908
	if (need_tasklet(guc, rq))
1909 1910 1911 1912 1913 1914 1915
		queue_request(sched_engine, rq, rq_prio(rq));
	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
		tasklet_hi_schedule(&sched_engine->tasklet);

	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

1916
static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
1917
{
1918 1919 1920 1921 1922 1923
	int ret;

	GEM_BUG_ON(intel_context_is_child(ce));

	if (intel_context_is_parent(ce))
		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
1924
					      NUMBER_MULTI_LRC_GUC_ID(guc),
1925 1926 1927 1928
					      order_base_2(ce->parallel.number_children
							   + 1));
	else
		ret = ida_simple_get(&guc->submission_state.guc_ids,
1929 1930
				     NUMBER_MULTI_LRC_GUC_ID(guc),
				     guc->submission_state.num_guc_ids,
1931 1932 1933 1934 1935 1936 1937
				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
				     __GFP_NOWARN);
	if (unlikely(ret < 0))
		return ret;

	ce->guc_id.id = ret;
	return 0;
1938 1939 1940 1941
}

static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
1942 1943
	GEM_BUG_ON(intel_context_is_child(ce));

1944
	if (!context_guc_id_invalid(ce)) {
1945 1946 1947 1948 1949 1950 1951 1952
		if (intel_context_is_parent(ce))
			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
					      ce->guc_id.id,
					      order_base_2(ce->parallel.number_children
							   + 1));
		else
			ida_simple_remove(&guc->submission_state.guc_ids,
					  ce->guc_id.id);
1953
		clr_ctx_id_mapping(guc, ce->guc_id.id);
1954 1955
		set_context_guc_id_invalid(ce);
	}
1956 1957
	if (!list_empty(&ce->guc_id.link))
		list_del_init(&ce->guc_id.link);
1958 1959 1960 1961 1962 1963
}

static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	unsigned long flags;

1964
	spin_lock_irqsave(&guc->submission_state.lock, flags);
1965
	__release_guc_id(guc, ce);
1966
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
1967 1968
}

1969
static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
1970
{
1971
	struct intel_context *cn;
1972

1973
	lockdep_assert_held(&guc->submission_state.lock);
1974 1975
	GEM_BUG_ON(intel_context_is_child(ce));
	GEM_BUG_ON(intel_context_is_parent(ce));
1976

1977
	if (!list_empty(&guc->submission_state.guc_id_list)) {
1978
		cn = list_first_entry(&guc->submission_state.guc_id_list,
1979
				      struct intel_context,
1980
				      guc_id.link);
1981

1982 1983 1984 1985
		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
		GEM_BUG_ON(context_guc_id_invalid(cn));
		GEM_BUG_ON(intel_context_is_child(cn));
		GEM_BUG_ON(intel_context_is_parent(cn));
1986

1987
		list_del_init(&cn->guc_id.link);
1988
		ce->guc_id.id = cn->guc_id.id;
1989

1990
		spin_lock(&cn->guc_state.lock);
1991
		clr_context_registered(cn);
1992
		spin_unlock(&cn->guc_state.lock);
1993

1994 1995
		set_context_guc_id_invalid(cn);

1996 1997 1998 1999
#ifdef CONFIG_DRM_I915_SELFTEST
		guc->number_guc_id_stolen++;
#endif

2000
		return 0;
2001 2002 2003 2004 2005
	} else {
		return -EAGAIN;
	}
}

2006
static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2007 2008 2009
{
	int ret;

2010
	lockdep_assert_held(&guc->submission_state.lock);
2011
	GEM_BUG_ON(intel_context_is_child(ce));
2012

2013
	ret = new_guc_id(guc, ce);
2014
	if (unlikely(ret < 0)) {
2015 2016 2017 2018
		if (intel_context_is_parent(ce))
			return -ENOSPC;

		ret = steal_guc_id(guc, ce);
2019 2020 2021 2022
		if (ret < 0)
			return ret;
	}

2023 2024 2025 2026 2027 2028 2029 2030
	if (intel_context_is_parent(ce)) {
		struct intel_context *child;
		int i = 1;

		for_each_child(ce, child)
			child->guc_id.id = ce->guc_id.id + i++;
	}

2031 2032 2033 2034 2035 2036 2037 2038 2039
	return 0;
}

#define PIN_GUC_ID_TRIES	4
static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	int ret = 0;
	unsigned long flags, tries = PIN_GUC_ID_TRIES;

2040
	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2041 2042

try_again:
2043
	spin_lock_irqsave(&guc->submission_state.lock, flags);
2044

2045 2046
	might_lock(&ce->guc_state.lock);

2047
	if (context_guc_id_invalid(ce)) {
2048
		ret = assign_guc_id(guc, ce);
2049 2050 2051 2052
		if (ret)
			goto out_unlock;
		ret = 1;	/* Indidcates newly assigned guc_id */
	}
2053 2054 2055
	if (!list_empty(&ce->guc_id.link))
		list_del_init(&ce->guc_id.link);
	atomic_inc(&ce->guc_id.ref);
2056 2057

out_unlock:
2058
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2059 2060

	/*
2061
	 * -EAGAIN indicates no guc_id are available, let's retire any
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	 * outstanding requests to see if that frees up a guc_id. If the first
	 * retire didn't help, insert a sleep with the timeslice duration before
	 * attempting to retire more requests. Double the sleep period each
	 * subsequent pass before finally giving up. The sleep period has max of
	 * 100ms and minimum of 1ms.
	 */
	if (ret == -EAGAIN && --tries) {
		if (PIN_GUC_ID_TRIES - tries > 1) {
			unsigned int timeslice_shifted =
				ce->engine->props.timeslice_duration_ms <<
				(PIN_GUC_ID_TRIES - tries - 2);
			unsigned int max = min_t(unsigned int, 100,
						 timeslice_shifted);

			msleep(max_t(unsigned int, max, 1));
		}
		intel_gt_retire_requests(guc_to_gt(guc));
		goto try_again;
	}

	return ret;
}

static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	unsigned long flags;

2089
	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2090
	GEM_BUG_ON(intel_context_is_child(ce));
2091

2092 2093
	if (unlikely(context_guc_id_invalid(ce) ||
		     intel_context_is_parent(ce)))
2094 2095
		return;

2096
	spin_lock_irqsave(&guc->submission_state.lock, flags);
2097 2098
	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
	    !atomic_read(&ce->guc_id.ref))
2099 2100 2101
		list_add_tail(&ce->guc_id.link,
			      &guc->submission_state.guc_id_list);
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2102 2103
}

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
static int __guc_action_register_multi_lrc(struct intel_guc *guc,
					   struct intel_context *ce,
					   u32 guc_id,
					   u32 offset,
					   bool loop)
{
	struct intel_context *child;
	u32 action[4 + MAX_ENGINE_INSTANCE];
	int len = 0;

	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);

	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
	action[len++] = guc_id;
	action[len++] = ce->parallel.number_children + 1;
	action[len++] = offset;
	for_each_child(ce, child) {
		offset += sizeof(struct guc_lrc_desc);
		action[len++] = offset;
	}

	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
}

2128 2129
static int __guc_action_register_context(struct intel_guc *guc,
					 u32 guc_id,
2130 2131
					 u32 offset,
					 bool loop)
2132 2133 2134 2135 2136 2137 2138
{
	u32 action[] = {
		INTEL_GUC_ACTION_REGISTER_CONTEXT,
		guc_id,
		offset,
	};

2139
	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2140
					     0, loop);
2141 2142
}

2143 2144
static void prepare_context_registration_info(struct intel_context *ce);

2145
static int register_context(struct intel_context *ce, bool loop)
2146 2147 2148
{
	struct intel_guc *guc = ce_to_guc(ce);
	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool) +
2149
		ce->guc_id.id * sizeof(struct guc_lrc_desc);
2150
	int ret;
2151

2152
	GEM_BUG_ON(intel_context_is_child(ce));
2153 2154
	trace_intel_context_register(ce);

2155 2156
	prepare_context_registration_info(ce);

2157 2158 2159 2160 2161 2162
	if (intel_context_is_parent(ce))
		ret = __guc_action_register_multi_lrc(guc, ce, ce->guc_id.id,
						      offset, loop);
	else
		ret = __guc_action_register_context(guc, ce->guc_id.id, offset,
						    loop);
2163 2164 2165 2166
	if (likely(!ret)) {
		unsigned long flags;

		spin_lock_irqsave(&ce->guc_state.lock, flags);
2167
		set_context_registered(ce);
2168 2169
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	}
2170 2171

	return ret;
2172 2173 2174
}

static int __guc_action_deregister_context(struct intel_guc *guc,
2175
					   u32 guc_id)
2176 2177 2178 2179 2180 2181
{
	u32 action[] = {
		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
		guc_id,
	};

2182 2183
	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2184
					     true);
2185 2186
}

2187
static int deregister_context(struct intel_context *ce, u32 guc_id)
2188 2189 2190
{
	struct intel_guc *guc = ce_to_guc(ce);

2191
	GEM_BUG_ON(intel_context_is_child(ce));
2192 2193
	trace_intel_context_deregister(ce);

2194
	return __guc_action_deregister_context(guc, guc_id);
2195 2196
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
static inline void clear_children_join_go_memory(struct intel_context *ce)
{
	struct parent_scratch *ps = __get_parent_scratch(ce);
	int i;

	ps->go.semaphore = 0;
	for (i = 0; i < ce->parallel.number_children + 1; ++i)
		ps->join[i].semaphore = 0;
}

static inline u32 get_children_go_value(struct intel_context *ce)
{
	return __get_parent_scratch(ce)->go.semaphore;
}

static inline u32 get_children_join_value(struct intel_context *ce,
					  u8 child_index)
{
	return __get_parent_scratch(ce)->join[child_index].semaphore;
}

2218 2219 2220 2221 2222
static void guc_context_policy_init(struct intel_engine_cs *engine,
				    struct guc_lrc_desc *desc)
{
	desc->policy_flags = 0;

2223 2224 2225
	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE;

2226 2227 2228
	/* NB: For both of these, zero means disabled. */
	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2229 2230
}

2231
static void prepare_context_registration_info(struct intel_context *ce)
2232 2233 2234
{
	struct intel_engine_cs *engine = ce->engine;
	struct intel_guc *guc = &engine->gt->uc.guc;
2235
	u32 ctx_id = ce->guc_id.id;
2236
	struct guc_lrc_desc *desc;
2237
	struct intel_context *child;
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

	GEM_BUG_ON(!engine->mask);

	/*
	 * Ensure LRC + CT vmas are is same region as write barrier is done
	 * based on CT vma region.
	 */
	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
		   i915_gem_object_is_lmem(ce->ring->vma->obj));

2248
	desc = __get_lrc_desc(guc, ctx_id);
2249
	desc->engine_class = engine_class_to_guc_class(engine->class);
2250
	desc->engine_submit_mask = engine->logical_mask;
2251
	desc->hw_context_desc = ce->lrc.lrca;
2252
	desc->priority = ce->guc_state.prio;
2253 2254 2255
	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
	guc_context_policy_init(engine, desc);

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	/*
	 * If context is a parent, we need to register a process descriptor
	 * describing a work queue and register all child contexts.
	 */
	if (intel_context_is_parent(ce)) {
		struct guc_process_desc *pdesc;

		ce->parallel.guc.wqi_tail = 0;
		ce->parallel.guc.wqi_head = 0;

		desc->process_desc = i915_ggtt_offset(ce->state) +
2267
			__get_parent_scratch_offset(ce);
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
		desc->wq_addr = i915_ggtt_offset(ce->state) +
			__get_wq_offset(ce);
		desc->wq_size = WQ_SIZE;

		pdesc = __get_process_desc(ce);
		memset(pdesc, 0, sizeof(*(pdesc)));
		pdesc->stage_id = ce->guc_id.id;
		pdesc->wq_base_addr = desc->wq_addr;
		pdesc->wq_size_bytes = desc->wq_size;
		pdesc->wq_status = WQ_STATUS_ACTIVE;

		for_each_child(ce, child) {
			desc = __get_lrc_desc(guc, child->guc_id.id);

			desc->engine_class =
				engine_class_to_guc_class(engine->class);
			desc->hw_context_desc = child->lrc.lrca;
			desc->priority = ce->guc_state.prio;
			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
			guc_context_policy_init(engine, desc);
		}
2289 2290

		clear_children_join_go_memory(ce);
2291
	}
2292 2293 2294 2295 2296 2297 2298 2299
}

static int try_context_registration(struct intel_context *ce, bool loop)
{
	struct intel_engine_cs *engine = ce->engine;
	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
	struct intel_guc *guc = &engine->gt->uc.guc;
	intel_wakeref_t wakeref;
2300
	u32 ctx_id = ce->guc_id.id;
2301 2302 2303 2304 2305
	bool context_registered;
	int ret = 0;

	GEM_BUG_ON(!sched_state_is_init(ce));

2306
	context_registered = ctx_id_mapped(guc, ctx_id);
2307

2308 2309
	clr_ctx_id_mapping(guc, ctx_id);
	set_ctx_id_mapping(guc, ctx_id, ce);
2310

2311 2312 2313 2314 2315 2316 2317 2318 2319
	/*
	 * The context_lookup xarray is used to determine if the hardware
	 * context is currently registered. There are two cases in which it
	 * could be registered either the guc_id has been stolen from another
	 * context or the lrc descriptor address of this context has changed. In
	 * either case the context needs to be deregistered with the GuC before
	 * registering this context.
	 */
	if (context_registered) {
2320 2321 2322
		bool disabled;
		unsigned long flags;

2323
		trace_intel_context_steal_guc_id(ce);
2324 2325 2326 2327 2328 2329
		GEM_BUG_ON(!loop);

		/* Seal race with Reset */
		spin_lock_irqsave(&ce->guc_state.lock, flags);
		disabled = submission_disabled(guc);
		if (likely(!disabled)) {
2330 2331
			set_context_wait_for_deregister_to_register(ce);
			intel_context_get(ce);
2332 2333 2334
		}
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
		if (unlikely(disabled)) {
2335
			clr_ctx_id_mapping(guc, ctx_id);
2336
			return 0;	/* Will get registered later */
2337
		}
2338 2339 2340 2341 2342 2343

		/*
		 * If stealing the guc_id, this ce has the same guc_id as the
		 * context whose guc_id was stolen.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref)
2344
			ret = deregister_context(ce, ce->guc_id.id);
2345
		if (unlikely(ret == -ENODEV))
2346
			ret = 0;	/* Will get registered later */
2347 2348
	} else {
		with_intel_runtime_pm(runtime_pm, wakeref)
2349
			ret = register_context(ce, loop);
2350
		if (unlikely(ret == -EBUSY)) {
2351
			clr_ctx_id_mapping(guc, ctx_id);
2352
		} else if (unlikely(ret == -ENODEV)) {
2353
			clr_ctx_id_mapping(guc, ctx_id);
2354
			ret = 0;	/* Will get registered later */
2355
		}
2356 2357 2358
	}

	return ret;
2359 2360
}

2361 2362 2363 2364
static int __guc_context_pre_pin(struct intel_context *ce,
				 struct intel_engine_cs *engine,
				 struct i915_gem_ww_ctx *ww,
				 void **vaddr)
2365
{
2366
	return lrc_pre_pin(ce, engine, ww, vaddr);
2367 2368
}

2369 2370 2371
static int __guc_context_pin(struct intel_context *ce,
			     struct intel_engine_cs *engine,
			     void *vaddr)
2372
{
2373 2374 2375 2376 2377 2378 2379 2380 2381
	if (i915_ggtt_offset(ce->state) !=
	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);

	/*
	 * GuC context gets pinned in guc_request_alloc. See that function for
	 * explaination of why.
	 */

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	return lrc_pin(ce, engine, vaddr);
}

static int guc_context_pre_pin(struct intel_context *ce,
			       struct i915_gem_ww_ctx *ww,
			       void **vaddr)
{
	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
}

static int guc_context_pin(struct intel_context *ce, void *vaddr)
{
2394 2395 2396 2397 2398 2399
	int ret = __guc_context_pin(ce, ce->engine, vaddr);

	if (likely(!ret && !intel_context_is_barrier(ce)))
		intel_engine_pm_get(ce->engine);

	return ret;
2400 2401
}

2402 2403 2404 2405 2406 2407
static void guc_context_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);
2408 2409 2410

	if (likely(!intel_context_is_barrier(ce)))
		intel_engine_pm_put_async(ce->engine);
2411 2412 2413 2414 2415 2416 2417
}

static void guc_context_post_unpin(struct intel_context *ce)
{
	lrc_post_unpin(ce);
}

2418 2419 2420 2421 2422
static void __guc_context_sched_enable(struct intel_guc *guc,
				       struct intel_context *ce)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2423
		ce->guc_id.id,
2424 2425 2426 2427 2428 2429 2430 2431 2432
		GUC_CONTEXT_ENABLE
	};

	trace_intel_context_sched_enable(ce);

	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
}

2433 2434 2435 2436 2437 2438
static void __guc_context_sched_disable(struct intel_guc *guc,
					struct intel_context *ce,
					u16 guc_id)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2439
		guc_id,	/* ce->guc_id.id not stable */
2440 2441 2442
		GUC_CONTEXT_DISABLE
	};

2443
	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2444

2445
	GEM_BUG_ON(intel_context_is_child(ce));
2446
	trace_intel_context_sched_disable(ce);
2447

2448 2449
	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2450 2451
}

2452 2453 2454 2455
static void guc_blocked_fence_complete(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

2456 2457
	if (!i915_sw_fence_done(&ce->guc_state.blocked))
		i915_sw_fence_complete(&ce->guc_state.blocked);
2458 2459 2460 2461 2462
}

static void guc_blocked_fence_reinit(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
2463
	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2464 2465 2466 2467 2468 2469

	/*
	 * This fence is always complete unless a pending schedule disable is
	 * outstanding. We arm the fence here and complete it when we receive
	 * the pending schedule disable complete message.
	 */
2470 2471 2472 2473
	i915_sw_fence_fini(&ce->guc_state.blocked);
	i915_sw_fence_reinit(&ce->guc_state.blocked);
	i915_sw_fence_await(&ce->guc_state.blocked);
	i915_sw_fence_commit(&ce->guc_state.blocked);
2474 2475
}

2476 2477 2478 2479 2480 2481
static u16 prep_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	set_context_pending_disable(ce);
	clr_context_enabled(ce);
2482
	guc_blocked_fence_reinit(ce);
2483
	intel_context_get(ce);
2484

2485
	return ce->guc_id.id;
2486 2487
}

2488 2489 2490 2491 2492 2493 2494 2495 2496
static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
	intel_wakeref_t wakeref;
	u16 guc_id;
	bool enabled;

2497 2498
	GEM_BUG_ON(intel_context_is_child(ce));

2499 2500 2501 2502 2503 2504 2505 2506 2507
	spin_lock_irqsave(&ce->guc_state.lock, flags);

	incr_context_blocked(ce);

	enabled = context_enabled(ce);
	if (unlikely(!enabled || submission_disabled(guc))) {
		if (enabled)
			clr_context_enabled(ce);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2508
		return &ce->guc_state.blocked;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	}

	/*
	 * We add +2 here as the schedule disable complete CTB handler calls
	 * intel_context_sched_disable_unpin (-2 to pin_count).
	 */
	atomic_add(2, &ce->pin_count);

	guc_id = prep_context_pending_disable(ce);

	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	with_intel_runtime_pm(runtime_pm, wakeref)
		__guc_context_sched_disable(guc, ce, guc_id);

2524
	return &ce->guc_state.blocked;
2525 2526
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
#define SCHED_STATE_MULTI_BLOCKED_MASK \
	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
#define SCHED_STATE_NO_UNBLOCK \
	(SCHED_STATE_MULTI_BLOCKED_MASK | \
	 SCHED_STATE_PENDING_DISABLE | \
	 SCHED_STATE_BANNED)

static bool context_cant_unblock(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
		context_guc_id_invalid(ce) ||
2540
		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2541 2542 2543
		!intel_context_is_pinned(ce);
}

2544 2545 2546 2547 2548 2549 2550 2551 2552
static void guc_context_unblock(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
	intel_wakeref_t wakeref;
	bool enable;

	GEM_BUG_ON(context_enabled(ce));
2553
	GEM_BUG_ON(intel_context_is_child(ce));
2554 2555 2556 2557

	spin_lock_irqsave(&ce->guc_state.lock, flags);

	if (unlikely(submission_disabled(guc) ||
2558
		     context_cant_unblock(ce))) {
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
		enable = false;
	} else {
		enable = true;
		set_context_pending_enable(ce);
		set_context_enabled(ce);
		intel_context_get(ce);
	}

	decr_context_blocked(ce);

	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	if (enable) {
		with_intel_runtime_pm(runtime_pm, wakeref)
			__guc_context_sched_enable(guc, ce);
	}
}

static void guc_context_cancel_request(struct intel_context *ce,
				       struct i915_request *rq)
{
2580 2581 2582
	struct intel_context *block_context =
		request_to_scheduling_context(rq);

2583
	if (i915_sw_fence_signaled(&rq->submit)) {
2584
		struct i915_sw_fence *fence;
2585

2586
		intel_context_get(ce);
2587
		fence = guc_context_block(block_context);
2588 2589 2590 2591 2592 2593
		i915_sw_fence_wait(fence);
		if (!i915_request_completed(rq)) {
			__i915_request_skip(rq);
			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
					true);
		}
2594

2595
		guc_context_unblock(block_context);
2596
		intel_context_put(ce);
2597 2598 2599
	}
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
						 u16 guc_id,
						 u32 preemption_timeout)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SET_CONTEXT_PREEMPTION_TIMEOUT,
		guc_id,
		preemption_timeout
	};

	intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
}

static void guc_context_ban(struct intel_context *ce, struct i915_request *rq)
{
	struct intel_guc *guc = ce_to_guc(ce);
	struct intel_runtime_pm *runtime_pm =
		&ce->engine->gt->i915->runtime_pm;
	intel_wakeref_t wakeref;
	unsigned long flags;

2621 2622
	GEM_BUG_ON(intel_context_is_child(ce));

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
	guc_flush_submissions(guc);

	spin_lock_irqsave(&ce->guc_state.lock, flags);
	set_context_banned(ce);

	if (submission_disabled(guc) ||
	    (!context_enabled(ce) && !context_pending_disable(ce))) {
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);

		guc_cancel_context_requests(ce);
		intel_engine_signal_breadcrumbs(ce->engine);
	} else if (!context_pending_disable(ce)) {
		u16 guc_id;

		/*
		 * We add +2 here as the schedule disable complete CTB handler
		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
		 */
		atomic_add(2, &ce->pin_count);

		guc_id = prep_context_pending_disable(ce);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);

		/*
		 * In addition to disabling scheduling, set the preemption
		 * timeout to the minimum value (1 us) so the banned context
		 * gets kicked off the HW ASAP.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref) {
			__guc_context_set_preemption_timeout(guc, guc_id, 1);
			__guc_context_sched_disable(guc, ce, guc_id);
		}
	} else {
		if (!context_guc_id_invalid(ce))
			with_intel_runtime_pm(runtime_pm, wakeref)
				__guc_context_set_preemption_timeout(guc,
2659
								     ce->guc_id.id,
2660 2661 2662 2663 2664
								     1);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	}
}

2665 2666 2667 2668
static void guc_context_sched_disable(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
2669
	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
2670
	intel_wakeref_t wakeref;
2671
	u16 guc_id;
2672

2673 2674
	GEM_BUG_ON(intel_context_is_child(ce));

2675
	spin_lock_irqsave(&ce->guc_state.lock, flags);
2676 2677

	/*
2678 2679 2680 2681 2682
	 * We have to check if the context has been disabled by another thread,
	 * check if submssion has been disabled to seal a race with reset and
	 * finally check if any more requests have been committed to the
	 * context ensursing that a request doesn't slip through the
	 * 'context_pending_disable' fence.
2683
	 */
2684 2685
	if (unlikely(!context_enabled(ce) || submission_disabled(guc) ||
		     context_has_committed_requests(ce))) {
2686
		clr_context_enabled(ce);
2687 2688 2689
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
		goto unpin;
	}
2690
	guc_id = prep_context_pending_disable(ce);
2691

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	with_intel_runtime_pm(runtime_pm, wakeref)
		__guc_context_sched_disable(guc, ce, guc_id);

	return;
unpin:
	intel_context_sched_disable_unpin(ce);
}

2702 2703 2704
static inline void guc_lrc_desc_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
2705 2706 2707
	struct intel_gt *gt = guc_to_gt(guc);
	unsigned long flags;
	bool disabled;
2708

2709
	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
2710
	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
2711
	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
2712
	GEM_BUG_ON(context_enabled(ce));
2713

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
	/* Seal race with Reset */
	spin_lock_irqsave(&ce->guc_state.lock, flags);
	disabled = submission_disabled(guc);
	if (likely(!disabled)) {
		__intel_gt_pm_get(gt);
		set_context_destroyed(ce);
		clr_context_registered(ce);
	}
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	if (unlikely(disabled)) {
2724
		release_guc_id(guc, ce);
2725 2726 2727 2728
		__guc_context_destroy(ce);
		return;
	}

2729
	deregister_context(ce, ce->guc_id.id);
2730 2731
}

2732 2733
static void __guc_context_destroy(struct intel_context *ce)
{
2734 2735 2736 2737
	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
2738
	GEM_BUG_ON(ce->guc_state.number_committed_requests);
2739

2740 2741 2742 2743 2744 2745 2746
	lrc_fini(ce);
	intel_context_fini(ce);

	if (intel_engine_is_virtual(ce->engine)) {
		struct guc_virtual_engine *ve =
			container_of(ce, typeof(*ve), context);

2747 2748 2749
		if (ve->base.breadcrumbs)
			intel_breadcrumbs_put(ve->base.breadcrumbs);

2750 2751 2752 2753 2754 2755
		kfree(ve);
	} else {
		intel_context_free(ce);
	}
}

2756 2757
static void guc_flush_destroyed_contexts(struct intel_guc *guc)
{
2758
	struct intel_context *ce;
2759 2760 2761 2762 2763
	unsigned long flags;

	GEM_BUG_ON(!submission_disabled(guc) &&
		   guc_submission_initialized(guc));

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
		spin_lock_irqsave(&guc->submission_state.lock, flags);
		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
					      struct intel_context,
					      destroyed_link);
		if (ce)
			list_del_init(&ce->destroyed_link);
		spin_unlock_irqrestore(&guc->submission_state.lock, flags);

		if (!ce)
			break;

		release_guc_id(guc, ce);
2777 2778 2779 2780 2781 2782
		__guc_context_destroy(ce);
	}
}

static void deregister_destroyed_contexts(struct intel_guc *guc)
{
2783
	struct intel_context *ce;
2784 2785
	unsigned long flags;

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
		spin_lock_irqsave(&guc->submission_state.lock, flags);
		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
					      struct intel_context,
					      destroyed_link);
		if (ce)
			list_del_init(&ce->destroyed_link);
		spin_unlock_irqrestore(&guc->submission_state.lock, flags);

		if (!ce)
			break;

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
		guc_lrc_desc_unpin(ce);
	}
}

static void destroyed_worker_func(struct work_struct *w)
{
	struct intel_guc *guc = container_of(w, struct intel_guc,
					     submission_state.destroyed_worker);
	struct intel_gt *gt = guc_to_gt(guc);
	int tmp;

	with_intel_gt_pm(gt, tmp)
		deregister_destroyed_contexts(guc);
}

2813 2814 2815 2816 2817
static void guc_context_destroy(struct kref *kref)
{
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
2818
	bool destroy;
2819 2820 2821 2822

	/*
	 * If the guc_id is invalid this context has been stolen and we can free
	 * it immediately. Also can be freed immediately if the context is not
2823
	 * registered with the GuC or the GuC is in the middle of a reset.
2824
	 */
2825
	spin_lock_irqsave(&guc->submission_state.lock, flags);
2826
	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
2827
		!ctx_id_mapped(guc, ce->guc_id.id);
2828 2829 2830 2831 2832 2833 2834
	if (likely(!destroy)) {
		if (!list_empty(&ce->guc_id.link))
			list_del_init(&ce->guc_id.link);
		list_add_tail(&ce->destroyed_link,
			      &guc->submission_state.destroyed_contexts);
	} else {
		__release_guc_id(guc, ce);
2835
	}
2836
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2837
	if (unlikely(destroy)) {
2838 2839 2840 2841
		__guc_context_destroy(ce);
		return;
	}

2842
	/*
2843 2844 2845
	 * We use a worker to issue the H2G to deregister the context as we can
	 * take the GT PM for the first time which isn't allowed from an atomic
	 * context.
2846
	 */
2847
	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
2848 2849 2850 2851 2852 2853 2854
}

static int guc_context_alloc(struct intel_context *ce)
{
	return lrc_alloc(ce, ce->engine);
}

2855 2856 2857 2858 2859 2860
static void guc_context_set_prio(struct intel_guc *guc,
				 struct intel_context *ce,
				 u8 prio)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SET_CONTEXT_PRIORITY,
2861
		ce->guc_id.id,
2862 2863 2864 2865 2866
		prio,
	};

	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
		   prio > GUC_CLIENT_PRIORITY_NORMAL);
2867
	lockdep_assert_held(&ce->guc_state.lock);
2868

2869
	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
2870
	    !context_registered(ce)) {
2871
		ce->guc_state.prio = prio;
2872
		return;
2873
	}
2874 2875 2876

	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);

2877
	ce->guc_state.prio = prio;
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
	trace_intel_context_set_prio(ce);
}

static inline u8 map_i915_prio_to_guc_prio(int prio)
{
	if (prio == I915_PRIORITY_NORMAL)
		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
	else if (prio < I915_PRIORITY_NORMAL)
		return GUC_CLIENT_PRIORITY_NORMAL;
	else if (prio < I915_PRIORITY_DISPLAY)
		return GUC_CLIENT_PRIORITY_HIGH;
	else
		return GUC_CLIENT_PRIORITY_KMD_HIGH;
}

static inline void add_context_inflight_prio(struct intel_context *ce,
					     u8 guc_prio)
{
2896 2897
	lockdep_assert_held(&ce->guc_state.lock);
	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
2898

2899
	++ce->guc_state.prio_count[guc_prio];
2900 2901

	/* Overflow protection */
2902
	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
2903 2904 2905 2906 2907
}

static inline void sub_context_inflight_prio(struct intel_context *ce,
					     u8 guc_prio)
{
2908 2909
	lockdep_assert_held(&ce->guc_state.lock);
	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
2910 2911

	/* Underflow protection */
2912
	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
2913

2914
	--ce->guc_state.prio_count[guc_prio];
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
}

static inline void update_context_prio(struct intel_context *ce)
{
	struct intel_guc *guc = &ce->engine->gt->uc.guc;
	int i;

	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);

2925
	lockdep_assert_held(&ce->guc_state.lock);
2926

2927 2928
	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
		if (ce->guc_state.prio_count[i]) {
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
			guc_context_set_prio(guc, ce, i);
			break;
		}
	}
}

static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
{
	/* Lower value is higher priority */
	return new_guc_prio < old_guc_prio;
}

2941 2942
static void add_to_context(struct i915_request *rq)
{
2943
	struct intel_context *ce = request_to_scheduling_context(rq);
2944 2945
	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));

2946
	GEM_BUG_ON(intel_context_is_child(ce));
2947
	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
2948

2949 2950
	spin_lock(&ce->guc_state.lock);
	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961

	if (rq->guc_prio == GUC_PRIO_INIT) {
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
		sub_context_inflight_prio(ce, rq->guc_prio);
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
	}
	update_context_prio(ce);

2962
	spin_unlock(&ce->guc_state.lock);
2963 2964
}

2965 2966
static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
{
2967
	lockdep_assert_held(&ce->guc_state.lock);
2968 2969 2970 2971 2972 2973 2974 2975 2976

	if (rq->guc_prio != GUC_PRIO_INIT &&
	    rq->guc_prio != GUC_PRIO_FINI) {
		sub_context_inflight_prio(ce, rq->guc_prio);
		update_context_prio(ce);
	}
	rq->guc_prio = GUC_PRIO_FINI;
}

2977 2978
static void remove_from_context(struct i915_request *rq)
{
2979 2980 2981
	struct intel_context *ce = request_to_scheduling_context(rq);

	GEM_BUG_ON(intel_context_is_child(ce));
2982

2983
	spin_lock_irq(&ce->guc_state.lock);
2984 2985 2986 2987 2988 2989 2990

	list_del_init(&rq->sched.link);
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);

	/* Prevent further __await_execution() registering a cb, then flush */
	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);

2991 2992
	guc_prio_fini(rq, ce);

2993
	decr_context_committed_requests(ce);
2994

2995 2996
	spin_unlock_irq(&ce->guc_state.lock);

2997
	atomic_dec(&ce->guc_id.ref);
2998 2999 3000
	i915_request_notify_execute_cb_imm(rq);
}

3001 3002 3003 3004 3005
static const struct intel_context_ops guc_context_ops = {
	.alloc = guc_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_context_pin,
3006 3007
	.unpin = guc_context_unpin,
	.post_unpin = guc_context_post_unpin,
3008

3009 3010
	.ban = guc_context_ban,

3011 3012
	.cancel_request = guc_context_cancel_request,

3013 3014 3015
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

3016 3017
	.sched_disable = guc_context_sched_disable,

3018
	.reset = lrc_reset,
3019
	.destroy = guc_context_destroy,
3020 3021

	.create_virtual = guc_create_virtual,
3022
	.create_parallel = guc_create_parallel,
3023 3024
};

3025 3026 3027 3028 3029 3030 3031 3032
static void submit_work_cb(struct irq_work *wrk)
{
	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);

	might_lock(&rq->engine->sched_engine->lock);
	i915_sw_fence_complete(&rq->submit);
}

3033 3034
static void __guc_signal_context_fence(struct intel_context *ce)
{
3035
	struct i915_request *rq, *rn;
3036 3037 3038

	lockdep_assert_held(&ce->guc_state.lock);

3039 3040 3041
	if (!list_empty(&ce->guc_state.fences))
		trace_intel_context_fence_release(ce);

3042 3043 3044 3045 3046 3047 3048 3049 3050
	/*
	 * Use an IRQ to ensure locking order of sched_engine->lock ->
	 * ce->guc_state.lock is preserved.
	 */
	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
				 guc_fence_link) {
		list_del(&rq->guc_fence_link);
		irq_work_queue(&rq->submit_work);
	}
3051 3052 3053 3054 3055 3056 3057 3058

	INIT_LIST_HEAD(&ce->guc_state.fences);
}

static void guc_signal_context_fence(struct intel_context *ce)
{
	unsigned long flags;

3059 3060
	GEM_BUG_ON(intel_context_is_child(ce));

3061 3062 3063 3064 3065 3066
	spin_lock_irqsave(&ce->guc_state.lock, flags);
	clr_context_wait_for_deregister_to_register(ce);
	__guc_signal_context_fence(ce);
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
}

3067 3068
static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
{
3069
	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3070
		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3071
		!submission_disabled(ce_to_guc(ce));
3072 3073
}

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
static void guc_context_init(struct intel_context *ce)
{
	const struct i915_gem_context *ctx;
	int prio = I915_CONTEXT_DEFAULT_PRIORITY;

	rcu_read_lock();
	ctx = rcu_dereference(ce->gem_context);
	if (ctx)
		prio = ctx->sched.priority;
	rcu_read_unlock();

3085
	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3086 3087 3088
	set_bit(CONTEXT_GUC_INIT, &ce->flags);
}

3089
static int guc_request_alloc(struct i915_request *rq)
3090
{
3091
	struct intel_context *ce = request_to_scheduling_context(rq);
3092
	struct intel_guc *guc = ce_to_guc(ce);
3093
	unsigned long flags;
3094 3095
	int ret;

3096
	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3097 3098 3099 3100 3101 3102

	/*
	 * Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
3103
	rq->reserved_space += GUC_REQUEST_SIZE;
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113

	/*
	 * Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	/* Unconditionally invalidate GPU caches and TLBs. */
3114
	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3115 3116 3117
	if (ret)
		return ret;

3118
	rq->reserved_space -= GUC_REQUEST_SIZE;
3119

3120 3121 3122
	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
		guc_context_init(ce);

3123 3124 3125
	/*
	 * Call pin_guc_id here rather than in the pinning step as with
	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3126 3127
	 * guc_id and creating horrible race conditions. This is especially bad
	 * when guc_id are being stolen due to over subscription. By the time
3128 3129
	 * this function is reached, it is guaranteed that the guc_id will be
	 * persistent until the generated request is retired. Thus, sealing these
3130
	 * race conditions. It is still safe to fail here if guc_id are
3131 3132 3133 3134 3135 3136 3137 3138 3139
	 * exhausted and return -EAGAIN to the user indicating that they can try
	 * again in the future.
	 *
	 * There is no need for a lock here as the timeline mutex ensures at
	 * most one context can be executing this code path at once. The
	 * guc_id_ref is incremented once for every request in flight and
	 * decremented on each retire. When it is zero, a lock around the
	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
	 */
3140
	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3141
		goto out;
3142

3143 3144 3145 3146
	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
	if (unlikely(ret < 0))
		return ret;
	if (context_needs_register(ce, !!ret)) {
3147
		ret = try_context_registration(ce, true);
3148
		if (unlikely(ret)) {	/* unwind */
3149 3150 3151 3152
			if (ret == -EPIPE) {
				disable_submission(guc);
				goto out;	/* GPU will be reset */
			}
3153
			atomic_dec(&ce->guc_id.ref);
3154 3155 3156 3157
			unpin_guc_id(guc, ce);
			return ret;
		}
	}
3158

3159
	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3160

3161 3162 3163
out:
	/*
	 * We block all requests on this context if a G2H is pending for a
3164 3165 3166 3167
	 * schedule disable or context deregistration as the GuC will fail a
	 * schedule enable or context registration if either G2H is pending
	 * respectfully. Once a G2H returns, the fence is released that is
	 * blocking these requests (see guc_signal_context_fence).
3168 3169
	 */
	spin_lock_irqsave(&ce->guc_state.lock, flags);
3170 3171
	if (context_wait_for_deregister_to_register(ce) ||
	    context_pending_disable(ce)) {
3172
		init_irq_work(&rq->submit_work, submit_work_cb);
3173 3174 3175 3176
		i915_sw_fence_await(&rq->submit);

		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
	}
3177
	incr_context_committed_requests(ce);
3178 3179
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

3180
	return 0;
3181 3182
}

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
static int guc_virtual_context_pre_pin(struct intel_context *ce,
				       struct i915_gem_ww_ctx *ww,
				       void **vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	return __guc_context_pre_pin(ce, engine, ww, vaddr);
}

static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3195 3196 3197 3198 3199 3200
	int ret = __guc_context_pin(ce, engine, vaddr);
	intel_engine_mask_t tmp, mask = ce->engine->mask;

	if (likely(!ret))
		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
			intel_engine_pm_get(engine);
3201

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
	return ret;
}

static void guc_virtual_context_unpin(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;
	struct intel_guc *guc = ce_to_guc(ce);

	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_put_async(engine);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
}

static void guc_virtual_context_enter(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_get(engine);

	intel_timeline_enter(ce->timeline);
}

static void guc_virtual_context_exit(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_put(engine);

	intel_timeline_exit(ce->timeline);
}

static int guc_virtual_context_alloc(struct intel_context *ce)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	return lrc_alloc(ce, engine);
}

static const struct intel_context_ops virtual_guc_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_virtual_context_pre_pin,
	.pin = guc_virtual_context_pin,
3255
	.unpin = guc_virtual_context_unpin,
3256 3257
	.post_unpin = guc_context_post_unpin,

3258 3259
	.ban = guc_context_ban,

3260 3261
	.cancel_request = guc_context_cancel_request,

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.sched_disable = guc_context_sched_disable,

	.destroy = guc_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
	struct intel_guc *guc = ce_to_guc(ce);
	int ret;

	GEM_BUG_ON(!intel_context_is_parent(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	ret = pin_guc_id(guc, ce);
	if (unlikely(ret < 0))
		return ret;

	return __guc_context_pin(ce, engine, vaddr);
}

static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	__intel_context_pin(ce->parallel.parent);
	return __guc_context_pin(ce, engine, vaddr);
}

static void guc_parent_context_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);

	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));
	GEM_BUG_ON(!intel_context_is_parent(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);
}

static void guc_child_context_unpin(struct intel_context *ce)
{
	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));
	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	lrc_unpin(ce);
}

static void guc_child_context_post_unpin(struct intel_context *ce)
{
	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	lrc_post_unpin(ce);
	intel_context_unpin(ce->parallel.parent);
}

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
static void guc_child_context_destroy(struct kref *kref)
{
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

	__guc_context_destroy(ce);
}

static const struct intel_context_ops virtual_parent_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_parent_context_pin,
	.unpin = guc_parent_context_unpin,
	.post_unpin = guc_context_post_unpin,

	.ban = guc_context_ban,

	.cancel_request = guc_context_cancel_request,

	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.sched_disable = guc_context_sched_disable,

	.destroy = guc_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

static const struct intel_context_ops virtual_child_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_child_context_pin,
	.unpin = guc_child_context_unpin,
	.post_unpin = guc_child_context_post_unpin,

	.cancel_request = guc_context_cancel_request,

	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.destroy = guc_child_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
/*
 * The below override of the breadcrumbs is enabled when the user configures a
 * context for parallel submission (multi-lrc, parent-child).
 *
 * The overridden breadcrumbs implements an algorithm which allows the GuC to
 * safely preempt all the hw contexts configured for parallel submission
 * between each BB. The contract between the i915 and GuC is if the parent
 * context can be preempted, all the children can be preempted, and the GuC will
 * always try to preempt the parent before the children. A handshake between the
 * parent / children breadcrumbs ensures the i915 holds up its end of the deal
 * creating a window to preempt between each set of BBs.
 */
static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
						     u64 offset, u32 len,
						     const unsigned int flags);
static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
						    u64 offset, u32 len,
						    const unsigned int flags);
static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						 u32 *cs);
static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						u32 *cs);

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
static struct intel_context *
guc_create_parallel(struct intel_engine_cs **engines,
		    unsigned int num_siblings,
		    unsigned int width)
{
	struct intel_engine_cs **siblings = NULL;
	struct intel_context *parent = NULL, *ce, *err;
	int i, j;

	siblings = kmalloc_array(num_siblings,
				 sizeof(*siblings),
				 GFP_KERNEL);
	if (!siblings)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < width; ++i) {
		for (j = 0; j < num_siblings; ++j)
			siblings[j] = engines[i * num_siblings + j];

		ce = intel_engine_create_virtual(siblings, num_siblings,
						 FORCE_VIRTUAL);
3425 3426
		if (IS_ERR(ce)) {
			err = ERR_CAST(ce);
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
			goto unwind;
		}

		if (i == 0) {
			parent = ce;
			parent->ops = &virtual_parent_context_ops;
		} else {
			ce->ops = &virtual_child_context_ops;
			intel_context_bind_parent_child(parent, ce);
		}
	}

M
Matthew Brost 已提交
3439 3440
	parent->parallel.fence_context = dma_fence_context_alloc(1);

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	parent->engine->emit_bb_start =
		emit_bb_start_parent_no_preempt_mid_batch;
	parent->engine->emit_fini_breadcrumb =
		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
	parent->engine->emit_fini_breadcrumb_dw =
		12 + 4 * parent->parallel.number_children;
	for_each_child(parent, ce) {
		ce->engine->emit_bb_start =
			emit_bb_start_child_no_preempt_mid_batch;
		ce->engine->emit_fini_breadcrumb =
			emit_fini_breadcrumb_child_no_preempt_mid_batch;
		ce->engine->emit_fini_breadcrumb_dw = 16;
	}

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	kfree(siblings);
	return parent;

unwind:
	if (parent)
		intel_context_put(parent);
	kfree(siblings);
	return err;
}

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *sibling;
	intel_engine_mask_t tmp, mask = b->engine_mask;
	bool result = false;

	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
		result |= intel_engine_irq_enable(sibling);

	return result;
}

static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *sibling;
	intel_engine_mask_t tmp, mask = b->engine_mask;

	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
		intel_engine_irq_disable(sibling);
}

static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
{
	int i;

	/*
	 * In GuC submission mode we do not know which physical engine a request
	 * will be scheduled on, this creates a problem because the breadcrumb
	 * interrupt is per physical engine. To work around this we attach
	 * requests and direct all breadcrumb interrupts to the first instance
	 * of an engine per class. In addition all breadcrumb interrupts are
	 * enabled / disabled across an engine class in unison.
	 */
	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
		struct intel_engine_cs *sibling =
			engine->gt->engine_class[engine->class][i];

		if (sibling) {
			if (engine->breadcrumbs != sibling->breadcrumbs) {
				intel_breadcrumbs_put(engine->breadcrumbs);
				engine->breadcrumbs =
					intel_breadcrumbs_get(sibling->breadcrumbs);
			}
			break;
		}
	}

	if (engine->breadcrumbs) {
		engine->breadcrumbs->engine_mask |= engine->mask;
		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
	}
}

3521 3522 3523
static void guc_bump_inflight_request_prio(struct i915_request *rq,
					   int prio)
{
3524
	struct intel_context *ce = request_to_scheduling_context(rq);
3525 3526 3527 3528 3529 3530 3531 3532 3533
	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);

	/* Short circuit function */
	if (prio < I915_PRIORITY_NORMAL ||
	    rq->guc_prio == GUC_PRIO_FINI ||
	    (rq->guc_prio != GUC_PRIO_INIT &&
	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
		return;

3534
	spin_lock(&ce->guc_state.lock);
3535 3536 3537 3538 3539 3540 3541
	if (rq->guc_prio != GUC_PRIO_FINI) {
		if (rq->guc_prio != GUC_PRIO_INIT)
			sub_context_inflight_prio(ce, rq->guc_prio);
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
		update_context_prio(ce);
	}
3542
	spin_unlock(&ce->guc_state.lock);
3543 3544 3545 3546
}

static void guc_retire_inflight_request_prio(struct i915_request *rq)
{
3547
	struct intel_context *ce = request_to_scheduling_context(rq);
3548

3549
	spin_lock(&ce->guc_state.lock);
3550
	guc_prio_fini(rq, ce);
3551
	spin_unlock(&ce->guc_state.lock);
3552 3553
}

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
static void sanitize_hwsp(struct intel_engine_cs *engine)
{
	struct intel_timeline *tl;

	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
		intel_timeline_reset_seqno(tl);
}

static void guc_sanitize(struct intel_engine_cs *engine)
{
	/*
	 * Poison residual state on resume, in case the suspend didn't!
	 *
	 * We have to assume that across suspend/resume (or other loss
	 * of control) that the contents of our pinned buffers has been
	 * lost, replaced by garbage. Since this doesn't always happen,
	 * let's poison such state so that we more quickly spot when
	 * we falsely assume it has been preserved.
	 */
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);

	/*
	 * The kernel_context HWSP is stored in the status_page. As above,
	 * that may be lost on resume/initialisation, and so we need to
	 * reset the value in the HWSP.
	 */
	sanitize_hwsp(engine);

	/* And scrub the dirty cachelines for the HWSP */
	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
3585 3586

	intel_engine_reset_pinned_contexts(engine);
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
}

static void setup_hwsp(struct intel_engine_cs *engine)
{
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */

	ENGINE_WRITE_FW(engine,
			RING_HWS_PGA,
			i915_ggtt_offset(engine->status_page.vma));
}

static void start_engine(struct intel_engine_cs *engine)
{
	ENGINE_WRITE_FW(engine,
			RING_MODE_GEN7,
			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));

	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
	ENGINE_POSTING_READ(engine, RING_MI_MODE);
}

static int guc_resume(struct intel_engine_cs *engine)
{
	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);

	intel_mocs_init_engine(engine);

	intel_breadcrumbs_reset(engine->breadcrumbs);

	setup_hwsp(engine);
	start_engine(engine);

3619
	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3620 3621
		xehp_enable_ccs_engines(engine);

3622 3623 3624
	return 0;
}

3625 3626 3627 3628 3629
static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
{
	return !sched_engine->tasklet.callback;
}

3630 3631
static void guc_set_default_submission(struct intel_engine_cs *engine)
{
3632
	engine->submit_request = guc_submit_request;
3633 3634
}

3635 3636 3637
static inline void guc_kernel_context_pin(struct intel_guc *guc,
					  struct intel_context *ce)
{
3638 3639 3640 3641 3642 3643 3644
	/*
	 * Note: we purposefully do not check the returns below because
	 * the registration can only fail if a reset is just starting.
	 * This is called at the end of reset so presumably another reset
	 * isn't happening and even it did this code would be run again.
	 */

3645 3646
	if (context_guc_id_invalid(ce))
		pin_guc_id(guc, ce);
3647 3648

	try_context_registration(ce, true);
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
}

static inline void guc_init_lrc_mapping(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	/* make sure all descriptors are clean... */
	xa_destroy(&guc->context_lookup);

	/*
	 * Some contexts might have been pinned before we enabled GuC
	 * submission, so we need to add them to the GuC bookeeping.
	 * Also, after a reset the of the GuC we want to make sure that the
	 * information shared with GuC is properly reset. The kernel LRCs are
	 * not attached to the gem_context, so they need to be added separately.
	 */
3667 3668 3669 3670 3671 3672 3673
	for_each_engine(engine, gt, id) {
		struct intel_context *ce;

		list_for_each_entry(ce, &engine->pinned_contexts_list,
				    pinned_contexts_link)
			guc_kernel_context_pin(guc, ce);
	}
3674 3675
}

3676
static void guc_release(struct intel_engine_cs *engine)
3677
{
3678
	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3679

3680 3681 3682 3683
	intel_engine_cleanup_common(engine);
	lrc_fini_wa_ctx(engine);
}

3684 3685 3686 3687 3688 3689 3690 3691 3692
static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
{
	struct intel_engine_cs *e;
	intel_engine_mask_t tmp, mask = engine->mask;

	for_each_engine_masked(e, engine->gt, mask, tmp)
		e->serial++;
}

3693 3694 3695 3696 3697 3698 3699 3700
static void guc_default_vfuncs(struct intel_engine_cs *engine)
{
	/* Default vfuncs which can be overridden by each engine. */

	engine->resume = guc_resume;

	engine->cops = &guc_context_ops;
	engine->request_alloc = guc_request_alloc;
3701 3702
	engine->add_active_request = add_to_context;
	engine->remove_active_request = remove_from_context;
3703

3704
	engine->sched_engine->schedule = i915_schedule;
3705

3706 3707 3708 3709
	engine->reset.prepare = guc_reset_nop;
	engine->reset.rewind = guc_rewind_nop;
	engine->reset.cancel = guc_reset_nop;
	engine->reset.finish = guc_reset_nop;
3710

3711 3712 3713
	engine->emit_flush = gen8_emit_flush_xcs;
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3714
	if (GRAPHICS_VER(engine->i915) >= 12) {
3715 3716 3717 3718
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
		engine->emit_flush = gen12_emit_flush_xcs;
	}
	engine->set_default_submission = guc_set_default_submission;
3719
	engine->busyness = guc_engine_busyness;
3720

3721
	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3722
	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3723
	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733

	/*
	 * TODO: GuC supports timeslicing and semaphores as well, but they're
	 * handled by the firmware so some minor tweaks are required before
	 * enabling.
	 *
	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
	 */

	engine->emit_bb_start = gen8_emit_bb_start;
3734
}
3735

3736 3737
static void rcs_submission_override(struct intel_engine_cs *engine)
{
3738
	switch (GRAPHICS_VER(engine->i915)) {
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	case 12:
		engine->emit_flush = gen12_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
		break;
	case 11:
		engine->emit_flush = gen11_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
		break;
	default:
		engine->emit_flush = gen8_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
		break;
3751
	}
3752 3753
}

3754 3755 3756
static inline void guc_default_irqs(struct intel_engine_cs *engine)
{
	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
3757
	intel_engine_set_irq_handler(engine, cs_irq_handler);
3758 3759
}

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
static void guc_sched_engine_destroy(struct kref *kref)
{
	struct i915_sched_engine *sched_engine =
		container_of(kref, typeof(*sched_engine), ref);
	struct intel_guc *guc = sched_engine->private_data;

	guc->sched_engine = NULL;
	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
	kfree(sched_engine);
}

3771 3772 3773
int intel_guc_submission_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
3774
	struct intel_guc *guc = &engine->gt->uc.guc;
3775 3776 3777 3778 3779

	/*
	 * The setup relies on several assumptions (e.g. irqs always enabled)
	 * that are only valid on gen11+
	 */
3780
	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
3781

3782 3783 3784 3785 3786 3787
	if (!guc->sched_engine) {
		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
		if (!guc->sched_engine)
			return -ENOMEM;

		guc->sched_engine->schedule = i915_schedule;
3788
		guc->sched_engine->disabled = guc_sched_engine_disabled;
3789
		guc->sched_engine->private_data = guc;
3790
		guc->sched_engine->destroy = guc_sched_engine_destroy;
3791 3792 3793 3794
		guc->sched_engine->bump_inflight_request_prio =
			guc_bump_inflight_request_prio;
		guc->sched_engine->retire_inflight_request_prio =
			guc_retire_inflight_request_prio;
3795 3796 3797 3798 3799
		tasklet_setup(&guc->sched_engine->tasklet,
			      guc_submission_tasklet);
	}
	i915_sched_engine_put(engine->sched_engine);
	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
3800 3801 3802

	guc_default_vfuncs(engine);
	guc_default_irqs(engine);
3803
	guc_init_breadcrumbs(engine);
3804

3805
	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
		rcs_submission_override(engine);

	lrc_init_wa_ctx(engine);

	/* Finally, take ownership and responsibility for cleanup! */
	engine->sanitize = guc_sanitize;
	engine->release = guc_release;

	return 0;
}

void intel_guc_submission_enable(struct intel_guc *guc)
{
3819
	guc_init_lrc_mapping(guc);
3820
	guc_init_engine_stats(guc);
3821 3822
}

3823
void intel_guc_submission_disable(struct intel_guc *guc)
3824
{
3825
	/* Note: By the time we're here, GuC may have already been reset */
3826
}
3827

3828 3829 3830 3831 3832 3833 3834
static bool __guc_submission_supported(struct intel_guc *guc)
{
	/* GuC submission is unavailable for pre-Gen11 */
	return intel_guc_is_supported(guc) &&
	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
}

3835
static bool __guc_submission_selected(struct intel_guc *guc)
3836
{
3837 3838
	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;

3839
	if (!intel_guc_submission_is_supported(guc))
3840 3841
		return false;

3842
	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
3843 3844 3845 3846
}

void intel_guc_submission_init_early(struct intel_guc *guc)
{
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);

	spin_lock_init(&guc->submission_state.lock);
	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
	ida_init(&guc->submission_state.guc_ids);
	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
	INIT_WORK(&guc->submission_state.destroyed_worker,
		  destroyed_worker_func);
	INIT_WORK(&guc->submission_state.reset_fail_worker,
		  reset_fail_worker_func);

	spin_lock_init(&guc->timestamp.lock);
	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);

3861
	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
3862
	guc->submission_supported = __guc_submission_supported(guc);
3863
	guc->submission_selected = __guc_submission_selected(guc);
3864
}
3865 3866

static inline struct intel_context *
3867
g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
3868 3869 3870
{
	struct intel_context *ce;

3871
	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
3872
		drm_err(&guc_to_gt(guc)->i915->drm,
3873
			"Invalid ctx_id %u\n", ctx_id);
3874 3875 3876
		return NULL;
	}

3877
	ce = __get_context(guc, ctx_id);
3878 3879
	if (unlikely(!ce)) {
		drm_err(&guc_to_gt(guc)->i915->drm,
3880
			"Context is NULL, ctx_id %u\n", ctx_id);
3881 3882 3883
		return NULL;
	}

3884 3885
	if (unlikely(intel_context_is_child(ce))) {
		drm_err(&guc_to_gt(guc)->i915->drm,
3886
			"Context is child, ctx_id %u\n", ctx_id);
3887 3888 3889
		return NULL;
	}

3890 3891 3892 3893 3894 3895 3896 3897
	return ce;
}

int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
					  const u32 *msg,
					  u32 len)
{
	struct intel_context *ce;
3898
	u32 ctx_id;
3899 3900

	if (unlikely(len < 1)) {
3901
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
3902 3903
		return -EPROTO;
	}
3904
	ctx_id = msg[0];
3905

3906
	ce = g2h_context_lookup(guc, ctx_id);
3907 3908 3909
	if (unlikely(!ce))
		return -EPROTO;

3910 3911
	trace_intel_context_deregister_done(ce);

3912 3913 3914 3915 3916 3917 3918
#ifdef CONFIG_DRM_I915_SELFTEST
	if (unlikely(ce->drop_deregister)) {
		ce->drop_deregister = false;
		return 0;
	}
#endif

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	if (context_wait_for_deregister_to_register(ce)) {
		struct intel_runtime_pm *runtime_pm =
			&ce->engine->gt->i915->runtime_pm;
		intel_wakeref_t wakeref;

		/*
		 * Previous owner of this guc_id has been deregistered, now safe
		 * register this context.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref)
3929
			register_context(ce, true);
3930
		guc_signal_context_fence(ce);
3931 3932 3933
		intel_context_put(ce);
	} else if (context_destroyed(ce)) {
		/* Context has been destroyed */
3934
		intel_gt_pm_put_async(guc_to_gt(guc));
3935
		release_guc_id(guc, ce);
3936
		__guc_context_destroy(ce);
3937 3938
	}

3939 3940
	decr_outstanding_submission_g2h(guc);

3941 3942
	return 0;
}
3943 3944 3945 3946 3947 3948 3949

int intel_guc_sched_done_process_msg(struct intel_guc *guc,
				     const u32 *msg,
				     u32 len)
{
	struct intel_context *ce;
	unsigned long flags;
3950
	u32 ctx_id;
3951 3952

	if (unlikely(len < 2)) {
3953
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
3954 3955
		return -EPROTO;
	}
3956
	ctx_id = msg[0];
3957

3958
	ce = g2h_context_lookup(guc, ctx_id);
3959 3960 3961 3962 3963 3964 3965
	if (unlikely(!ce))
		return -EPROTO;

	if (unlikely(context_destroyed(ce) ||
		     (!context_pending_enable(ce) &&
		     !context_pending_disable(ce)))) {
		drm_err(&guc_to_gt(guc)->i915->drm,
3966 3967
			"Bad context sched_state 0x%x, ctx_id %u\n",
			ce->guc_state.sched_state, ctx_id);
3968 3969 3970
		return -EPROTO;
	}

3971 3972
	trace_intel_context_sched_done(ce);

3973
	if (context_pending_enable(ce)) {
3974 3975 3976 3977 3978 3979 3980
#ifdef CONFIG_DRM_I915_SELFTEST
		if (unlikely(ce->drop_schedule_enable)) {
			ce->drop_schedule_enable = false;
			return 0;
		}
#endif

3981
		spin_lock_irqsave(&ce->guc_state.lock, flags);
3982
		clr_context_pending_enable(ce);
3983
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3984
	} else if (context_pending_disable(ce)) {
3985 3986
		bool banned;

3987 3988 3989 3990 3991 3992 3993
#ifdef CONFIG_DRM_I915_SELFTEST
		if (unlikely(ce->drop_schedule_disable)) {
			ce->drop_schedule_disable = false;
			return 0;
		}
#endif

3994 3995 3996 3997 3998 3999 4000
		/*
		 * Unpin must be done before __guc_signal_context_fence,
		 * otherwise a race exists between the requests getting
		 * submitted + retired before this unpin completes resulting in
		 * the pin_count going to zero and the context still being
		 * enabled.
		 */
4001 4002 4003
		intel_context_sched_disable_unpin(ce);

		spin_lock_irqsave(&ce->guc_state.lock, flags);
4004 4005
		banned = context_banned(ce);
		clr_context_banned(ce);
4006
		clr_context_pending_disable(ce);
4007
		__guc_signal_context_fence(ce);
4008
		guc_blocked_fence_complete(ce);
4009
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4010 4011 4012 4013 4014

		if (banned) {
			guc_cancel_context_requests(ce);
			intel_engine_signal_breadcrumbs(ce->engine);
		}
4015 4016
	}

4017
	decr_outstanding_submission_g2h(guc);
4018 4019 4020 4021
	intel_context_put(ce);

	return 0;
}
4022

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
static void capture_error_state(struct intel_guc *guc,
				struct intel_context *ce)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct drm_i915_private *i915 = gt->i915;
	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
	intel_wakeref_t wakeref;

	intel_engine_set_hung_context(engine, ce);
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
		i915_capture_error_state(gt, engine->mask);
	atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
}

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
static void guc_context_replay(struct intel_context *ce)
{
	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;

	__guc_reset_context(ce, true);
	tasklet_hi_schedule(&sched_engine->tasklet);
}

static void guc_handle_context_reset(struct intel_guc *guc,
				     struct intel_context *ce)
{
	trace_intel_context_reset(ce);
4049

4050
	if (likely(!intel_context_is_banned(ce))) {
4051 4052
		capture_error_state(guc, ce);
		guc_context_replay(ce);
4053
	} else {
4054 4055 4056
		drm_info(&guc_to_gt(guc)->i915->drm,
			 "Ignoring context reset notification of banned context 0x%04X on %s",
			 ce->guc_id.id, ce->engine->name);
4057
	}
4058 4059 4060 4061 4062 4063
}

int intel_guc_context_reset_process_msg(struct intel_guc *guc,
					const u32 *msg, u32 len)
{
	struct intel_context *ce;
4064
	unsigned long flags;
4065
	int ctx_id;
4066 4067 4068 4069 4070 4071

	if (unlikely(len != 1)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

4072
	ctx_id = msg[0];
4073 4074 4075 4076 4077 4078 4079 4080

	/*
	 * The context lookup uses the xarray but lookups only require an RCU lock
	 * not the full spinlock. So take the lock explicitly and keep it until the
	 * context has been reference count locked to ensure it can't be destroyed
	 * asynchronously until the reset is done.
	 */
	xa_lock_irqsave(&guc->context_lookup, flags);
4081
	ce = g2h_context_lookup(guc, ctx_id);
4082 4083 4084 4085
	if (ce)
		intel_context_get(ce);
	xa_unlock_irqrestore(&guc->context_lookup, flags);

4086 4087 4088 4089
	if (unlikely(!ce))
		return -EPROTO;

	guc_handle_context_reset(guc, ce);
4090
	intel_context_put(ce);
4091 4092 4093 4094

	return 0;
}

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
int intel_guc_error_capture_process_msg(struct intel_guc *guc,
					const u32 *msg, u32 len)
{
	int status;

	if (unlikely(len != 1)) {
		drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	status = msg[0];
	drm_info(&guc_to_gt(guc)->i915->drm, "Got error capture: status = %d", status);

	/* FIXME: Do something with the capture */

	return 0;
}

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
static struct intel_engine_cs *
guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
{
	struct intel_gt *gt = guc_to_gt(guc);
	u8 engine_class = guc_class_to_engine_class(guc_class);

	/* Class index is checked in class converter */
	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);

	return gt->engine_class[engine_class][instance];
}

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
static void reset_fail_worker_func(struct work_struct *w)
{
	struct intel_guc *guc = container_of(w, struct intel_guc,
					     submission_state.reset_fail_worker);
	struct intel_gt *gt = guc_to_gt(guc);
	intel_engine_mask_t reset_fail_mask;
	unsigned long flags;

	spin_lock_irqsave(&guc->submission_state.lock, flags);
	reset_fail_mask = guc->submission_state.reset_fail_mask;
	guc->submission_state.reset_fail_mask = 0;
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);

	if (likely(reset_fail_mask))
		intel_gt_handle_error(gt, reset_fail_mask,
				      I915_ERROR_CAPTURE,
				      "GuC failed to reset engine mask=0x%x\n",
				      reset_fail_mask);
}

4145 4146 4147 4148
int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
					 const u32 *msg, u32 len)
{
	struct intel_engine_cs *engine;
4149
	struct intel_gt *gt = guc_to_gt(guc);
4150 4151
	u8 guc_class, instance;
	u32 reason;
4152
	unsigned long flags;
4153 4154

	if (unlikely(len != 3)) {
4155
		drm_err(&gt->i915->drm, "Invalid length %u", len);
4156 4157 4158 4159 4160 4161 4162 4163 4164
		return -EPROTO;
	}

	guc_class = msg[0];
	instance = msg[1];
	reason = msg[2];

	engine = guc_lookup_engine(guc, guc_class, instance);
	if (unlikely(!engine)) {
4165
		drm_err(&gt->i915->drm,
4166 4167 4168 4169
			"Invalid engine %d:%d", guc_class, instance);
		return -EPROTO;
	}

4170 4171 4172 4173 4174 4175 4176
	/*
	 * This is an unexpected failure of a hardware feature. So, log a real
	 * error message not just the informational that comes with the reset.
	 */
	drm_err(&gt->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X",
		guc_class, instance, engine->name, reason);

4177 4178 4179 4180 4181 4182 4183 4184 4185
	spin_lock_irqsave(&guc->submission_state.lock, flags);
	guc->submission_state.reset_fail_mask |= engine->mask;
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);

	/*
	 * A GT reset flushes this worker queue (G2H handler) so we must use
	 * another worker to trigger a GT reset.
	 */
	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4186 4187 4188 4189

	return 0;
}

4190 4191 4192 4193 4194 4195
void intel_guc_find_hung_context(struct intel_engine_cs *engine)
{
	struct intel_guc *guc = &engine->gt->uc.guc;
	struct intel_context *ce;
	struct i915_request *rq;
	unsigned long index;
4196
	unsigned long flags;
4197 4198 4199 4200 4201

	/* Reset called during driver load? GuC not yet initialised! */
	if (unlikely(!guc_submission_initialized(guc)))
		return;

4202
	xa_lock_irqsave(&guc->context_lookup, flags);
4203
	xa_for_each(&guc->context_lookup, index, ce) {
4204
		if (!kref_get_unless_zero(&ce->ref))
4205 4206
			continue;

4207 4208 4209 4210 4211
		xa_unlock(&guc->context_lookup);

		if (!intel_context_is_pinned(ce))
			goto next;

4212 4213
		if (intel_engine_is_virtual(ce->engine)) {
			if (!(ce->engine->mask & engine->mask))
4214
				goto next;
4215 4216
		} else {
			if (ce->engine != engine)
4217
				goto next;
4218 4219
		}

4220
		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4221 4222 4223 4224 4225 4226
			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
				continue;

			intel_engine_set_hung_context(engine, ce);

			/* Can only cope with one hang at a time... */
4227 4228 4229
			intel_context_put(ce);
			xa_lock(&guc->context_lookup);
			goto done;
4230
		}
4231 4232 4233
next:
		intel_context_put(ce);
		xa_lock(&guc->context_lookup);
4234
	}
4235 4236
done:
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
}

void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
				    struct i915_request *hung_rq,
				    struct drm_printer *m)
{
	struct intel_guc *guc = &engine->gt->uc.guc;
	struct intel_context *ce;
	unsigned long index;
	unsigned long flags;

	/* Reset called during driver load? GuC not yet initialised! */
	if (unlikely(!guc_submission_initialized(guc)))
		return;

4252
	xa_lock_irqsave(&guc->context_lookup, flags);
4253
	xa_for_each(&guc->context_lookup, index, ce) {
4254
		if (!kref_get_unless_zero(&ce->ref))
4255 4256
			continue;

4257 4258 4259 4260 4261
		xa_unlock(&guc->context_lookup);

		if (!intel_context_is_pinned(ce))
			goto next;

4262 4263
		if (intel_engine_is_virtual(ce->engine)) {
			if (!(ce->engine->mask & engine->mask))
4264
				goto next;
4265 4266
		} else {
			if (ce->engine != engine)
4267
				goto next;
4268 4269
		}

4270 4271
		spin_lock(&ce->guc_state.lock);
		intel_engine_dump_active_requests(&ce->guc_state.requests,
4272
						  hung_rq, m);
4273
		spin_unlock(&ce->guc_state.lock);
4274 4275 4276 4277

next:
		intel_context_put(ce);
		xa_lock(&guc->context_lookup);
4278
	}
4279
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4280 4281
}

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
void intel_guc_submission_print_info(struct intel_guc *guc,
				     struct drm_printer *p)
{
	struct i915_sched_engine *sched_engine = guc->sched_engine;
	struct rb_node *rb;
	unsigned long flags;

	if (!sched_engine)
		return;

	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
		   atomic_read(&guc->outstanding_submission_g2h));
	drm_printf(p, "GuC tasklet count: %u\n\n",
		   atomic_read(&sched_engine->tasklet.count));

	spin_lock_irqsave(&sched_engine->lock, flags);
	drm_printf(p, "Requests in GuC submit tasklet:\n");
	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *pl = to_priolist(rb);
		struct i915_request *rq;

		priolist_for_each_request(rq, pl)
			drm_printf(p, "guc_id=%u, seqno=%llu\n",
4305
				   rq->context->guc_id.id,
4306 4307 4308 4309 4310 4311
				   rq->fence.seqno);
	}
	spin_unlock_irqrestore(&sched_engine->lock, flags);
	drm_printf(p, "\n");
}

4312 4313 4314 4315 4316
static inline void guc_log_context_priority(struct drm_printer *p,
					    struct intel_context *ce)
{
	int i;

4317
	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4318 4319 4320 4321
	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4322
			   i, ce->guc_state.prio_count[i]);
4323 4324 4325 4326
	}
	drm_printf(p, "\n");
}

4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
static inline void guc_log_context(struct drm_printer *p,
				   struct intel_context *ce)
{
	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
		   ce->ring->head,
		   ce->lrc_reg_state[CTX_RING_HEAD]);
	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
		   ce->ring->tail,
		   ce->lrc_reg_state[CTX_RING_TAIL]);
	drm_printf(p, "\t\tContext Pin Count: %u\n",
		   atomic_read(&ce->pin_count));
	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
		   atomic_read(&ce->guc_id.ref));
	drm_printf(p, "\t\tSchedule State: 0x%x\n\n",
		   ce->guc_state.sched_state);
}

4346 4347 4348 4349 4350
void intel_guc_submission_print_context_info(struct intel_guc *guc,
					     struct drm_printer *p)
{
	struct intel_context *ce;
	unsigned long index;
4351
	unsigned long flags;
4352

4353
	xa_lock_irqsave(&guc->context_lookup, flags);
4354
	xa_for_each(&guc->context_lookup, index, ce) {
4355
		GEM_BUG_ON(intel_context_is_child(ce));
4356

4357
		guc_log_context(p, ce);
4358
		guc_log_context_priority(p, ce);
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372

		if (intel_context_is_parent(ce)) {
			struct guc_process_desc *desc = __get_process_desc(ce);
			struct intel_context *child;

			drm_printf(p, "\t\tNumber children: %u\n",
				   ce->parallel.number_children);
			drm_printf(p, "\t\tWQI Head: %u\n",
				   READ_ONCE(desc->head));
			drm_printf(p, "\t\tWQI Tail: %u\n",
				   READ_ONCE(desc->tail));
			drm_printf(p, "\t\tWQI Status: %u\n\n",
				   READ_ONCE(desc->wq_status));

4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
			if (ce->engine->emit_bb_start ==
			    emit_bb_start_parent_no_preempt_mid_batch) {
				u8 i;

				drm_printf(p, "\t\tChildren Go: %u\n\n",
					   get_children_go_value(ce));
				for (i = 0; i < ce->parallel.number_children; ++i)
					drm_printf(p, "\t\tChildren Join: %u\n",
						   get_children_join_value(ce, i));
			}

4384 4385 4386
			for_each_child(ce, child)
				guc_log_context(p, child);
		}
4387
	}
4388
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4389
}
4390

4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
static inline u32 get_children_go_addr(struct intel_context *ce)
{
	GEM_BUG_ON(!intel_context_is_parent(ce));

	return i915_ggtt_offset(ce->state) +
		__get_parent_scratch_offset(ce) +
		offsetof(struct parent_scratch, go.semaphore);
}

static inline u32 get_children_join_addr(struct intel_context *ce,
					 u8 child_index)
{
	GEM_BUG_ON(!intel_context_is_parent(ce));

	return i915_ggtt_offset(ce->state) +
		__get_parent_scratch_offset(ce) +
		offsetof(struct parent_scratch, join[child_index].semaphore);
}

#define PARENT_GO_BB			1
#define PARENT_GO_FINI_BREADCRUMB	0
#define CHILD_GO_BB			1
#define CHILD_GO_FINI_BREADCRUMB	0
static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
						     u64 offset, u32 len,
						     const unsigned int flags)
{
	struct intel_context *ce = rq->context;
	u32 *cs;
	u8 i;

	GEM_BUG_ON(!intel_context_is_parent(ce));

	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Wait on children */
	for (i = 0; i < ce->parallel.number_children; ++i) {
		*cs++ = (MI_SEMAPHORE_WAIT |
			 MI_SEMAPHORE_GLOBAL_GTT |
			 MI_SEMAPHORE_POLL |
			 MI_SEMAPHORE_SAD_EQ_SDD);
		*cs++ = PARENT_GO_BB;
		*cs++ = get_children_join_addr(ce, i);
		*cs++ = 0;
	}

	/* Turn off preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;

	/* Tell children go */
	cs = gen8_emit_ggtt_write(cs,
				  CHILD_GO_BB,
				  get_children_go_addr(ce),
				  0);

	/* Jump to batch */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	return 0;
}

static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
						    u64 offset, u32 len,
						    const unsigned int flags)
{
	struct intel_context *ce = rq->context;
	struct intel_context *parent = intel_context_to_parent(ce);
	u32 *cs;

	GEM_BUG_ON(!intel_context_is_child(ce));

	cs = intel_ring_begin(rq, 12);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Signal parent */
	cs = gen8_emit_ggtt_write(cs,
				  PARENT_GO_BB,
				  get_children_join_addr(parent,
							 ce->parallel.child_index),
				  0);

	/* Wait on parent for go */
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_EQ_SDD);
	*cs++ = CHILD_GO_BB;
	*cs++ = get_children_go_addr(parent);
	*cs++ = 0;

	/* Turn off preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* Jump to batch */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static u32 *
4506 4507
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						   u32 *cs)
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
{
	struct intel_context *ce = rq->context;
	u8 i;

	GEM_BUG_ON(!intel_context_is_parent(ce));

	/* Wait on children */
	for (i = 0; i < ce->parallel.number_children; ++i) {
		*cs++ = (MI_SEMAPHORE_WAIT |
			 MI_SEMAPHORE_GLOBAL_GTT |
			 MI_SEMAPHORE_POLL |
			 MI_SEMAPHORE_SAD_EQ_SDD);
		*cs++ = PARENT_GO_FINI_BREADCRUMB;
		*cs++ = get_children_join_addr(ce, i);
		*cs++ = 0;
	}

	/* Turn on preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*cs++ = MI_NOOP;

	/* Tell children go */
	cs = gen8_emit_ggtt_write(cs,
				  CHILD_GO_FINI_BREADCRUMB,
				  get_children_go_addr(ce),
				  0);

4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	return cs;
}

/*
 * If this true, a submission of multi-lrc requests had an error and the
 * requests need to be skipped. The front end (execuf IOCTL) should've called
 * i915_request_skip which squashes the BB but we still need to emit the fini
 * breadrcrumbs seqno write. At this point we don't know how many of the
 * requests in the multi-lrc submission were generated so we can't do the
 * handshake between the parent and children (e.g. if 4 requests should be
 * generated but 2nd hit an error only 1 would be seen by the GuC backend).
 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
 * has occurred on any of the requests in submission / relationship.
 */
static inline bool skip_handshake(struct i915_request *rq)
{
	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
}

4554
#define NON_SKIP_LEN	6
4555 4556 4557 4558 4559
static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						 u32 *cs)
{
	struct intel_context *ce = rq->context;
4560 4561
	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4562 4563 4564 4565 4566 4567

	GEM_BUG_ON(!intel_context_is_parent(ce));

	if (unlikely(skip_handshake(rq))) {
		/*
		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
4568
		 * the NON_SKIP_LEN comes from the length of the emits below.
4569 4570
		 */
		memset(cs, 0, sizeof(u32) *
4571 4572
		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4573 4574 4575 4576
	} else {
		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
	}

4577
	/* Emit fini breadcrumb */
4578
	before_fini_breadcrumb_user_interrupt_cs = cs;
4579 4580 4581 4582 4583 4584 4585 4586 4587
	cs = gen8_emit_ggtt_write(cs,
				  rq->fence.seqno,
				  i915_request_active_timeline(rq)->hwsp_offset,
				  0);

	/* User interrupt */
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

4588 4589 4590 4591 4592 4593
	/* Ensure our math for skip + emit is correct */
	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
		   cs);
	GEM_BUG_ON(start_fini_breadcrumb_cs +
		   ce->engine->emit_fini_breadcrumb_dw != cs);

4594 4595 4596 4597 4598 4599
	rq->tail = intel_ring_offset(rq, cs);

	return cs;
}

static u32 *
4600 4601
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						  u32 *cs)
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
{
	struct intel_context *ce = rq->context;
	struct intel_context *parent = intel_context_to_parent(ce);

	GEM_BUG_ON(!intel_context_is_child(ce));

	/* Turn on preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*cs++ = MI_NOOP;

	/* Signal parent */
	cs = gen8_emit_ggtt_write(cs,
				  PARENT_GO_FINI_BREADCRUMB,
				  get_children_join_addr(parent,
							 ce->parallel.child_index),
				  0);

	/* Wait parent on for go */
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_EQ_SDD);
	*cs++ = CHILD_GO_FINI_BREADCRUMB;
	*cs++ = get_children_go_addr(parent);
	*cs++ = 0;

4628 4629 4630 4631 4632 4633 4634 4635
	return cs;
}

static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						u32 *cs)
{
	struct intel_context *ce = rq->context;
4636 4637
	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4638 4639 4640 4641 4642 4643

	GEM_BUG_ON(!intel_context_is_child(ce));

	if (unlikely(skip_handshake(rq))) {
		/*
		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
4644
		 * the NON_SKIP_LEN comes from the length of the emits below.
4645 4646
		 */
		memset(cs, 0, sizeof(u32) *
4647 4648
		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4649 4650 4651 4652
	} else {
		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
	}

4653
	/* Emit fini breadcrumb */
4654
	before_fini_breadcrumb_user_interrupt_cs = cs;
4655 4656 4657 4658 4659 4660 4661 4662 4663
	cs = gen8_emit_ggtt_write(cs,
				  rq->fence.seqno,
				  i915_request_active_timeline(rq)->hwsp_offset,
				  0);

	/* User interrupt */
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

4664 4665 4666 4667 4668 4669
	/* Ensure our math for skip + emit is correct */
	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
		   cs);
	GEM_BUG_ON(start_fini_breadcrumb_cs +
		   ce->engine->emit_fini_breadcrumb_dw != cs);

4670 4671 4672 4673 4674
	rq->tail = intel_ring_offset(rq, cs);

	return cs;
}

4675 4676
#undef NON_SKIP_LEN

4677
static struct intel_context *
4678 4679
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
		   unsigned long flags)
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
{
	struct guc_virtual_engine *ve;
	struct intel_guc *guc;
	unsigned int n;
	int err;

	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

	guc = &siblings[0]->gt->uc.guc;

	ve->base.i915 = siblings[0]->i915;
	ve->base.gt = siblings[0]->gt;
	ve->base.uncore = siblings[0]->uncore;
	ve->base.id = -1;

	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.saturated = ALL_ENGINES;

	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);

	ve->base.cops = &virtual_guc_context_ops;
	ve->base.request_alloc = guc_request_alloc;
4708
	ve->base.bump_serial = virtual_guc_bump_serial;
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727

	ve->base.submit_request = guc_submit_request;

	ve->base.flags = I915_ENGINE_IS_VIRTUAL;

	intel_context_init(&ve->context, &ve->base);

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		ve->base.mask |= sibling->mask;
4728
		ve->base.logical_mask |= sibling->logical_mask;
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741

		if (n != 0 && ve->base.class != sibling->class) {
			DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
				  sibling->class, ve->base.class);
			err = -EINVAL;
			goto err_put;
		} else if (n == 0) {
			ve->base.class = sibling->class;
			ve->base.uabi_class = sibling->uabi_class;
			snprintf(ve->base.name, sizeof(ve->base.name),
				 "v%dx%d", ve->base.class, count);
			ve->base.context_size = sibling->context_size;

4742 4743 4744 4745
			ve->base.add_active_request =
				sibling->add_active_request;
			ve->base.remove_active_request =
				sibling->remove_active_request;
4746 4747 4748 4749 4750 4751 4752 4753
			ve->base.emit_bb_start = sibling->emit_bb_start;
			ve->base.emit_flush = sibling->emit_flush;
			ve->base.emit_init_breadcrumb =
				sibling->emit_init_breadcrumb;
			ve->base.emit_fini_breadcrumb =
				sibling->emit_fini_breadcrumb;
			ve->base.emit_fini_breadcrumb_dw =
				sibling->emit_fini_breadcrumb_dw;
4754 4755
			ve->base.breadcrumbs =
				intel_breadcrumbs_get(sibling->breadcrumbs);
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783

			ve->base.flags |= sibling->flags;

			ve->base.props.timeslice_duration_ms =
				sibling->props.timeslice_duration_ms;
			ve->base.props.preempt_timeout_ms =
				sibling->props.preempt_timeout_ms;
		}
	}

	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
{
	struct intel_engine_cs *engine;
	intel_engine_mask_t tmp, mask = ve->mask;

	for_each_engine_masked(engine, ve->gt, mask, tmp)
		if (READ_ONCE(engine->props.heartbeat_interval_ms))
			return true;

	return false;
}
4784 4785 4786

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_guc.c"
4787
#include "selftest_guc_multi_lrc.c"
4788
#endif