intel_guc_submission.c 51.3 KB
Newer Older
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2014 Intel Corporation
 */

6
#include <linux/circ_buf.h>
7

8
#include "gem/i915_gem_context.h"
9 10
#include "gt/gen8_engine_cs.h"
#include "gt/intel_breadcrumbs.h"
11 12
#include "gt/intel_context.h"
#include "gt/intel_engine_pm.h"
13
#include "gt/intel_gt.h"
14
#include "gt/intel_gt_irq.h"
15
#include "gt/intel_gt_pm.h"
16
#include "gt/intel_gt_requests.h"
17
#include "gt/intel_lrc.h"
18
#include "gt/intel_lrc_reg.h"
19
#include "gt/intel_mocs.h"
20 21
#include "gt/intel_ring.h"

22
#include "intel_guc_submission.h"
23

24
#include "i915_drv.h"
25
#include "i915_trace.h"
26

27
/**
A
Alex Dai 已提交
28
 * DOC: GuC-based command submission
29
 *
30 31 32 33 34 35
 * IMPORTANT NOTE: GuC submission is currently not supported in i915. The GuC
 * firmware is moving to an updated submission interface and we plan to
 * turn submission back on when that lands. The below documentation (and related
 * code) matches the old submission model and will be updated as part of the
 * upgrade to the new flow.
 *
36
 * GuC stage descriptor:
37
 * During initialization, the driver allocates a static pool of 1024 such
38 39
 * descriptors, and shares them with the GuC. Currently, we only use one
 * descriptor. This stage descriptor lets the GuC know about the workqueue and
40 41
 * process descriptor. Theoretically, it also lets the GuC know about our HW
 * contexts (context ID, etc...), but we actually employ a kind of submission
42
 * where the GuC uses the LRCA sent via the work item instead. This is called
43
 * a "proxy" submission.
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
59
 * See guc_add_request()
60 61 62
 *
 */

63 64 65 66 67 68 69 70 71
/* GuC Virtual Engine */
struct guc_virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;
};

static struct intel_context *
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count);

72 73
#define GUC_REQUEST_SIZE 64 /* bytes */

74 75 76 77 78 79 80 81
/*
 * Below is a set of functions which control the GuC scheduling state which do
 * not require a lock as all state transitions are mutually exclusive. i.e. It
 * is not possible for the context pinning code and submission, for the same
 * context, to be executing simultaneously. We still need an atomic as it is
 * possible for some of the bits to changing at the same time though.
 */
#define SCHED_STATE_NO_LOCK_ENABLED			BIT(0)
82
#define SCHED_STATE_NO_LOCK_PENDING_ENABLE		BIT(1)
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static inline bool context_enabled(struct intel_context *ce)
{
	return (atomic_read(&ce->guc_sched_state_no_lock) &
		SCHED_STATE_NO_LOCK_ENABLED);
}

static inline void set_context_enabled(struct intel_context *ce)
{
	atomic_or(SCHED_STATE_NO_LOCK_ENABLED, &ce->guc_sched_state_no_lock);
}

static inline void clr_context_enabled(struct intel_context *ce)
{
	atomic_and((u32)~SCHED_STATE_NO_LOCK_ENABLED,
		   &ce->guc_sched_state_no_lock);
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static inline bool context_pending_enable(struct intel_context *ce)
{
	return (atomic_read(&ce->guc_sched_state_no_lock) &
		SCHED_STATE_NO_LOCK_PENDING_ENABLE);
}

static inline void set_context_pending_enable(struct intel_context *ce)
{
	atomic_or(SCHED_STATE_NO_LOCK_PENDING_ENABLE,
		  &ce->guc_sched_state_no_lock);
}

static inline void clr_context_pending_enable(struct intel_context *ce)
{
	atomic_and((u32)~SCHED_STATE_NO_LOCK_PENDING_ENABLE,
		   &ce->guc_sched_state_no_lock);
}

118 119 120 121 122 123 124 125
/*
 * Below is a set of functions which control the GuC scheduling state which
 * require a lock, aside from the special case where the functions are called
 * from guc_lrc_desc_pin(). In that case it isn't possible for any other code
 * path to be executing on the context.
 */
#define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
#define SCHED_STATE_DESTROYED				BIT(1)
126
#define SCHED_STATE_PENDING_DISABLE			BIT(2)
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
static inline void init_sched_state(struct intel_context *ce)
{
	/* Only should be called from guc_lrc_desc_pin() */
	atomic_set(&ce->guc_sched_state_no_lock, 0);
	ce->guc_state.sched_state = 0;
}

static inline bool
context_wait_for_deregister_to_register(struct intel_context *ce)
{
	return ce->guc_state.sched_state &
		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline void
set_context_wait_for_deregister_to_register(struct intel_context *ce)
{
	/* Only should be called from guc_lrc_desc_pin() */
	ce->guc_state.sched_state |=
		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline void
clr_context_wait_for_deregister_to_register(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &=
		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline bool
context_destroyed(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
}

static inline void
set_context_destroyed(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
static inline bool context_pending_disable(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
}

static inline void set_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
}

static inline void clr_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
static inline bool context_guc_id_invalid(struct intel_context *ce)
{
	return ce->guc_id == GUC_INVALID_LRC_ID;
}

static inline void set_context_guc_id_invalid(struct intel_context *ce)
{
	ce->guc_id = GUC_INVALID_LRC_ID;
}

static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
{
	return &ce->engine->gt->uc.guc;
}

202 203 204 205 206
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

207
static struct guc_lrc_desc *__get_lrc_desc(struct intel_guc *guc, u32 index)
208
{
209
	struct guc_lrc_desc *base = guc->lrc_desc_pool_vaddr;
210

211
	GEM_BUG_ON(index >= GUC_MAX_LRC_DESCRIPTORS);
212

213
	return &base[index];
214 215
}

216 217 218 219 220 221 222 223 224
static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
{
	struct intel_context *ce = xa_load(&guc->context_lookup, id);

	GEM_BUG_ON(id >= GUC_MAX_LRC_DESCRIPTORS);

	return ce;
}

225
static int guc_lrc_desc_pool_create(struct intel_guc *guc)
226
{
227 228
	u32 size;
	int ret;
229

230 231 232 233 234 235
	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc) *
			  GUC_MAX_LRC_DESCRIPTORS);
	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool,
					     (void **)&guc->lrc_desc_pool_vaddr);
	if (ret)
		return ret;
236

237
	return 0;
238 239
}

240
static void guc_lrc_desc_pool_destroy(struct intel_guc *guc)
241
{
242
	i915_vma_unpin_and_release(&guc->lrc_desc_pool, I915_VMA_RELEASE_MAP);
243 244
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
static inline void reset_lrc_desc(struct intel_guc *guc, u32 id)
{
	struct guc_lrc_desc *desc = __get_lrc_desc(guc, id);

	memset(desc, 0, sizeof(*desc));
	xa_erase_irq(&guc->context_lookup, id);
}

static inline bool lrc_desc_registered(struct intel_guc *guc, u32 id)
{
	return __get_context(guc, id);
}

static inline void set_lrc_desc_registered(struct intel_guc *guc, u32 id,
					   struct intel_context *ce)
{
	xa_store_irq(&guc->context_lookup, id, ce, GFP_ATOMIC);
}

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
static int guc_submission_send_busy_loop(struct intel_guc *guc,
					 const u32 *action,
					 u32 len,
					 u32 g2h_len_dw,
					 bool loop)
{
	int err;

	err = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);

	if (!err && g2h_len_dw)
		atomic_inc(&guc->outstanding_submission_g2h);

	return err;
}

static int guc_wait_for_pending_msg(struct intel_guc *guc,
				    atomic_t *wait_var,
				    bool interruptible,
				    long timeout)
{
	const int state = interruptible ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	DEFINE_WAIT(wait);

	might_sleep();
	GEM_BUG_ON(timeout < 0);

	if (!atomic_read(wait_var))
		return 0;

	if (!timeout)
		return -ETIME;

	for (;;) {
		prepare_to_wait(&guc->ct.wq, &wait, state);

		if (!atomic_read(wait_var))
			break;

		if (signal_pending_state(state, current)) {
			timeout = -EINTR;
			break;
		}

		if (!timeout) {
			timeout = -ETIME;
			break;
		}

		timeout = io_schedule_timeout(timeout);
	}
	finish_wait(&guc->ct.wq, &wait);

	return (timeout < 0) ? timeout : 0;
}

int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
{
	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
		return 0;

	return guc_wait_for_pending_msg(guc, &guc->outstanding_submission_g2h,
					true, timeout);
}

330
static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
331
{
332 333 334 335
	int err;
	struct intel_context *ce = rq->context;
	u32 action[3];
	int len = 0;
336
	u32 g2h_len_dw = 0;
337
	bool enabled = context_enabled(ce);
338

339 340 341
	GEM_BUG_ON(!atomic_read(&ce->guc_id_ref));
	GEM_BUG_ON(context_guc_id_invalid(ce));

342 343 344 345
	if (!enabled) {
		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
		action[len++] = ce->guc_id;
		action[len++] = GUC_CONTEXT_ENABLE;
346 347
		set_context_pending_enable(ce);
		intel_context_get(ce);
348
		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
349 350 351 352
	} else {
		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
		action[len++] = ce->guc_id;
	}
353

354
	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
355
	if (!enabled && !err) {
356
		trace_intel_context_sched_enable(ce);
357
		atomic_inc(&guc->outstanding_submission_g2h);
358
		set_context_enabled(ce);
359 360 361 362
	} else if (!enabled) {
		clr_context_pending_enable(ce);
		intel_context_put(ce);
	}
363

364
	return err;
365 366
}

367 368 369 370 371 372
static inline void guc_set_lrc_tail(struct i915_request *rq)
{
	rq->context->lrc_reg_state[CTX_RING_TAIL] =
		intel_ring_set_tail(rq->ring, rq->tail);
}

373
static inline int rq_prio(const struct i915_request *rq)
374
{
375
	return rq->sched.attr.priority;
376 377
}

378
static int guc_dequeue_one_context(struct intel_guc *guc)
379
{
380 381
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	struct i915_request *last = NULL;
382
	bool submit = false;
383
	struct rb_node *rb;
384
	int ret;
385

386
	lockdep_assert_held(&sched_engine->lock);
387

388 389 390 391
	if (guc->stalled_request) {
		submit = true;
		last = guc->stalled_request;
		goto resubmit;
392 393
	}

394
	while ((rb = rb_first_cached(&sched_engine->queue))) {
395
		struct i915_priolist *p = to_priolist(rb);
396
		struct i915_request *rq, *rn;
397

398
		priolist_for_each_request_consume(rq, rn, p) {
399 400
			if (last && rq->context != last->context)
				goto done;
401

402
			list_del_init(&rq->sched.link);
403

404
			__i915_request_submit(rq);
405 406

			trace_i915_request_in(rq, 0);
407
			last = rq;
408
			submit = true;
409 410
		}

411
		rb_erase_cached(&p->node, &sched_engine->queue);
412
		i915_priolist_free(p);
413
	}
414
done:
415
	if (submit) {
416
		guc_set_lrc_tail(last);
417 418 419 420 421 422 423 424 425 426 427 428 429 430
resubmit:
		/*
		 * We only check for -EBUSY here even though it is possible for
		 * -EDEADLK to be returned. If -EDEADLK is returned, the GuC has
		 * died and a full GT reset needs to be done. The hangcheck will
		 * eventually detect that the GuC has died and trigger this
		 * reset so no need to handle -EDEADLK here.
		 */
		ret = guc_add_request(guc, last);
		if (ret == -EBUSY) {
			tasklet_schedule(&sched_engine->tasklet);
			guc->stalled_request = last;
			return false;
		}
431
		trace_i915_request_guc_submit(last);
432
	}
433 434 435

	guc->stalled_request = NULL;
	return submit;
436 437
}

438
static void guc_submission_tasklet(struct tasklet_struct *t)
439
{
440 441
	struct i915_sched_engine *sched_engine =
		from_tasklet(sched_engine, t, tasklet);
442
	unsigned long flags;
443
	bool loop;
444

445
	spin_lock_irqsave(&sched_engine->lock, flags);
446

447 448 449
	do {
		loop = guc_dequeue_one_context(sched_engine->private_data);
	} while (loop);
450

451
	i915_sched_engine_reset_on_empty(sched_engine);
452

453
	spin_unlock_irqrestore(&sched_engine->lock, flags);
454 455
}

456 457
static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
458
	if (iir & GT_RENDER_USER_INTERRUPT)
459 460 461
		intel_engine_signal_breadcrumbs(engine);
}

462
static void guc_reset_prepare(struct intel_engine_cs *engine)
463
{
464
	ENGINE_TRACE(engine, "\n");
465 466 467 468 469 470 471 472 473 474

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
475
	__tasklet_disable_sync_once(&engine->sched_engine->tasklet);
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
static void guc_reset_state(struct intel_context *ce,
			    struct intel_engine_cs *engine,
			    u32 head,
			    bool scrub)
{
	GEM_BUG_ON(!intel_context_is_pinned(ce));

	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub)
		lrc_init_regs(ce, engine, true);

	/* Rerun the request; its payload has been neutered (if guilty). */
	lrc_update_regs(ce, engine, head);
}

500
static void guc_reset_rewind(struct intel_engine_cs *engine, bool stalled)
501 502 503 504 505
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq;
	unsigned long flags;

506
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
507 508 509 510 511 512 513 514 515

	/* Push back any incomplete requests for replay after the reset. */
	rq = execlists_unwind_incomplete_requests(execlists);
	if (!rq)
		goto out_unlock;

	if (!i915_request_started(rq))
		stalled = false;

516
	__i915_request_reset(rq, stalled);
517
	guc_reset_state(rq->context, engine, rq->head, stalled);
518 519

out_unlock:
520
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
521 522
}

523
static void guc_reset_cancel(struct intel_engine_cs *engine)
524
{
525
	struct i915_sched_engine * const sched_engine = engine->sched_engine;
526 527 528 529
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

530 531 532 533
	/* Can be called during boot if GuC fails to load */
	if (!engine->gt)
		return;

534
	ENGINE_TRACE(engine, "\n");
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
550
	spin_lock_irqsave(&sched_engine->lock, flags);
551 552

	/* Mark all executing requests as skipped. */
553
	list_for_each_entry(rq, &sched_engine->requests, sched.link) {
554
		i915_request_set_error_once(rq, -EIO);
555 556 557 558
		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
559
	while ((rb = rb_first_cached(&sched_engine->queue))) {
560 561
		struct i915_priolist *p = to_priolist(rb);

562
		priolist_for_each_request_consume(rq, rn, p) {
563 564 565 566 567 568
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

569
		rb_erase_cached(&p->node, &sched_engine->queue);
570 571 572 573 574
		i915_priolist_free(p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

575 576
	sched_engine->queue_priority_hint = INT_MIN;
	sched_engine->queue = RB_ROOT_CACHED;
577

578
	spin_unlock_irqrestore(&sched_engine->lock, flags);
579 580 581 582
}

static void guc_reset_finish(struct intel_engine_cs *engine)
{
583
	if (__tasklet_enable(&engine->sched_engine->tasklet))
584
		/* And kick in case we missed a new request submission. */
585
		tasklet_hi_schedule(&engine->sched_engine->tasklet);
586

587
	ENGINE_TRACE(engine, "depth->%d\n",
588
		     atomic_read(&engine->sched_engine->tasklet.count));
589 590
}

591
/*
592 593
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
594
 */
595
int intel_guc_submission_init(struct intel_guc *guc)
596
{
597
	int ret;
598

599
	if (guc->lrc_desc_pool)
600
		return 0;
601

602
	ret = guc_lrc_desc_pool_create(guc);
603 604
	if (ret)
		return ret;
605 606 607 608
	/*
	 * Keep static analysers happy, let them know that we allocated the
	 * vma after testing that it didn't exist earlier.
	 */
609
	GEM_BUG_ON(!guc->lrc_desc_pool);
610

611 612
	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);

613 614 615 616
	spin_lock_init(&guc->contexts_lock);
	INIT_LIST_HEAD(&guc->guc_id_list);
	ida_init(&guc->guc_ids);

617
	return 0;
618 619
}

620
void intel_guc_submission_fini(struct intel_guc *guc)
621
{
622 623 624 625 626
	if (!guc->lrc_desc_pool)
		return;

	guc_lrc_desc_pool_destroy(guc);
	i915_sched_engine_put(guc->sched_engine);
627 628
}

629 630 631
static inline void queue_request(struct i915_sched_engine *sched_engine,
				 struct i915_request *rq,
				 int prio)
632
{
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	GEM_BUG_ON(!list_empty(&rq->sched.link));
	list_add_tail(&rq->sched.link,
		      i915_sched_lookup_priolist(sched_engine, prio));
	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
}

static int guc_bypass_tasklet_submit(struct intel_guc *guc,
				     struct i915_request *rq)
{
	int ret;

	__i915_request_submit(rq);

	trace_i915_request_in(rq, 0);

	guc_set_lrc_tail(rq);
	ret = guc_add_request(guc, rq);
	if (ret == -EBUSY)
		guc->stalled_request = rq;
652 653
	else
		trace_i915_request_guc_submit(rq);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817

	return ret;
}

static void guc_submit_request(struct i915_request *rq)
{
	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
	struct intel_guc *guc = &rq->engine->gt->uc.guc;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&sched_engine->lock, flags);

	if (guc->stalled_request || !i915_sched_engine_is_empty(sched_engine))
		queue_request(sched_engine, rq, rq_prio(rq));
	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
		tasklet_hi_schedule(&sched_engine->tasklet);

	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

static int new_guc_id(struct intel_guc *guc)
{
	return ida_simple_get(&guc->guc_ids, 0,
			      GUC_MAX_LRC_DESCRIPTORS, GFP_KERNEL |
			      __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
}

static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	if (!context_guc_id_invalid(ce)) {
		ida_simple_remove(&guc->guc_ids, ce->guc_id);
		reset_lrc_desc(guc, ce->guc_id);
		set_context_guc_id_invalid(ce);
	}
	if (!list_empty(&ce->guc_id_link))
		list_del_init(&ce->guc_id_link);
}

static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	unsigned long flags;

	spin_lock_irqsave(&guc->contexts_lock, flags);
	__release_guc_id(guc, ce);
	spin_unlock_irqrestore(&guc->contexts_lock, flags);
}

static int steal_guc_id(struct intel_guc *guc)
{
	struct intel_context *ce;
	int guc_id;

	lockdep_assert_held(&guc->contexts_lock);

	if (!list_empty(&guc->guc_id_list)) {
		ce = list_first_entry(&guc->guc_id_list,
				      struct intel_context,
				      guc_id_link);

		GEM_BUG_ON(atomic_read(&ce->guc_id_ref));
		GEM_BUG_ON(context_guc_id_invalid(ce));

		list_del_init(&ce->guc_id_link);
		guc_id = ce->guc_id;
		set_context_guc_id_invalid(ce);
		return guc_id;
	} else {
		return -EAGAIN;
	}
}

static int assign_guc_id(struct intel_guc *guc, u16 *out)
{
	int ret;

	lockdep_assert_held(&guc->contexts_lock);

	ret = new_guc_id(guc);
	if (unlikely(ret < 0)) {
		ret = steal_guc_id(guc);
		if (ret < 0)
			return ret;
	}

	*out = ret;
	return 0;
}

#define PIN_GUC_ID_TRIES	4
static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	int ret = 0;
	unsigned long flags, tries = PIN_GUC_ID_TRIES;

	GEM_BUG_ON(atomic_read(&ce->guc_id_ref));

try_again:
	spin_lock_irqsave(&guc->contexts_lock, flags);

	if (context_guc_id_invalid(ce)) {
		ret = assign_guc_id(guc, &ce->guc_id);
		if (ret)
			goto out_unlock;
		ret = 1;	/* Indidcates newly assigned guc_id */
	}
	if (!list_empty(&ce->guc_id_link))
		list_del_init(&ce->guc_id_link);
	atomic_inc(&ce->guc_id_ref);

out_unlock:
	spin_unlock_irqrestore(&guc->contexts_lock, flags);

	/*
	 * -EAGAIN indicates no guc_ids are available, let's retire any
	 * outstanding requests to see if that frees up a guc_id. If the first
	 * retire didn't help, insert a sleep with the timeslice duration before
	 * attempting to retire more requests. Double the sleep period each
	 * subsequent pass before finally giving up. The sleep period has max of
	 * 100ms and minimum of 1ms.
	 */
	if (ret == -EAGAIN && --tries) {
		if (PIN_GUC_ID_TRIES - tries > 1) {
			unsigned int timeslice_shifted =
				ce->engine->props.timeslice_duration_ms <<
				(PIN_GUC_ID_TRIES - tries - 2);
			unsigned int max = min_t(unsigned int, 100,
						 timeslice_shifted);

			msleep(max_t(unsigned int, max, 1));
		}
		intel_gt_retire_requests(guc_to_gt(guc));
		goto try_again;
	}

	return ret;
}

static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	unsigned long flags;

	GEM_BUG_ON(atomic_read(&ce->guc_id_ref) < 0);

	if (unlikely(context_guc_id_invalid(ce)))
		return;

	spin_lock_irqsave(&guc->contexts_lock, flags);
	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id_link) &&
	    !atomic_read(&ce->guc_id_ref))
		list_add_tail(&ce->guc_id_link, &guc->guc_id_list);
	spin_unlock_irqrestore(&guc->contexts_lock, flags);
}

static int __guc_action_register_context(struct intel_guc *guc,
					 u32 guc_id,
					 u32 offset)
{
	u32 action[] = {
		INTEL_GUC_ACTION_REGISTER_CONTEXT,
		guc_id,
		offset,
	};

818 819
	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
					     0, true);
820 821 822 823 824 825 826 827
}

static int register_context(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool) +
		ce->guc_id * sizeof(struct guc_lrc_desc);

828 829
	trace_intel_context_register(ce);

830 831 832 833 834 835 836 837 838 839 840
	return __guc_action_register_context(guc, ce->guc_id, offset);
}

static int __guc_action_deregister_context(struct intel_guc *guc,
					   u32 guc_id)
{
	u32 action[] = {
		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
		guc_id,
	};

841 842 843
	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
					     G2H_LEN_DW_DEREGISTER_CONTEXT,
					     true);
844 845 846 847 848 849
}

static int deregister_context(struct intel_context *ce, u32 guc_id)
{
	struct intel_guc *guc = ce_to_guc(ce);

850 851
	trace_intel_context_deregister(ce);

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	return __guc_action_deregister_context(guc, guc_id);
}

static intel_engine_mask_t adjust_engine_mask(u8 class, intel_engine_mask_t mask)
{
	switch (class) {
	case RENDER_CLASS:
		return mask >> RCS0;
	case VIDEO_ENHANCEMENT_CLASS:
		return mask >> VECS0;
	case VIDEO_DECODE_CLASS:
		return mask >> VCS0;
	case COPY_ENGINE_CLASS:
		return mask >> BCS0;
	default:
		MISSING_CASE(class);
		return 0;
	}
}

static void guc_context_policy_init(struct intel_engine_cs *engine,
				    struct guc_lrc_desc *desc)
{
	desc->policy_flags = 0;

	desc->execution_quantum = CONTEXT_POLICY_DEFAULT_EXECUTION_QUANTUM_US;
	desc->preemption_timeout = CONTEXT_POLICY_DEFAULT_PREEMPTION_TIME_US;
}

static int guc_lrc_desc_pin(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;
	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
	struct intel_guc *guc = &engine->gt->uc.guc;
	u32 desc_idx = ce->guc_id;
	struct guc_lrc_desc *desc;
	bool context_registered;
	intel_wakeref_t wakeref;
	int ret = 0;

	GEM_BUG_ON(!engine->mask);

	/*
	 * Ensure LRC + CT vmas are is same region as write barrier is done
	 * based on CT vma region.
	 */
	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
		   i915_gem_object_is_lmem(ce->ring->vma->obj));

	context_registered = lrc_desc_registered(guc, desc_idx);

	reset_lrc_desc(guc, desc_idx);
	set_lrc_desc_registered(guc, desc_idx, ce);

	desc = __get_lrc_desc(guc, desc_idx);
	desc->engine_class = engine_class_to_guc_class(engine->class);
	desc->engine_submit_mask = adjust_engine_mask(engine->class,
						      engine->mask);
	desc->hw_context_desc = ce->lrc.lrca;
	desc->priority = GUC_CLIENT_PRIORITY_KMD_NORMAL;
	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
	guc_context_policy_init(engine, desc);
	init_sched_state(ce);

	/*
	 * The context_lookup xarray is used to determine if the hardware
	 * context is currently registered. There are two cases in which it
	 * could be registered either the guc_id has been stolen from another
	 * context or the lrc descriptor address of this context has changed. In
	 * either case the context needs to be deregistered with the GuC before
	 * registering this context.
	 */
	if (context_registered) {
925
		trace_intel_context_steal_guc_id(ce);
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
		set_context_wait_for_deregister_to_register(ce);
		intel_context_get(ce);

		/*
		 * If stealing the guc_id, this ce has the same guc_id as the
		 * context whose guc_id was stolen.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref)
			ret = deregister_context(ce, ce->guc_id);
	} else {
		with_intel_runtime_pm(runtime_pm, wakeref)
			ret = register_context(ce);
	}

	return ret;
941 942
}

943 944 945 946
static int __guc_context_pre_pin(struct intel_context *ce,
				 struct intel_engine_cs *engine,
				 struct i915_gem_ww_ctx *ww,
				 void **vaddr)
947
{
948
	return lrc_pre_pin(ce, engine, ww, vaddr);
949 950
}

951 952 953
static int __guc_context_pin(struct intel_context *ce,
			     struct intel_engine_cs *engine,
			     void *vaddr)
954
{
955 956 957 958 959 960 961 962 963
	if (i915_ggtt_offset(ce->state) !=
	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);

	/*
	 * GuC context gets pinned in guc_request_alloc. See that function for
	 * explaination of why.
	 */

964 965 966 967 968 969 970 971 972 973 974 975 976
	return lrc_pin(ce, engine, vaddr);
}

static int guc_context_pre_pin(struct intel_context *ce,
			       struct i915_gem_ww_ctx *ww,
			       void **vaddr)
{
	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
}

static int guc_context_pin(struct intel_context *ce, void *vaddr)
{
	return __guc_context_pin(ce, ce->engine, vaddr);
977 978
}

979 980 981 982 983 984 985 986 987 988 989 990 991
static void guc_context_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);
}

static void guc_context_post_unpin(struct intel_context *ce)
{
	lrc_post_unpin(ce);
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003
static void __guc_context_sched_disable(struct intel_guc *guc,
					struct intel_context *ce,
					u16 guc_id)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
		guc_id,	/* ce->guc_id not stable */
		GUC_CONTEXT_DISABLE
	};

	GEM_BUG_ON(guc_id == GUC_INVALID_LRC_ID);

1004
	trace_intel_context_sched_disable(ce);
1005 1006
	intel_context_get(ce);

1007 1008
	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
}

static u16 prep_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	set_context_pending_disable(ce);
	clr_context_enabled(ce);

	return ce->guc_id;
}

static void guc_context_sched_disable(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
	unsigned long flags;
	u16 guc_id;
	intel_wakeref_t wakeref;

	if (context_guc_id_invalid(ce) ||
	    !lrc_desc_registered(guc, ce->guc_id)) {
		clr_context_enabled(ce);
		goto unpin;
	}

	if (!context_enabled(ce))
		goto unpin;

	spin_lock_irqsave(&ce->guc_state.lock, flags);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

	/*
	 * We have to check if the context has been pinned again as another pin
	 * operation is allowed to pass this function. Checking the pin count,
	 * within ce->guc_state.lock, synchronizes this function with
	 * guc_request_alloc ensuring a request doesn't slip through the
	 * 'context_pending_disable' fence. Checking within the spin lock (can't
	 * sleep) ensures another process doesn't pin this context and generate
	 * a request before we set the 'context_pending_disable' flag here.
	 */
	if (unlikely(atomic_add_unless(&ce->pin_count, -2, 2))) {
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
		return;
	}
1053
	guc_id = prep_context_pending_disable(ce);
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	with_intel_runtime_pm(runtime_pm, wakeref)
		__guc_context_sched_disable(guc, ce, guc_id);

	return;
unpin:
	intel_context_sched_disable_unpin(ce);
}

1065 1066 1067 1068 1069 1070 1071
static inline void guc_lrc_desc_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;

	GEM_BUG_ON(!lrc_desc_registered(guc, ce->guc_id));
	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id));
1072
	GEM_BUG_ON(context_enabled(ce));
1073 1074 1075 1076 1077 1078 1079 1080

	spin_lock_irqsave(&ce->guc_state.lock, flags);
	set_context_destroyed(ce);
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	deregister_context(ce, ce->guc_id);
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
static void __guc_context_destroy(struct intel_context *ce)
{
	lrc_fini(ce);
	intel_context_fini(ce);

	if (intel_engine_is_virtual(ce->engine)) {
		struct guc_virtual_engine *ve =
			container_of(ce, typeof(*ve), context);

		kfree(ve);
	} else {
		intel_context_free(ce);
	}
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
static void guc_context_destroy(struct kref *kref)
{
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
	struct intel_guc *guc = ce_to_guc(ce);
	intel_wakeref_t wakeref;
	unsigned long flags;

	/*
	 * If the guc_id is invalid this context has been stolen and we can free
	 * it immediately. Also can be freed immediately if the context is not
	 * registered with the GuC.
	 */
	if (context_guc_id_invalid(ce)) {
1110
		__guc_context_destroy(ce);
1111 1112 1113
		return;
	} else if (!lrc_desc_registered(guc, ce->guc_id)) {
		release_guc_id(guc, ce);
1114
		__guc_context_destroy(ce);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		return;
	}

	/*
	 * We have to acquire the context spinlock and check guc_id again, if it
	 * is valid it hasn't been stolen and needs to be deregistered. We
	 * delete this context from the list of unpinned guc_ids available to
	 * steal to seal a race with guc_lrc_desc_pin(). When the G2H CTB
	 * returns indicating this context has been deregistered the guc_id is
	 * returned to the pool of available guc_ids.
	 */
	spin_lock_irqsave(&guc->contexts_lock, flags);
	if (context_guc_id_invalid(ce)) {
		spin_unlock_irqrestore(&guc->contexts_lock, flags);
1129
		__guc_context_destroy(ce);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		return;
	}

	if (!list_empty(&ce->guc_id_link))
		list_del_init(&ce->guc_id_link);
	spin_unlock_irqrestore(&guc->contexts_lock, flags);

	/*
	 * We defer GuC context deregistration until the context is destroyed
	 * in order to save on CTBs. With this optimization ideally we only need
	 * 1 CTB to register the context during the first pin and 1 CTB to
	 * deregister the context when the context is destroyed. Without this
	 * optimization, a CTB would be needed every pin & unpin.
	 *
	 * XXX: Need to acqiure the runtime wakeref as this can be triggered
	 * from context_free_worker when runtime wakeref is not held.
	 * guc_lrc_desc_unpin requires the runtime as a GuC register is written
	 * in H2G CTB to deregister the context. A future patch may defer this
	 * H2G CTB if the runtime wakeref is zero.
	 */
	with_intel_runtime_pm(runtime_pm, wakeref)
		guc_lrc_desc_unpin(ce);
}

static int guc_context_alloc(struct intel_context *ce)
{
	return lrc_alloc(ce, ce->engine);
}

1159 1160 1161 1162 1163
static const struct intel_context_ops guc_context_ops = {
	.alloc = guc_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_context_pin,
1164 1165
	.unpin = guc_context_unpin,
	.post_unpin = guc_context_post_unpin,
1166 1167 1168 1169

	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1170 1171
	.sched_disable = guc_context_sched_disable,

1172
	.reset = lrc_reset,
1173
	.destroy = guc_context_destroy,
1174 1175

	.create_virtual = guc_create_virtual,
1176 1177
};

1178 1179 1180 1181 1182 1183
static void __guc_signal_context_fence(struct intel_context *ce)
{
	struct i915_request *rq;

	lockdep_assert_held(&ce->guc_state.lock);

1184 1185 1186
	if (!list_empty(&ce->guc_state.fences))
		trace_intel_context_fence_release(ce);

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	list_for_each_entry(rq, &ce->guc_state.fences, guc_fence_link)
		i915_sw_fence_complete(&rq->submit);

	INIT_LIST_HEAD(&ce->guc_state.fences);
}

static void guc_signal_context_fence(struct intel_context *ce)
{
	unsigned long flags;

	GEM_BUG_ON(!context_wait_for_deregister_to_register(ce));

	spin_lock_irqsave(&ce->guc_state.lock, flags);
	clr_context_wait_for_deregister_to_register(ce);
	__guc_signal_context_fence(ce);
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
}

1205 1206 1207 1208 1209 1210 1211
static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
{
	return new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
		!lrc_desc_registered(ce_to_guc(ce), ce->guc_id);
}

static int guc_request_alloc(struct i915_request *rq)
1212
{
1213 1214
	struct intel_context *ce = rq->context;
	struct intel_guc *guc = ce_to_guc(ce);
1215
	unsigned long flags;
1216 1217
	int ret;

1218
	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
1219 1220 1221 1222 1223 1224

	/*
	 * Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1225
	rq->reserved_space += GUC_REQUEST_SIZE;
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

	/*
	 * Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	/* Unconditionally invalidate GPU caches and TLBs. */
1236
	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1237 1238 1239
	if (ret)
		return ret;

1240
	rq->reserved_space -= GUC_REQUEST_SIZE;
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	/*
	 * Call pin_guc_id here rather than in the pinning step as with
	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
	 * guc_ids and creating horrible race conditions. This is especially bad
	 * when guc_ids are being stolen due to over subscription. By the time
	 * this function is reached, it is guaranteed that the guc_id will be
	 * persistent until the generated request is retired. Thus, sealing these
	 * race conditions. It is still safe to fail here if guc_ids are
	 * exhausted and return -EAGAIN to the user indicating that they can try
	 * again in the future.
	 *
	 * There is no need for a lock here as the timeline mutex ensures at
	 * most one context can be executing this code path at once. The
	 * guc_id_ref is incremented once for every request in flight and
	 * decremented on each retire. When it is zero, a lock around the
	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
	 */
	if (atomic_add_unless(&ce->guc_id_ref, 1, 0))
1260
		goto out;
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
	if (unlikely(ret < 0))
		return ret;
	if (context_needs_register(ce, !!ret)) {
		ret = guc_lrc_desc_pin(ce);
		if (unlikely(ret)) {	/* unwind */
			atomic_dec(&ce->guc_id_ref);
			unpin_guc_id(guc, ce);
			return ret;
		}
	}
1273

1274
	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
1275

1276 1277 1278
out:
	/*
	 * We block all requests on this context if a G2H is pending for a
1279 1280 1281 1282
	 * schedule disable or context deregistration as the GuC will fail a
	 * schedule enable or context registration if either G2H is pending
	 * respectfully. Once a G2H returns, the fence is released that is
	 * blocking these requests (see guc_signal_context_fence).
1283
	 *
1284 1285
	 * We can safely check the below fields outside of the lock as it isn't
	 * possible for these fields to transition from being clear to set but
1286 1287
	 * converse is possible, hence the need for the check within the lock.
	 */
1288 1289
	if (likely(!context_wait_for_deregister_to_register(ce) &&
		   !context_pending_disable(ce)))
1290 1291 1292
		return 0;

	spin_lock_irqsave(&ce->guc_state.lock, flags);
1293 1294
	if (context_wait_for_deregister_to_register(ce) ||
	    context_pending_disable(ce)) {
1295 1296 1297 1298 1299 1300
		i915_sw_fence_await(&rq->submit);

		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
	}
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

1301
	return 0;
1302 1303
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
{
	struct intel_engine_cs *engine;
	intel_engine_mask_t tmp, mask = ve->mask;
	unsigned int num_siblings = 0;

	for_each_engine_masked(engine, ve->gt, mask, tmp)
		if (num_siblings++ == sibling)
			return engine;

	return NULL;
}

static int guc_virtual_context_pre_pin(struct intel_context *ce,
				       struct i915_gem_ww_ctx *ww,
				       void **vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	return __guc_context_pre_pin(ce, engine, ww, vaddr);
}

static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	return __guc_context_pin(ce, engine, vaddr);
}

static void guc_virtual_context_enter(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_get(engine);

	intel_timeline_enter(ce->timeline);
}

static void guc_virtual_context_exit(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_put(engine);

	intel_timeline_exit(ce->timeline);
}

static int guc_virtual_context_alloc(struct intel_context *ce)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	return lrc_alloc(ce, engine);
}

static const struct intel_context_ops virtual_guc_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_virtual_context_pre_pin,
	.pin = guc_virtual_context_pin,
	.unpin = guc_context_unpin,
	.post_unpin = guc_context_post_unpin,

	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.sched_disable = guc_context_sched_disable,

	.destroy = guc_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
static void sanitize_hwsp(struct intel_engine_cs *engine)
{
	struct intel_timeline *tl;

	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
		intel_timeline_reset_seqno(tl);
}

static void guc_sanitize(struct intel_engine_cs *engine)
{
	/*
	 * Poison residual state on resume, in case the suspend didn't!
	 *
	 * We have to assume that across suspend/resume (or other loss
	 * of control) that the contents of our pinned buffers has been
	 * lost, replaced by garbage. Since this doesn't always happen,
	 * let's poison such state so that we more quickly spot when
	 * we falsely assume it has been preserved.
	 */
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);

	/*
	 * The kernel_context HWSP is stored in the status_page. As above,
	 * that may be lost on resume/initialisation, and so we need to
	 * reset the value in the HWSP.
	 */
	sanitize_hwsp(engine);

	/* And scrub the dirty cachelines for the HWSP */
	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
}

static void setup_hwsp(struct intel_engine_cs *engine)
{
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */

	ENGINE_WRITE_FW(engine,
			RING_HWS_PGA,
			i915_ggtt_offset(engine->status_page.vma));
}

static void start_engine(struct intel_engine_cs *engine)
{
	ENGINE_WRITE_FW(engine,
			RING_MODE_GEN7,
			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));

	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
	ENGINE_POSTING_READ(engine, RING_MI_MODE);
}

static int guc_resume(struct intel_engine_cs *engine)
{
	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);

	intel_mocs_init_engine(engine);

	intel_breadcrumbs_reset(engine->breadcrumbs);

	setup_hwsp(engine);
	start_engine(engine);

	return 0;
}

1447 1448
static void guc_set_default_submission(struct intel_engine_cs *engine)
{
1449
	engine->submit_request = guc_submit_request;
1450 1451
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
static inline void guc_kernel_context_pin(struct intel_guc *guc,
					  struct intel_context *ce)
{
	if (context_guc_id_invalid(ce))
		pin_guc_id(guc, ce);
	guc_lrc_desc_pin(ce);
}

static inline void guc_init_lrc_mapping(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	/* make sure all descriptors are clean... */
	xa_destroy(&guc->context_lookup);

	/*
	 * Some contexts might have been pinned before we enabled GuC
	 * submission, so we need to add them to the GuC bookeeping.
	 * Also, after a reset the of the GuC we want to make sure that the
	 * information shared with GuC is properly reset. The kernel LRCs are
	 * not attached to the gem_context, so they need to be added separately.
	 *
	 * Note: we purposefully do not check the return of guc_lrc_desc_pin,
	 * because that function can only fail if a reset is just starting. This
	 * is at the end of reset so presumably another reset isn't happening
	 * and even it did this code would be run again.
	 */

	for_each_engine(engine, gt, id)
		if (engine->kernel_context)
			guc_kernel_context_pin(guc, engine->kernel_context);
}

1487
static void guc_release(struct intel_engine_cs *engine)
1488
{
1489
	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	intel_engine_cleanup_common(engine);
	lrc_fini_wa_ctx(engine);
}

static void guc_default_vfuncs(struct intel_engine_cs *engine)
{
	/* Default vfuncs which can be overridden by each engine. */

	engine->resume = guc_resume;

	engine->cops = &guc_context_ops;
	engine->request_alloc = guc_request_alloc;

1504
	engine->sched_engine->schedule = i915_schedule;
1505 1506 1507 1508 1509 1510

	engine->reset.prepare = guc_reset_prepare;
	engine->reset.rewind = guc_reset_rewind;
	engine->reset.cancel = guc_reset_cancel;
	engine->reset.finish = guc_reset_finish;

1511 1512 1513
	engine->emit_flush = gen8_emit_flush_xcs;
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
1514
	if (GRAPHICS_VER(engine->i915) >= 12) {
1515 1516 1517 1518
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
		engine->emit_flush = gen12_emit_flush_xcs;
	}
	engine->set_default_submission = guc_set_default_submission;
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

	engine->flags |= I915_ENGINE_HAS_PREEMPTION;

	/*
	 * TODO: GuC supports timeslicing and semaphores as well, but they're
	 * handled by the firmware so some minor tweaks are required before
	 * enabling.
	 *
	 * engine->flags |= I915_ENGINE_HAS_TIMESLICES;
	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
	 */

	engine->emit_bb_start = gen8_emit_bb_start;
1532
}
1533

1534 1535
static void rcs_submission_override(struct intel_engine_cs *engine)
{
1536
	switch (GRAPHICS_VER(engine->i915)) {
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	case 12:
		engine->emit_flush = gen12_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
		break;
	case 11:
		engine->emit_flush = gen11_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
		break;
	default:
		engine->emit_flush = gen8_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
		break;
1549
	}
1550 1551
}

1552 1553 1554
static inline void guc_default_irqs(struct intel_engine_cs *engine)
{
	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
1555
	intel_engine_set_irq_handler(engine, cs_irq_handler);
1556 1557 1558 1559 1560
}

int intel_guc_submission_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
1561
	struct intel_guc *guc = &engine->gt->uc.guc;
1562 1563 1564 1565 1566

	/*
	 * The setup relies on several assumptions (e.g. irqs always enabled)
	 * that are only valid on gen11+
	 */
1567
	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	if (!guc->sched_engine) {
		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
		if (!guc->sched_engine)
			return -ENOMEM;

		guc->sched_engine->schedule = i915_schedule;
		guc->sched_engine->private_data = guc;
		tasklet_setup(&guc->sched_engine->tasklet,
			      guc_submission_tasklet);
	}
	i915_sched_engine_put(engine->sched_engine);
	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

	guc_default_vfuncs(engine);
	guc_default_irqs(engine);

	if (engine->class == RENDER_CLASS)
		rcs_submission_override(engine);

	lrc_init_wa_ctx(engine);

	/* Finally, take ownership and responsibility for cleanup! */
	engine->sanitize = guc_sanitize;
	engine->release = guc_release;

	return 0;
}

void intel_guc_submission_enable(struct intel_guc *guc)
{
1599
	guc_init_lrc_mapping(guc);
1600 1601
}

1602
void intel_guc_submission_disable(struct intel_guc *guc)
1603
{
1604
	struct intel_gt *gt = guc_to_gt(guc);
1605

1606
	GEM_BUG_ON(gt->awake); /* GT should be parked first */
1607

1608
	/* Note: By the time we're here, GuC may have already been reset */
1609
}
1610

1611
static bool __guc_submission_selected(struct intel_guc *guc)
1612
{
1613 1614
	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;

1615
	if (!intel_guc_submission_is_supported(guc))
1616 1617
		return false;

1618
	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
1619 1620 1621 1622
}

void intel_guc_submission_init_early(struct intel_guc *guc)
{
1623
	guc->submission_selected = __guc_submission_selected(guc);
1624
}
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

static inline struct intel_context *
g2h_context_lookup(struct intel_guc *guc, u32 desc_idx)
{
	struct intel_context *ce;

	if (unlikely(desc_idx >= GUC_MAX_LRC_DESCRIPTORS)) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Invalid desc_idx %u", desc_idx);
		return NULL;
	}

	ce = __get_context(guc, desc_idx);
	if (unlikely(!ce)) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Context is NULL, desc_idx %u", desc_idx);
		return NULL;
	}

	return ce;
}

1647 1648 1649 1650 1651 1652
static void decr_outstanding_submission_g2h(struct intel_guc *guc)
{
	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
		wake_up_all(&guc->ct.wq);
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
					  const u32 *msg,
					  u32 len)
{
	struct intel_context *ce;
	u32 desc_idx = msg[0];

	if (unlikely(len < 1)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	ce = g2h_context_lookup(guc, desc_idx);
	if (unlikely(!ce))
		return -EPROTO;

1669 1670
	trace_intel_context_deregister_done(ce);

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	if (context_wait_for_deregister_to_register(ce)) {
		struct intel_runtime_pm *runtime_pm =
			&ce->engine->gt->i915->runtime_pm;
		intel_wakeref_t wakeref;

		/*
		 * Previous owner of this guc_id has been deregistered, now safe
		 * register this context.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref)
			register_context(ce);
1682
		guc_signal_context_fence(ce);
1683 1684 1685 1686
		intel_context_put(ce);
	} else if (context_destroyed(ce)) {
		/* Context has been destroyed */
		release_guc_id(guc, ce);
1687
		__guc_context_destroy(ce);
1688 1689
	}

1690 1691
	decr_outstanding_submission_g2h(guc);

1692 1693
	return 0;
}
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

int intel_guc_sched_done_process_msg(struct intel_guc *guc,
				     const u32 *msg,
				     u32 len)
{
	struct intel_context *ce;
	unsigned long flags;
	u32 desc_idx = msg[0];

	if (unlikely(len < 2)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	ce = g2h_context_lookup(guc, desc_idx);
	if (unlikely(!ce))
		return -EPROTO;

	if (unlikely(context_destroyed(ce) ||
		     (!context_pending_enable(ce) &&
		     !context_pending_disable(ce)))) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Bad context sched_state 0x%x, 0x%x, desc_idx %u",
			atomic_read(&ce->guc_sched_state_no_lock),
			ce->guc_state.sched_state, desc_idx);
		return -EPROTO;
	}

1722 1723
	trace_intel_context_sched_done(ce);

1724 1725 1726
	if (context_pending_enable(ce)) {
		clr_context_pending_enable(ce);
	} else if (context_pending_disable(ce)) {
1727 1728 1729 1730 1731 1732 1733
		/*
		 * Unpin must be done before __guc_signal_context_fence,
		 * otherwise a race exists between the requests getting
		 * submitted + retired before this unpin completes resulting in
		 * the pin_count going to zero and the context still being
		 * enabled.
		 */
1734 1735 1736 1737
		intel_context_sched_disable_unpin(ce);

		spin_lock_irqsave(&ce->guc_state.lock, flags);
		clr_context_pending_disable(ce);
1738
		__guc_signal_context_fence(ce);
1739 1740 1741
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	}

1742
	decr_outstanding_submission_g2h(guc);
1743 1744 1745 1746
	intel_context_put(ce);

	return 0;
}
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

void intel_guc_submission_print_info(struct intel_guc *guc,
				     struct drm_printer *p)
{
	struct i915_sched_engine *sched_engine = guc->sched_engine;
	struct rb_node *rb;
	unsigned long flags;

	if (!sched_engine)
		return;

	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
		   atomic_read(&guc->outstanding_submission_g2h));
	drm_printf(p, "GuC tasklet count: %u\n\n",
		   atomic_read(&sched_engine->tasklet.count));

	spin_lock_irqsave(&sched_engine->lock, flags);
	drm_printf(p, "Requests in GuC submit tasklet:\n");
	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *pl = to_priolist(rb);
		struct i915_request *rq;

		priolist_for_each_request(rq, pl)
			drm_printf(p, "guc_id=%u, seqno=%llu\n",
				   rq->context->guc_id,
				   rq->fence.seqno);
	}
	spin_unlock_irqrestore(&sched_engine->lock, flags);
	drm_printf(p, "\n");
}

void intel_guc_submission_print_context_info(struct intel_guc *guc,
					     struct drm_printer *p)
{
	struct intel_context *ce;
	unsigned long index;

	xa_for_each(&guc->context_lookup, index, ce) {
		drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id);
		drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
		drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
			   ce->ring->head,
			   ce->lrc_reg_state[CTX_RING_HEAD]);
		drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
			   ce->ring->tail,
			   ce->lrc_reg_state[CTX_RING_TAIL]);
		drm_printf(p, "\t\tContext Pin Count: %u\n",
			   atomic_read(&ce->pin_count));
		drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
			   atomic_read(&ce->guc_id_ref));
		drm_printf(p, "\t\tSchedule State: 0x%x, 0x%x\n\n",
			   ce->guc_state.sched_state,
			   atomic_read(&ce->guc_sched_state_no_lock));
	}
}
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

static struct intel_context *
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count)
{
	struct guc_virtual_engine *ve;
	struct intel_guc *guc;
	unsigned int n;
	int err;

	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

	guc = &siblings[0]->gt->uc.guc;

	ve->base.i915 = siblings[0]->i915;
	ve->base.gt = siblings[0]->gt;
	ve->base.uncore = siblings[0]->uncore;
	ve->base.id = -1;

	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.saturated = ALL_ENGINES;
	ve->base.breadcrumbs = intel_breadcrumbs_create(&ve->base);
	if (!ve->base.breadcrumbs) {
		kfree(ve);
		return ERR_PTR(-ENOMEM);
	}

	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);

	ve->base.cops = &virtual_guc_context_ops;
	ve->base.request_alloc = guc_request_alloc;

	ve->base.submit_request = guc_submit_request;

	ve->base.flags = I915_ENGINE_IS_VIRTUAL;

	intel_context_init(&ve->context, &ve->base);

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		ve->base.mask |= sibling->mask;

		if (n != 0 && ve->base.class != sibling->class) {
			DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
				  sibling->class, ve->base.class);
			err = -EINVAL;
			goto err_put;
		} else if (n == 0) {
			ve->base.class = sibling->class;
			ve->base.uabi_class = sibling->uabi_class;
			snprintf(ve->base.name, sizeof(ve->base.name),
				 "v%dx%d", ve->base.class, count);
			ve->base.context_size = sibling->context_size;

			ve->base.emit_bb_start = sibling->emit_bb_start;
			ve->base.emit_flush = sibling->emit_flush;
			ve->base.emit_init_breadcrumb =
				sibling->emit_init_breadcrumb;
			ve->base.emit_fini_breadcrumb =
				sibling->emit_fini_breadcrumb;
			ve->base.emit_fini_breadcrumb_dw =
				sibling->emit_fini_breadcrumb_dw;

			ve->base.flags |= sibling->flags;

			ve->base.props.timeslice_duration_ms =
				sibling->props.timeslice_duration_ms;
			ve->base.props.preempt_timeout_ms =
				sibling->props.preempt_timeout_ms;
		}
	}

	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
{
	struct intel_engine_cs *engine;
	intel_engine_mask_t tmp, mask = ve->mask;

	for_each_engine_masked(engine, ve->gt, mask, tmp)
		if (READ_ONCE(engine->props.heartbeat_interval_ms))
			return true;

	return false;
}