intel_guc_submission.c 32.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/circ_buf.h>
26

27
#include "gem/i915_gem_context.h"
28

29 30
#include "gt/intel_context.h"
#include "gt/intel_engine_pm.h"
31
#include "gt/intel_gt.h"
32
#include "gt/intel_lrc_reg.h"
33
#include "intel_guc_submission.h"
34

35 36
#include "i915_drv.h"

37 38 39 40 41
enum {
	GUC_PREEMPT_NONE = 0,
	GUC_PREEMPT_INPROGRESS,
	GUC_PREEMPT_FINISHED,
};
42 43 44 45
#define GUC_PREEMPT_BREADCRUMB_DWORDS	0x8
#define GUC_PREEMPT_BREADCRUMB_BYTES	\
	(sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)

46
/**
A
Alex Dai 已提交
47
 * DOC: GuC-based command submission
48
 *
49
 * GuC client:
50
 * A intel_guc_client refers to a submission path through GuC. Currently, there
51 52 53 54
 * is only one client, which is charged with all submissions to the GuC. This
 * struct is the owner of a doorbell, a process descriptor and a workqueue (all
 * of them inside a single gem object that contains all required pages for these
 * elements).
55
 *
56
 * GuC stage descriptor:
57 58
 * During initialization, the driver allocates a static pool of 1024 such
 * descriptors, and shares them with the GuC.
59
 * Currently, there exists a 1:1 mapping between a intel_guc_client and a
60 61 62 63
 * guc_stage_desc (via the client's stage_id), so effectively only one
 * gets used. This stage descriptor lets the GuC know about the doorbell,
 * workqueue and process descriptor. Theoretically, it also lets the GuC
 * know about our HW contexts (context ID, etc...), but we actually
64
 * employ a kind of submission where the GuC uses the LRCA sent via the work
65
 * item instead (the single guc_stage_desc associated to execbuf client
66 67
 * contains information about the default kernel context only, but this is
 * essentially unused). This is called a "proxy" submission.
68 69 70 71 72 73 74 75
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
76
 * See intel_guc_send()
77 78 79 80 81 82 83 84 85 86 87
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
88
 * See guc_add_request()
89 90 91
 *
 */

92 93 94 95 96
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

97
static inline bool is_high_priority(struct intel_guc_client *client)
98
{
99 100
	return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
		client->priority == GUC_CLIENT_PRIORITY_HIGH);
101 102
}

103
static int reserve_doorbell(struct intel_guc_client *client)
104 105 106 107 108 109 110 111 112 113 114 115 116
{
	unsigned long offset;
	unsigned long end;
	u16 id;

	GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);

	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 */
	offset = 0;
117
	end = GUC_NUM_DOORBELLS / 2;
118 119 120 121 122
	if (is_high_priority(client)) {
		offset = end;
		end += offset;
	}

123
	id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
124 125 126 127 128 129
	if (id == end)
		return -ENOSPC;

	__set_bit(id, client->guc->doorbell_bitmap);
	client->doorbell_id = id;
	DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
130
			 client->stage_id, yesno(is_high_priority(client)),
131 132 133 134
			 id);
	return 0;
}

135 136 137 138 139 140 141 142
static bool has_doorbell(struct intel_guc_client *client)
{
	if (client->doorbell_id == GUC_DOORBELL_INVALID)
		return false;

	return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
}

143
static void unreserve_doorbell(struct intel_guc_client *client)
144
{
145
	GEM_BUG_ON(!has_doorbell(client));
146 147 148 149 150

	__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
	client->doorbell_id = GUC_DOORBELL_INVALID;
}

151 152 153 154
/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

155
static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
156
{
157 158
	u32 action[] = {
		INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
159
		stage_id
160
	};
161

162
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
163 164
}

165
static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
166
{
167 168
	u32 action[] = {
		INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
169
		stage_id
170
	};
171

172
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
173 174
}

175
static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
176
{
177
	struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
178

179
	return &base[client->stage_id];
180 181
}

182 183 184 185 186 187 188
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

189
static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
190
{
191
	struct guc_stage_desc *desc;
192

193
	/* Update the GuC's idea of the doorbell ID */
194
	desc = __get_stage_desc(client);
195
	desc->db_id = new_id;
196
}
197

198
static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
199 200 201 202
{
	return client->vaddr + client->doorbell_offset;
}

203 204
static bool __doorbell_valid(struct intel_guc *guc, u16 db_id)
{
205
	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
206 207

	GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
208
	return intel_uncore_read(uncore, GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID;
209 210
}

211
static void __init_doorbell(struct intel_guc_client *client)
212 213 214 215
{
	struct guc_doorbell_info *doorbell;

	doorbell = __get_doorbell(client);
216
	doorbell->db_status = GUC_DOORBELL_ENABLED;
217
	doorbell->cookie = 0;
218 219
}

220
static void __fini_doorbell(struct intel_guc_client *client)
221
{
222
	struct guc_doorbell_info *doorbell;
223 224
	u16 db_id = client->doorbell_id;

225 226 227
	doorbell = __get_doorbell(client);
	doorbell->db_status = GUC_DOORBELL_DISABLED;

228 229
	/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
	 * to go to zero after updating db_status before we call the GuC to
230 231
	 * release the doorbell
	 */
232
	if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10))
233
		WARN_ONCE(true, "Doorbell never became invalid after disable\n");
234 235
}

236
static int create_doorbell(struct intel_guc_client *client)
237 238 239
{
	int ret;

240 241 242
	if (WARN_ON(!has_doorbell(client)))
		return -ENODEV; /* internal setup error, should never happen */

243
	__update_doorbell_desc(client, client->doorbell_id);
244
	__init_doorbell(client);
245

246 247
	ret = __guc_allocate_doorbell(client->guc, client->stage_id);
	if (ret) {
248
		__fini_doorbell(client);
249
		__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
250 251
		DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
				 client->stage_id, ret);
252 253
		return ret;
	}
254 255 256 257

	return 0;
}

258
static int destroy_doorbell(struct intel_guc_client *client)
259
{
260
	int ret;
261

262 263
	GEM_BUG_ON(!has_doorbell(client));

264
	__fini_doorbell(client);
265 266 267 268
	ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
	if (ret)
		DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
			  client->stage_id, ret);
269

270
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
271

272
	return ret;
273
}
274

275
static unsigned long __select_cacheline(struct intel_guc *guc)
276
{
277
	unsigned long offset;
278 279 280 281 282

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
283
	guc->db_cacheline += cache_line_size();
284

285
	DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
286
			 offset, guc->db_cacheline, cache_line_size());
287 288 289
	return offset;
}

290
static inline struct guc_process_desc *
291
__get_process_desc(struct intel_guc_client *client)
292 293 294 295
{
	return client->vaddr + client->proc_desc_offset;
}

296 297 298
/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
299
static void guc_proc_desc_init(struct intel_guc_client *client)
300 301 302
{
	struct guc_process_desc *desc;

303
	desc = memset(__get_process_desc(client), 0, sizeof(*desc));
304 305 306 307 308 309 310 311 312 313

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

314
	desc->stage_id = client->stage_id;
315
	desc->wq_size_bytes = GUC_WQ_SIZE;
316 317 318 319
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

320 321 322 323 324 325 326 327
static void guc_proc_desc_fini(struct intel_guc_client *client)
{
	struct guc_process_desc *desc;

	desc = __get_process_desc(client);
	memset(desc, 0, sizeof(*desc));
}

328 329 330 331 332 333 334 335 336 337 338 339 340
static int guc_stage_desc_pool_create(struct intel_guc *guc)
{
	struct i915_vma *vma;
	void *vaddr;

	vma = intel_guc_allocate_vma(guc,
				     PAGE_ALIGN(sizeof(struct guc_stage_desc) *
				     GUC_MAX_STAGE_DESCRIPTORS));
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
341
		i915_vma_unpin_and_release(&vma, 0);
342 343 344 345 346 347 348 349 350 351 352 353 354
		return PTR_ERR(vaddr);
	}

	guc->stage_desc_pool = vma;
	guc->stage_desc_pool_vaddr = vaddr;
	ida_init(&guc->stage_ids);

	return 0;
}

static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
{
	ida_destroy(&guc->stage_ids);
355
	i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
356 357
}

358
/*
359
 * Initialise/clear the stage descriptor shared with the GuC firmware.
360 361 362 363 364
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */
365
static void guc_stage_desc_init(struct intel_guc_client *client)
366
{
367
	struct intel_guc *guc = client->guc;
368
	struct guc_stage_desc *desc;
369
	u32 gfx_addr;
370

371
	desc = __get_stage_desc(client);
372
	memset(desc, 0, sizeof(*desc));
373

374 375
	desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
			  GUC_STAGE_DESC_ATTR_KERNEL;
376 377
	if (is_high_priority(client))
		desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
378
	desc->stage_id = client->stage_id;
379 380
	desc->priority = client->priority;
	desc->db_id = client->doorbell_id;
381 382

	/*
383 384
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
385
	 */
386
	gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
387
	desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
388
				client->doorbell_offset;
389
	desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
390 391
	desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc->process_desc = gfx_addr + client->proc_desc_offset;
392 393
	desc->wq_addr = gfx_addr + GUC_DB_SIZE;
	desc->wq_size = GUC_WQ_SIZE;
394

395
	desc->desc_private = ptr_to_u64(client);
396 397
}

398
static void guc_stage_desc_fini(struct intel_guc_client *client)
399
{
400
	struct guc_stage_desc *desc;
401

402
	desc = __get_stage_desc(client);
403
	memset(desc, 0, sizeof(*desc));
404 405
}

406
/* Construct a Work Item and append it to the GuC's Work Queue */
407
static void guc_wq_item_append(struct intel_guc_client *client,
408 409
			       u32 target_engine, u32 context_desc,
			       u32 ring_tail, u32 fence_id)
410
{
411 412
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
413
	const u32 wqi_len = wqi_size / sizeof(u32) - 1;
414
	struct guc_process_desc *desc = __get_process_desc(client);
415
	struct guc_wq_item *wqi;
416
	u32 wq_off;
417

418
	lockdep_assert_held(&client->wq_lock);
419

420 421 422 423 424 425 426
	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
427
	BUILD_BUG_ON(wqi_size != 16);
428

429 430 431
	/* We expect the WQ to be active if we're appending items to it */
	GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);

432 433 434 435
	/* Free space is guaranteed. */
	wq_off = READ_ONCE(desc->tail);
	GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
			      GUC_WQ_SIZE) < wqi_size);
436
	GEM_BUG_ON(wq_off & (wqi_size - 1));
437 438

	/* WQ starts from the page after doorbell / process_desc */
439
	wqi = client->vaddr + wq_off + GUC_DB_SIZE;
440

441 442 443 444 445 446 447 448 449 450 451 452 453
	if (I915_SELFTEST_ONLY(client->use_nop_wqi)) {
		wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT);
	} else {
		/* Now fill in the 4-word work queue item */
		wqi->header = WQ_TYPE_INORDER |
			      (wqi_len << WQ_LEN_SHIFT) |
			      (target_engine << WQ_TARGET_SHIFT) |
			      WQ_NO_WCFLUSH_WAIT;
		wqi->context_desc = context_desc;
		wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
		GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
		wqi->fence_id = fence_id;
	}
454

455
	/* Make the update visible to GuC */
456
	WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
457 458
}

459
static void guc_ring_doorbell(struct intel_guc_client *client)
460
{
461 462
	struct guc_doorbell_info *db;
	u32 cookie;
463

464
	lockdep_assert_held(&client->wq_lock);
465 466

	/* pointer of current doorbell cacheline */
467
	db = __get_doorbell(client);
468

469 470 471 472
	/*
	 * We're not expecting the doorbell cookie to change behind our back,
	 * we also need to treat 0 as a reserved value.
	 */
473
	cookie = READ_ONCE(db->cookie);
474
	WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
475

476 477
	/* XXX: doorbell was lost and need to acquire it again */
	GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
478 479
}

480
static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
481
{
482
	struct intel_guc_client *client = guc->execbuf_client;
483
	struct intel_engine_cs *engine = rq->engine;
484
	u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
485 486 487
	u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);

	guc_wq_item_append(client, engine->guc_id, ctx_desc,
488
			   ring_tail, rq->fence.seqno);
489 490 491 492 493
	guc_ring_doorbell(client);

	client->submissions[engine->id] += 1;
}

494 495 496 497 498 499 500 501 502
/*
 * When we're doing submissions using regular execlists backend, writing to
 * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
 * pinned in mappable aperture portion of GGTT are visible to command streamer.
 * Writes done by GuC on our behalf are not guaranteeing such ordering,
 * therefore, to ensure the flush, we're issuing a POSTING READ.
 */
static void flush_ggtt_writes(struct i915_vma *vma)
{
503
	struct drm_i915_private *i915 = vma->vm->i915;
504 505

	if (i915_vma_is_map_and_fenceable(vma))
506
		intel_uncore_posting_read_fw(&i915->uncore, GUC_STATUS);
507 508
}

509 510 511
static void guc_submit(struct intel_engine_cs *engine,
		       struct i915_request **out,
		       struct i915_request **end)
512
{
513
	struct intel_guc *guc = &engine->gt->uc.guc;
514
	struct intel_guc_client *client = guc->execbuf_client;
515

516
	spin_lock(&client->wq_lock);
517

518 519
	do {
		struct i915_request *rq = *out++;
520

521 522 523
		flush_ggtt_writes(rq->ring->vma);
		guc_add_request(guc, rq);
	} while (out != end);
524

525
	spin_unlock(&client->wq_lock);
526 527
}

528
static inline int rq_prio(const struct i915_request *rq)
529
{
530
	return rq->sched.attr.priority | __NO_PREEMPTION;
531 532
}

533
static struct i915_request *schedule_in(struct i915_request *rq, int idx)
534
{
535 536 537 538 539 540 541
	trace_i915_request_in(rq, idx);

	if (!rq->hw_context->inflight)
		rq->hw_context->inflight = rq->engine;
	intel_context_inflight_inc(rq->hw_context);

	return i915_request_get(rq);
542 543
}

544
static void schedule_out(struct i915_request *rq)
545
{
546 547 548 549 550 551 552
	trace_i915_request_out(rq);

	intel_context_inflight_dec(rq->hw_context);
	if (!intel_context_inflight_count(rq->hw_context))
		rq->hw_context->inflight = NULL;

	i915_request_put(rq);
553 554
}

555
static void __guc_dequeue(struct intel_engine_cs *engine)
556
{
557
	struct intel_engine_execlists * const execlists = &engine->execlists;
558 559 560 561
	struct i915_request **first = execlists->inflight;
	struct i915_request ** const last_port = first + execlists->port_mask;
	struct i915_request *last = first[0];
	struct i915_request **port;
562
	bool submit = false;
563 564
	struct rb_node *rb;

565
	lockdep_assert_held(&engine->active.lock);
566

567 568 569 570 571
	if (last) {
		if (*++first)
			return;

		last = NULL;
572 573
	}

574
	port = first;
575
	while ((rb = rb_first_cached(&execlists->queue))) {
576
		struct i915_priolist *p = to_priolist(rb);
577
		struct i915_request *rq, *rn;
578
		int i;
579

580
		priolist_for_each_request_consume(rq, rn, p, i) {
581
			if (last && rq->hw_context != last->hw_context) {
582
				if (port == last_port)
583 584
					goto done;

585 586
				*port = schedule_in(last,
						    port - execlists->inflight);
587 588 589
				port++;
			}

590
			list_del_init(&rq->sched.link);
591
			__i915_request_submit(rq);
592
			submit = true;
593
			last = rq;
594 595
		}

596
		rb_erase_cached(&p->node, &execlists->queue);
597
		i915_priolist_free(p);
598
	}
599
done:
600 601
	execlists->queue_priority_hint =
		rb ? to_priolist(rb)->priority : INT_MIN;
602 603 604 605 606 607
	if (submit) {
		*port = schedule_in(last, port - execlists->inflight);
		*++port = NULL;
		guc_submit(engine, first, port);
	}
	execlists->active = execlists->inflight;
608 609
}

610
static void guc_submission_tasklet(unsigned long data)
611
{
612
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
613
	struct intel_engine_execlists * const execlists = &engine->execlists;
614
	struct i915_request **port, *rq;
615 616
	unsigned long flags;

617
	spin_lock_irqsave(&engine->active.lock, flags);
618

619 620 621
	for (port = execlists->inflight; (rq = *port); port++) {
		if (!i915_request_completed(rq))
			break;
622

623 624 625 626 627 628
		schedule_out(rq);
	}
	if (port != execlists->inflight) {
		int idx = port - execlists->inflight;
		int rem = ARRAY_SIZE(execlists->inflight) - idx;
		memmove(execlists->inflight, port, rem * sizeof(*port));
629
	}
630

631
	__guc_dequeue(engine);
632

633
	spin_unlock_irqrestore(&engine->active.lock, flags);
634 635
}

636
static void guc_reset_prepare(struct intel_engine_cs *engine)
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
}

654 655 656 657 658 659
static void guc_reset(struct intel_engine_cs *engine, bool stalled)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq;
	unsigned long flags;

660
	spin_lock_irqsave(&engine->active.lock, flags);
661 662 663 664 665 666 667 668 669 670 671

	execlists_cancel_port_requests(execlists);

	/* Push back any incomplete requests for replay after the reset. */
	rq = execlists_unwind_incomplete_requests(execlists);
	if (!rq)
		goto out_unlock;

	if (!i915_request_started(rq))
		stalled = false;

672
	__i915_request_reset(rq, stalled);
673 674 675
	intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled);

out_unlock:
676
	spin_unlock_irqrestore(&engine->active.lock, flags);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
}

static void guc_cancel_requests(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
702
	spin_lock_irqsave(&engine->active.lock, flags);
703 704 705 706 707

	/* Cancel the requests on the HW and clear the ELSP tracker. */
	execlists_cancel_port_requests(execlists);

	/* Mark all executing requests as skipped. */
708
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
		if (!i915_request_signaled(rq))
			dma_fence_set_error(&rq->fence, -EIO);

		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;

736
	spin_unlock_irqrestore(&engine->active.lock, flags);
737 738 739 740 741 742 743 744 745 746 747 748 749 750
}

static void guc_reset_finish(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);

	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
}

751 752 753
/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
754
 * path of guc_submit() above.
755 756
 */

757
/* Check that a doorbell register is in the expected state */
758
static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
759
{
760 761
	bool valid;

762
	GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
763

764
	valid = __doorbell_valid(guc, db_id);
765

766
	if (test_bit(db_id, guc->doorbell_bitmap) == valid)
767 768
		return true;

769 770
	DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n",
			 db_id, yesno(valid));
771 772 773 774

	return false;
}

775
static bool guc_verify_doorbells(struct intel_guc *guc)
776
{
777
	bool doorbells_ok = true;
778
	u16 db_id;
779 780 781

	for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
		if (!doorbell_ok(guc, db_id))
782
			doorbells_ok = false;
783

784
	return doorbells_ok;
785 786
}

787
/**
788
 * guc_client_alloc() - Allocate an intel_guc_client
789
 * @guc:	the intel_guc structure
790
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
791 792 793
 *		The kernel client to replace ExecList submission is created with
 *		NORMAL priority. Priority of a client for scheduler can be HIGH,
 *		while a preemption context can use CRITICAL.
794
 *
795
 * Return:	An intel_guc_client object if success, else NULL.
796
 */
797
static struct intel_guc_client *
798
guc_client_alloc(struct intel_guc *guc, u32 priority)
799
{
800
	struct intel_guc_client *client;
801
	struct i915_vma *vma;
802
	void *vaddr;
803
	int ret;
804 805 806

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
807
		return ERR_PTR(-ENOMEM);
808 809

	client->guc = guc;
810
	client->priority = priority;
811 812
	client->doorbell_id = GUC_DOORBELL_INVALID;
	spin_lock_init(&client->wq_lock);
813

814
	ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
815
			     GFP_KERNEL);
816 817 818
	if (ret < 0)
		goto err_client;

819
	client->stage_id = ret;
820 821

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
822
	vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
823 824 825 826
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_id;
	}
827

828
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
829
	client->vma = vma;
830 831

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
832 833 834 835
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
836
	client->vaddr = vaddr;
837

838 839 840 841
	ret = reserve_doorbell(client);
	if (ret)
		goto err_vaddr;

842
	client->doorbell_offset = __select_cacheline(guc);
843 844 845 846 847 848 849 850 851 852 853

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

854 855
	DRM_DEBUG_DRIVER("new priority %u client %p: stage_id %u\n",
			 priority, client, client->stage_id);
856 857
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
			 client->doorbell_id, client->doorbell_offset);
858 859

	return client;
860 861 862

err_vaddr:
	i915_gem_object_unpin_map(client->vma->obj);
863
err_vma:
864
	i915_vma_unpin_and_release(&client->vma, 0);
865
err_id:
866
	ida_simple_remove(&guc->stage_ids, client->stage_id);
867 868 869
err_client:
	kfree(client);
	return ERR_PTR(ret);
870 871
}

872
static void guc_client_free(struct intel_guc_client *client)
873
{
874
	unreserve_doorbell(client);
875
	i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP);
876
	ida_simple_remove(&client->guc->stage_ids, client->stage_id);
877 878 879
	kfree(client);
}

880 881 882 883 884 885 886 887 888 889 890 891 892
static inline bool ctx_save_restore_disabled(struct intel_context *ce)
{
	u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];

#define SR_DISABLED \
	_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
			   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)

	return (sr & SR_DISABLED) == SR_DISABLED;

#undef SR_DISABLED
}

893 894
static int guc_clients_create(struct intel_guc *guc)
{
895
	struct intel_guc_client *client;
896 897 898

	GEM_BUG_ON(guc->execbuf_client);

899
	client = guc_client_alloc(guc, GUC_CLIENT_PRIORITY_KMD_NORMAL);
900 901 902 903 904 905 906 907 908 909 910
	if (IS_ERR(client)) {
		DRM_ERROR("Failed to create GuC client for submission!\n");
		return PTR_ERR(client);
	}
	guc->execbuf_client = client;

	return 0;
}

static void guc_clients_destroy(struct intel_guc *guc)
{
911
	struct intel_guc_client *client;
912

913
	client = fetch_and_zero(&guc->execbuf_client);
914 915
	if (client)
		guc_client_free(client);
916 917
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
static int __guc_client_enable(struct intel_guc_client *client)
{
	int ret;

	guc_proc_desc_init(client);
	guc_stage_desc_init(client);

	ret = create_doorbell(client);
	if (ret)
		goto fail;

	return 0;

fail:
	guc_stage_desc_fini(client);
	guc_proc_desc_fini(client);
	return ret;
}

static void __guc_client_disable(struct intel_guc_client *client)
{
	/*
	 * By the time we're here, GuC may have already been reset. if that is
	 * the case, instead of trying (in vain) to communicate with it, let's
	 * just cleanup the doorbell HW and our internal state.
	 */
944
	if (intel_guc_is_running(client->guc))
945 946
		destroy_doorbell(client);
	else
947
		__fini_doorbell(client);
948 949 950 951 952 953 954

	guc_stage_desc_fini(client);
	guc_proc_desc_fini(client);
}

static int guc_clients_enable(struct intel_guc *guc)
{
955
	return __guc_client_enable(guc->execbuf_client);
956 957 958 959 960 961 962 963
}

static void guc_clients_disable(struct intel_guc *guc)
{
	if (guc->execbuf_client)
		__guc_client_disable(guc->execbuf_client);
}

964
/*
965 966
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
967
 */
968
int intel_guc_submission_init(struct intel_guc *guc)
969
{
970
	int ret;
971

972
	if (guc->stage_desc_pool)
973
		return 0;
974

975 976 977
	ret = guc_stage_desc_pool_create(guc);
	if (ret)
		return ret;
978 979 980 981 982
	/*
	 * Keep static analysers happy, let them know that we allocated the
	 * vma after testing that it didn't exist earlier.
	 */
	GEM_BUG_ON(!guc->stage_desc_pool);
983

984
	WARN_ON(!guc_verify_doorbells(guc));
985 986
	ret = guc_clients_create(guc);
	if (ret)
987
		goto err_pool;
988

989
	return 0;
990

991 992 993
err_pool:
	guc_stage_desc_pool_destroy(guc);
	return ret;
994 995
}

996
void intel_guc_submission_fini(struct intel_guc *guc)
997
{
998
	guc_clients_destroy(guc);
999 1000
	WARN_ON(!guc_verify_doorbells(guc));

1001 1002
	if (guc->stage_desc_pool)
		guc_stage_desc_pool_destroy(guc);
1003 1004
}

1005
static void guc_interrupts_capture(struct intel_gt *gt)
1006
{
1007 1008
	struct intel_rps *rps = &gt->i915->gt_pm.rps;
	struct intel_uncore *uncore = gt->uncore;
1009 1010 1011 1012
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

1013 1014 1015
	/* tell all command streamers to forward interrupts (but not vblank)
	 * to GuC
	 */
1016
	irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1017
	for_each_engine(engine, gt->i915, id)
1018
		ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1019 1020 1021 1022 1023

	/* route USER_INTERRUPT to Host, all others are sent to GuC. */
	irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
	       GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
	/* These three registers have the same bit definitions */
1024 1025 1026
	intel_uncore_write(uncore, GUC_BCS_RCS_IER, ~irqs);
	intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, ~irqs);
	intel_uncore_write(uncore, GUC_WD_VECS_IER, ~irqs);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

	/*
	 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
	 * (unmasked) PM interrupts to the GuC. All other bits of this
	 * register *disable* generation of a specific interrupt.
	 *
	 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
	 * writing to the PM interrupt mask register, i.e. interrupts
	 * that must not be disabled.
	 *
	 * If the GuC is handling these interrupts, then we must not let
	 * the PM code disable ANY interrupt that the GuC is expecting.
	 * So for each ENABLED (0) bit in this register, we must SET the
	 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
	 * GuC needs ARAT expired interrupt unmasked hence it is set in
	 * pm_intrmsk_mbz.
	 *
	 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
	 * result in the register bit being left SET!
	 */
1047 1048
	rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
	rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1049 1050
}

1051
static void guc_interrupts_release(struct intel_gt *gt)
1052
{
1053 1054
	struct intel_rps *rps = &gt->i915->gt_pm.rps;
	struct intel_uncore *uncore = gt->uncore;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/*
	 * tell all command streamers NOT to forward interrupts or vblank
	 * to GuC.
	 */
	irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
	irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1065
	for_each_engine(engine, gt->i915, id)
1066
		ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1067 1068

	/* route all GT interrupts to the host */
1069 1070 1071
	intel_uncore_write(uncore, GUC_BCS_RCS_IER, 0);
	intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, 0);
	intel_uncore_write(uncore, GUC_WD_VECS_IER, 0);
1072

1073 1074
	rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
	rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1075 1076
}

1077
static void guc_submission_park(struct intel_engine_cs *engine)
1078
{
1079
	intel_engine_park(engine);
1080
	intel_engine_unpin_breadcrumbs_irq(engine);
1081
	engine->flags &= ~I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1082 1083
}

1084
static void guc_submission_unpark(struct intel_engine_cs *engine)
1085
{
1086
	engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1087 1088 1089
	intel_engine_pin_breadcrumbs_irq(engine);
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static void guc_set_default_submission(struct intel_engine_cs *engine)
{
	/*
	 * We inherit a bunch of functions from execlists that we'd like
	 * to keep using:
	 *
	 *    engine->submit_request = execlists_submit_request;
	 *    engine->cancel_requests = execlists_cancel_requests;
	 *    engine->schedule = execlists_schedule;
	 *
	 * But we need to override the actual submission backend in order
	 * to talk to the GuC.
	 */
	intel_execlists_set_default_submission(engine);

	engine->execlists.tasklet.func = guc_submission_tasklet;

	engine->park = guc_submission_park;
	engine->unpark = guc_submission_unpark;

	engine->reset.prepare = guc_reset_prepare;
1111 1112 1113 1114
	engine->reset.reset = guc_reset;
	engine->reset.finish = guc_reset_finish;

	engine->cancel_requests = guc_cancel_requests;
1115 1116 1117 1118

	engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
}

1119
int intel_guc_submission_enable(struct intel_guc *guc)
1120
{
1121
	struct intel_gt *gt = guc_to_gt(guc);
1122
	struct intel_engine_cs *engine;
1123
	enum intel_engine_id id;
1124
	int err;
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134
	/*
	 * We're using GuC work items for submitting work through GuC. Since
	 * we're coalescing multiple requests from a single context into a
	 * single work item prior to assigning it to execlist_port, we can
	 * never have more work items than the total number of ports (for all
	 * engines). The GuC firmware is controlling the HEAD of work queue,
	 * and it is guaranteed that it will remove the work item from the
	 * queue before our request is completed.
	 */
1135
	BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) *
1136 1137 1138
		     sizeof(struct guc_wq_item) *
		     I915_NUM_ENGINES > GUC_WQ_SIZE);

1139 1140
	GEM_BUG_ON(!guc->execbuf_client);

1141
	err = guc_clients_enable(guc);
1142
	if (err)
1143
		return err;
A
Alex Dai 已提交
1144

1145
	/* Take over from manual control of ELSP (execlists) */
1146
	guc_interrupts_capture(gt);
1147

1148
	for_each_engine(engine, gt->i915, id) {
1149 1150
		engine->set_default_submission = guc_set_default_submission;
		engine->set_default_submission(engine);
1151 1152
	}

1153 1154 1155
	return 0;
}

1156
void intel_guc_submission_disable(struct intel_guc *guc)
1157
{
1158
	struct intel_gt *gt = guc_to_gt(guc);
1159

1160
	GEM_BUG_ON(gt->awake); /* GT should be parked first */
1161

1162
	guc_interrupts_release(gt);
1163
	guc_clients_disable(guc);
1164
}
1165 1166

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1167
#include "selftest_guc.c"
1168
#endif