intel_guc_submission.c 129.5 KB
Newer Older
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2014 Intel Corporation
 */

6
#include <linux/circ_buf.h>
7

8
#include "gem/i915_gem_context.h"
9 10
#include "gt/gen8_engine_cs.h"
#include "gt/intel_breadcrumbs.h"
11
#include "gt/intel_context.h"
12
#include "gt/intel_engine_heartbeat.h"
13 14
#include "gt/intel_engine_pm.h"
#include "gt/intel_engine_regs.h"
15
#include "gt/intel_gpu_commands.h"
16
#include "gt/intel_gt.h"
17
#include "gt/intel_gt_clock_utils.h"
18
#include "gt/intel_gt_irq.h"
19
#include "gt/intel_gt_pm.h"
20
#include "gt/intel_gt_regs.h"
21
#include "gt/intel_gt_requests.h"
22
#include "gt/intel_lrc.h"
23
#include "gt/intel_lrc_reg.h"
24
#include "gt/intel_mocs.h"
25 26
#include "gt/intel_ring.h"

27
#include "intel_guc_ads.h"
28
#include "intel_guc_submission.h"
29

30
#include "i915_drv.h"
31
#include "i915_trace.h"
32

33
/**
A
Alex Dai 已提交
34
 * DOC: GuC-based command submission
35 36 37 38 39 40 41 42 43
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
 *
M
Matthew Brost 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
 * Command Transport buffers (CTBs):
 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
 * - G2H) are a message interface between the i915 and GuC.
 *
 * Context registration:
 * Before a context can be submitted it must be registered with the GuC via a
 * H2G. A unique guc_id is associated with each context. The context is either
 * registered at request creation time (normal operation) or at submission time
 * (abnormal operation, e.g. after a reset).
 *
 * Context submission:
 * The i915 updates the LRC tail value in memory. The i915 must enable the
 * scheduling of the context within the GuC for the GuC to actually consider it.
 * Therefore, the first time a disabled context is submitted we use a schedule
 * enable H2G, while follow up submissions are done via the context submit H2G,
 * which informs the GuC that a previously enabled context has new work
 * available.
 *
 * Context unpin:
 * To unpin a context a H2G is used to disable scheduling. When the
 * corresponding G2H returns indicating the scheduling disable operation has
 * completed it is safe to unpin the context. While a disable is in flight it
 * isn't safe to resubmit the context so a fence is used to stall all future
 * requests of that context until the G2H is returned.
 *
 * Context deregistration:
 * Before a context can be destroyed or if we steal its guc_id we must
 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
 * safe to submit anything to this guc_id until the deregister completes so a
 * fence is used to stall all requests associated with this guc_id until the
 * corresponding G2H returns indicating the guc_id has been deregistered.
 *
76
 * submission_state.guc_ids:
M
Matthew Brost 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
 * Unique number associated with private GuC context data passed in during
 * context registration / submission / deregistration. 64k available. Simple ida
 * is used for allocation.
 *
 * Stealing guc_ids:
 * If no guc_ids are available they can be stolen from another context at
 * request creation time if that context is unpinned. If a guc_id can't be found
 * we punt this problem to the user as we believe this is near impossible to hit
 * during normal use cases.
 *
 * Locking:
 * In the GuC submission code we have 3 basic spin locks which protect
 * everything. Details about each below.
 *
 * sched_engine->lock
 * This is the submission lock for all contexts that share an i915 schedule
 * engine (sched_engine), thus only one of the contexts which share a
 * sched_engine can be submitting at a time. Currently only one sched_engine is
 * used for all of GuC submission but that could change in the future.
 *
97
 * guc->submission_state.lock
98 99
 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
 * list.
M
Matthew Brost 已提交
100 101 102 103 104 105 106 107 108 109 110
 *
 * ce->guc_state.lock
 * Protects everything under ce->guc_state. Ensures that a context is in the
 * correct state before issuing a H2G. e.g. We don't issue a schedule disable
 * on a disabled context (bad idea), we don't issue a schedule enable when a
 * schedule disable is in flight, etc... Also protects list of inflight requests
 * on the context and the priority management state. Lock is individual to each
 * context.
 *
 * Lock ordering rules:
 * sched_engine->lock -> ce->guc_state.lock
111
 * guc->submission_state.lock -> ce->guc_state.lock
112
 *
M
Matthew Brost 已提交
113 114 115 116 117 118 119 120 121 122
 * Reset races:
 * When a full GT reset is triggered it is assumed that some G2H responses to
 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
 * fatal as we do certain operations upon receiving a G2H (e.g. destroy
 * contexts, release guc_ids, etc...). When this occurs we can scrub the
 * context state and cleanup appropriately, however this is quite racey.
 * To avoid races, the reset code must disable submission before scrubbing for
 * the missing G2H, while the submission code must check for submission being
 * disabled and skip sending H2Gs and updating context states when it is. Both
 * sides must also make sure to hold the relevant locks.
123 124
 */

125 126 127 128 129 130 131
/* GuC Virtual Engine */
struct guc_virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;
};

static struct intel_context *
132 133 134 135 136 137 138
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
		   unsigned long flags);

static struct intel_context *
guc_create_parallel(struct intel_engine_cs **engines,
		    unsigned int num_siblings,
		    unsigned int width);
139

140 141
#define GUC_REQUEST_SIZE 64 /* bytes */

142 143 144 145 146 147 148 149
/*
 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
 * per the GuC submission interface. A different allocation algorithm is used
 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
 * partition the guc_id space. We believe the number of multi-lrc contexts in
 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
 * multi-lrc.
 */
150 151
#define NUMBER_MULTI_LRC_GUC_ID(guc)	\
	((guc)->submission_state.num_guc_ids / 16)
152

153 154
/*
 * Below is a set of functions which control the GuC scheduling state which
155
 * require a lock.
156 157 158
 */
#define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
#define SCHED_STATE_DESTROYED				BIT(1)
159
#define SCHED_STATE_PENDING_DISABLE			BIT(2)
160
#define SCHED_STATE_BANNED				BIT(3)
161 162 163 164
#define SCHED_STATE_ENABLED				BIT(4)
#define SCHED_STATE_PENDING_ENABLE			BIT(5)
#define SCHED_STATE_REGISTERED				BIT(6)
#define SCHED_STATE_BLOCKED_SHIFT			7
165 166
#define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
#define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
167

168 169
static inline void init_sched_state(struct intel_context *ce)
{
170
	lockdep_assert_held(&ce->guc_state.lock);
171
	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
172 173
}

174 175 176 177 178 179 180
__maybe_unused
static bool sched_state_is_init(struct intel_context *ce)
{
	/*
	 * XXX: Kernel contexts can have SCHED_STATE_NO_LOCK_REGISTERED after
	 * suspend.
	 */
181 182
	return !(ce->guc_state.sched_state &=
		 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED));
183 184
}

185 186 187 188 189 190 191 192 193 194
static inline bool
context_wait_for_deregister_to_register(struct intel_context *ce)
{
	return ce->guc_state.sched_state &
		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline void
set_context_wait_for_deregister_to_register(struct intel_context *ce)
{
195
	lockdep_assert_held(&ce->guc_state.lock);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	ce->guc_state.sched_state |=
		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline void
clr_context_wait_for_deregister_to_register(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &=
		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline bool
context_destroyed(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
}

static inline void
set_context_destroyed(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static inline bool context_pending_disable(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
}

static inline void set_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
}

static inline void clr_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static inline bool context_banned(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
}

static inline void set_context_banned(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
}

static inline void clr_context_banned(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static inline bool context_enabled(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
}

static inline void set_context_enabled(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
}

static inline void clr_context_enabled(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
}

static inline bool context_pending_enable(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
}

static inline void set_context_pending_enable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
}

static inline void clr_context_pending_enable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
}

static inline bool context_registered(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
}

static inline void set_context_registered(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
}

static inline void clr_context_registered(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
static inline u32 context_blocked(struct intel_context *ce)
{
	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
		SCHED_STATE_BLOCKED_SHIFT;
}

static inline void incr_context_blocked(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;

	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
}

static inline void decr_context_blocked(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */

	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
}

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static inline bool context_has_committed_requests(struct intel_context *ce)
{
	return !!ce->guc_state.number_committed_requests;
}

static inline void incr_context_committed_requests(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	++ce->guc_state.number_committed_requests;
	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
}

static inline void decr_context_committed_requests(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	--ce->guc_state.number_committed_requests;
	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
}

349 350 351 352 353 354
static struct intel_context *
request_to_scheduling_context(struct i915_request *rq)
{
	return intel_context_to_parent(rq->context);
}

355 356
static inline bool context_guc_id_invalid(struct intel_context *ce)
{
357
	return ce->guc_id.id == GUC_INVALID_LRC_ID;
358 359 360 361
}

static inline void set_context_guc_id_invalid(struct intel_context *ce)
{
362
	ce->guc_id.id = GUC_INVALID_LRC_ID;
363 364 365 366 367 368 369
}

static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
{
	return &ce->engine->gt->uc.guc;
}

370 371 372 373 374
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

375 376
/*
 * When using multi-lrc submission a scratch memory area is reserved in the
377 378 379
 * parent's context state for the process descriptor, work queue, and handshake
 * between the parent + children contexts to insert safe preemption points
 * between each of the BBs. Currently the scratch area is sized to a page.
380 381 382
 *
 * The layout of this scratch area is below:
 * 0						guc_process_desc
383 384 385 386
 * + sizeof(struct guc_process_desc)		child go
 * + CACHELINE_BYTES				child join[0]
 * ...
 * + CACHELINE_BYTES				child join[n - 1]
387 388 389 390 391 392 393
 * ...						unused
 * PARENT_SCRATCH_SIZE / 2			work queue start
 * ...						work queue
 * PARENT_SCRATCH_SIZE - 1			work queue end
 */
#define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
#define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

struct sync_semaphore {
	u32 semaphore;
	u8 unused[CACHELINE_BYTES - sizeof(u32)];
};

struct parent_scratch {
	struct guc_process_desc pdesc;

	struct sync_semaphore go;
	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];

	u8 unused[WQ_OFFSET - sizeof(struct guc_process_desc) -
		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];

	u32 wq[WQ_SIZE / sizeof(u32)];
};

static u32 __get_parent_scratch_offset(struct intel_context *ce)
413 414 415 416 417 418 419 420
{
	GEM_BUG_ON(!ce->parallel.guc.parent_page);

	return ce->parallel.guc.parent_page * PAGE_SIZE;
}

static u32 __get_wq_offset(struct intel_context *ce)
{
421 422 423
	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);

	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
424 425
}

426 427
static struct parent_scratch *
__get_parent_scratch(struct intel_context *ce)
428
{
429 430 431
	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);

432 433 434 435 436
	/*
	 * Need to subtract LRC_STATE_OFFSET here as the
	 * parallel.guc.parent_page is the offset into ce->state while
	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
	 */
437
	return (struct parent_scratch *)
438
		(ce->lrc_reg_state +
439
		 ((__get_parent_scratch_offset(ce) -
440 441 442
		   LRC_STATE_OFFSET) / sizeof(u32)));
}

443 444 445 446 447 448 449 450
static struct guc_process_desc *
__get_process_desc(struct intel_context *ce)
{
	struct parent_scratch *ps = __get_parent_scratch(ce);

	return &ps->pdesc;
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static u32 *get_wq_pointer(struct guc_process_desc *desc,
			   struct intel_context *ce,
			   u32 wqi_size)
{
	/*
	 * Check for space in work queue. Caching a value of head pointer in
	 * intel_context structure in order reduce the number accesses to shared
	 * GPU memory which may be across a PCIe bus.
	 */
#define AVAILABLE_SPACE	\
	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
	if (wqi_size > AVAILABLE_SPACE) {
		ce->parallel.guc.wqi_head = READ_ONCE(desc->head);

		if (wqi_size > AVAILABLE_SPACE)
			return NULL;
	}
#undef AVAILABLE_SPACE

470
	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
471 472
}

473
static struct guc_lrc_desc *__get_lrc_desc(struct intel_guc *guc, u32 index)
474
{
475
	struct guc_lrc_desc *base = guc->lrc_desc_pool_vaddr;
476

477
	GEM_BUG_ON(index >= GUC_MAX_LRC_DESCRIPTORS);
478

479
	return &base[index];
480 481
}

482 483 484 485 486 487 488 489 490
static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
{
	struct intel_context *ce = xa_load(&guc->context_lookup, id);

	GEM_BUG_ON(id >= GUC_MAX_LRC_DESCRIPTORS);

	return ce;
}

491
static int guc_lrc_desc_pool_create(struct intel_guc *guc)
492
{
493 494
	u32 size;
	int ret;
495

496 497 498 499 500 501
	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc) *
			  GUC_MAX_LRC_DESCRIPTORS);
	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool,
					     (void **)&guc->lrc_desc_pool_vaddr);
	if (ret)
		return ret;
502

503
	return 0;
504 505
}

506
static void guc_lrc_desc_pool_destroy(struct intel_guc *guc)
507
{
508
	guc->lrc_desc_pool_vaddr = NULL;
509
	i915_vma_unpin_and_release(&guc->lrc_desc_pool, I915_VMA_RELEASE_MAP);
510 511
}

512 513 514 515 516
static inline bool guc_submission_initialized(struct intel_guc *guc)
{
	return !!guc->lrc_desc_pool_vaddr;
}

517 518
static inline void reset_lrc_desc(struct intel_guc *guc, u32 id)
{
519 520 521
	if (likely(guc_submission_initialized(guc))) {
		struct guc_lrc_desc *desc = __get_lrc_desc(guc, id);
		unsigned long flags;
522

523 524 525 526 527 528 529 530 531 532
		memset(desc, 0, sizeof(*desc));

		/*
		 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
		 * the lower level functions directly.
		 */
		xa_lock_irqsave(&guc->context_lookup, flags);
		__xa_erase(&guc->context_lookup, id);
		xa_unlock_irqrestore(&guc->context_lookup, flags);
	}
533 534 535 536 537 538 539 540 541 542
}

static inline bool lrc_desc_registered(struct intel_guc *guc, u32 id)
{
	return __get_context(guc, id);
}

static inline void set_lrc_desc_registered(struct intel_guc *guc, u32 id,
					   struct intel_context *ce)
{
543 544 545 546 547 548 549 550 551
	unsigned long flags;

	/*
	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
	 * lower level functions directly.
	 */
	xa_lock_irqsave(&guc->context_lookup, flags);
	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
	xa_unlock_irqrestore(&guc->context_lookup, flags);
552 553
}

554 555 556 557 558 559
static void decr_outstanding_submission_g2h(struct intel_guc *guc)
{
	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
		wake_up_all(&guc->ct.wq);
}

560 561 562 563 564 565
static int guc_submission_send_busy_loop(struct intel_guc *guc,
					 const u32 *action,
					 u32 len,
					 u32 g2h_len_dw,
					 bool loop)
{
566 567 568 569 570 571
	/*
	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
	 * so we don't handle the case where we don't get a reply because we
	 * aborted the send due to the channel being busy.
	 */
	GEM_BUG_ON(g2h_len_dw && !loop);
572

573
	if (g2h_len_dw)
574 575
		atomic_inc(&guc->outstanding_submission_g2h);

576
	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
577 578
}

579 580 581 582
int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
				   atomic_t *wait_var,
				   bool interruptible,
				   long timeout)
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
{
	const int state = interruptible ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	DEFINE_WAIT(wait);

	might_sleep();
	GEM_BUG_ON(timeout < 0);

	if (!atomic_read(wait_var))
		return 0;

	if (!timeout)
		return -ETIME;

	for (;;) {
		prepare_to_wait(&guc->ct.wq, &wait, state);

		if (!atomic_read(wait_var))
			break;

		if (signal_pending_state(state, current)) {
			timeout = -EINTR;
			break;
		}

		if (!timeout) {
			timeout = -ETIME;
			break;
		}

		timeout = io_schedule_timeout(timeout);
	}
	finish_wait(&guc->ct.wq, &wait);

	return (timeout < 0) ? timeout : 0;
}

int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
{
	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
		return 0;

625 626 627
	return intel_guc_wait_for_pending_msg(guc,
					      &guc->outstanding_submission_g2h,
					      true, timeout);
628 629
}

630 631
static int guc_lrc_desc_pin(struct intel_context *ce, bool loop);

632
static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
633
{
634
	int err = 0;
635
	struct intel_context *ce = request_to_scheduling_context(rq);
636 637
	u32 action[3];
	int len = 0;
638
	u32 g2h_len_dw = 0;
639
	bool enabled;
640

641 642
	lockdep_assert_held(&rq->engine->sched_engine->lock);

643 644 645 646 647 648 649
	/*
	 * Corner case where requests were sitting in the priority list or a
	 * request resubmitted after the context was banned.
	 */
	if (unlikely(intel_context_is_banned(ce))) {
		i915_request_put(i915_request_mark_eio(rq));
		intel_engine_signal_breadcrumbs(ce->engine);
650
		return 0;
651 652
	}

653
	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
654 655
	GEM_BUG_ON(context_guc_id_invalid(ce));

656 657
	spin_lock(&ce->guc_state.lock);

658 659
	/*
	 * The request / context will be run on the hardware when scheduling
660 661
	 * gets enabled in the unblock. For multi-lrc we still submit the
	 * context to move the LRC tails.
662
	 */
663
	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
664 665
		goto out;

666
	enabled = context_enabled(ce) || context_blocked(ce);
667

668 669
	if (!enabled) {
		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
670
		action[len++] = ce->guc_id.id;
671
		action[len++] = GUC_CONTEXT_ENABLE;
672 673
		set_context_pending_enable(ce);
		intel_context_get(ce);
674
		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
675 676
	} else {
		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
677
		action[len++] = ce->guc_id.id;
678
	}
679

680
	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
681
	if (!enabled && !err) {
682
		trace_intel_context_sched_enable(ce);
683
		atomic_inc(&guc->outstanding_submission_g2h);
684
		set_context_enabled(ce);
685 686 687 688 689 690 691 692 693 694 695 696

		/*
		 * Without multi-lrc KMD does the submission step (moving the
		 * lrc tail) so enabling scheduling is sufficient to submit the
		 * context. This isn't the case in multi-lrc submission as the
		 * GuC needs to move the tails, hence the need for another H2G
		 * to submit a multi-lrc context after enabling scheduling.
		 */
		if (intel_context_is_parent(ce)) {
			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
			err = intel_guc_send_nb(guc, action, len - 1, 0);
		}
697 698 699 700
	} else if (!enabled) {
		clr_context_pending_enable(ce);
		intel_context_put(ce);
	}
701 702
	if (likely(!err))
		trace_i915_request_guc_submit(rq);
703

704
out:
705
	spin_unlock(&ce->guc_state.lock);
706
	return err;
707 708
}

709 710 711 712 713 714 715 716 717 718 719 720
static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
{
	int ret = __guc_add_request(guc, rq);

	if (unlikely(ret == -EBUSY)) {
		guc->stalled_request = rq;
		guc->submission_stall_reason = STALL_ADD_REQUEST;
	}

	return ret;
}

721 722 723 724 725 726
static inline void guc_set_lrc_tail(struct i915_request *rq)
{
	rq->context->lrc_reg_state[CTX_RING_TAIL] =
		intel_ring_set_tail(rq->ring, rq->tail);
}

727
static inline int rq_prio(const struct i915_request *rq)
728
{
729
	return rq->sched.attr.priority;
730 731
}

732 733
static bool is_multi_lrc_rq(struct i915_request *rq)
{
734
	return intel_context_is_parallel(rq->context);
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
}

static bool can_merge_rq(struct i915_request *rq,
			 struct i915_request *last)
{
	return request_to_scheduling_context(rq) ==
		request_to_scheduling_context(last);
}

static u32 wq_space_until_wrap(struct intel_context *ce)
{
	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
}

static void write_wqi(struct guc_process_desc *desc,
		      struct intel_context *ce,
		      u32 wqi_size)
{
	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));

	/*
	 * Ensure WQI are visible before updating tail
	 */
	intel_guc_write_barrier(ce_to_guc(ce));

	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
		(WQ_SIZE - 1);
	WRITE_ONCE(desc->tail, ce->parallel.guc.wqi_tail);
}

static int guc_wq_noop_append(struct intel_context *ce)
{
	struct guc_process_desc *desc = __get_process_desc(ce);
	u32 *wqi = get_wq_pointer(desc, ce, wq_space_until_wrap(ce));
	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;

	if (!wqi)
		return -EBUSY;

	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));

	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
		FIELD_PREP(WQ_LEN_MASK, len_dw);
	ce->parallel.guc.wqi_tail = 0;

	return 0;
}

static int __guc_wq_item_append(struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);
	struct intel_context *child;
	struct guc_process_desc *desc = __get_process_desc(ce);
	unsigned int wqi_size = (ce->parallel.number_children + 4) *
		sizeof(u32);
	u32 *wqi;
	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
	int ret;

	/* Ensure context is in correct state updating work queue */
	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
	GEM_BUG_ON(context_guc_id_invalid(ce));
	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
	GEM_BUG_ON(!lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id));

	/* Insert NOOP if this work queue item will wrap the tail pointer. */
	if (wqi_size > wq_space_until_wrap(ce)) {
		ret = guc_wq_noop_append(ce);
		if (ret)
			return ret;
	}

	wqi = get_wq_pointer(desc, ce, wqi_size);
	if (!wqi)
		return -EBUSY;

	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));

	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
		FIELD_PREP(WQ_LEN_MASK, len_dw);
	*wqi++ = ce->lrc.lrca;
	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
	*wqi++ = 0;	/* fence_id */
	for_each_child(ce, child)
		*wqi++ = child->ring->tail / sizeof(u64);

	write_wqi(desc, ce, wqi_size);

	return 0;
}

static int guc_wq_item_append(struct intel_guc *guc,
			      struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);
	int ret = 0;

	if (likely(!intel_context_is_banned(ce))) {
		ret = __guc_wq_item_append(rq);

		if (unlikely(ret == -EBUSY)) {
			guc->stalled_request = rq;
			guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
		}
	}

	return ret;
}

static bool multi_lrc_submit(struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);

	intel_ring_set_tail(rq->ring, rq->tail);

	/*
	 * We expect the front end (execbuf IOCTL) to set this flag on the last
	 * request generated from a multi-BB submission. This indicates to the
	 * backend (GuC interface) that we should submit this context thus
	 * submitting all the requests generated in parallel.
	 */
	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
		intel_context_is_banned(ce);
}

861
static int guc_dequeue_one_context(struct intel_guc *guc)
862
{
863 864
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	struct i915_request *last = NULL;
865
	bool submit = false;
866
	struct rb_node *rb;
867
	int ret;
868

869
	lockdep_assert_held(&sched_engine->lock);
870

871 872 873
	if (guc->stalled_request) {
		submit = true;
		last = guc->stalled_request;
874 875 876 877 878 879 880 881 882 883 884

		switch (guc->submission_stall_reason) {
		case STALL_REGISTER_CONTEXT:
			goto register_context;
		case STALL_MOVE_LRC_TAIL:
			goto move_lrc_tail;
		case STALL_ADD_REQUEST:
			goto add_request;
		default:
			MISSING_CASE(guc->submission_stall_reason);
		}
885 886
	}

887
	while ((rb = rb_first_cached(&sched_engine->queue))) {
888
		struct i915_priolist *p = to_priolist(rb);
889
		struct i915_request *rq, *rn;
890

891
		priolist_for_each_request_consume(rq, rn, p) {
892 893
			if (last && !can_merge_rq(rq, last))
				goto register_context;
894

895
			list_del_init(&rq->sched.link);
896

897
			__i915_request_submit(rq);
898 899

			trace_i915_request_in(rq, 0);
900
			last = rq;
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

			if (is_multi_lrc_rq(rq)) {
				/*
				 * We need to coalesce all multi-lrc requests in
				 * a relationship into a single H2G. We are
				 * guaranteed that all of these requests will be
				 * submitted sequentially.
				 */
				if (multi_lrc_submit(rq)) {
					submit = true;
					goto register_context;
				}
			} else {
				submit = true;
			}
916 917
		}

918
		rb_erase_cached(&p->node, &sched_engine->queue);
919
		i915_priolist_free(p);
920
	}
921 922

register_context:
923
	if (submit) {
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
		struct intel_context *ce = request_to_scheduling_context(last);

		if (unlikely(!lrc_desc_registered(guc, ce->guc_id.id) &&
			     !intel_context_is_banned(ce))) {
			ret = guc_lrc_desc_pin(ce, false);
			if (unlikely(ret == -EPIPE)) {
				goto deadlk;
			} else if (ret == -EBUSY) {
				guc->stalled_request = last;
				guc->submission_stall_reason =
					STALL_REGISTER_CONTEXT;
				goto schedule_tasklet;
			} else if (ret != 0) {
				GEM_WARN_ON(ret);	/* Unexpected */
				goto deadlk;
			}
		}

move_lrc_tail:
		if (is_multi_lrc_rq(last)) {
			ret = guc_wq_item_append(guc, last);
			if (ret == -EBUSY) {
				goto schedule_tasklet;
			} else if (ret != 0) {
				GEM_WARN_ON(ret);	/* Unexpected */
				goto deadlk;
			}
		} else {
			guc_set_lrc_tail(last);
		}

add_request:
956
		ret = guc_add_request(guc, last);
957 958 959 960 961 962
		if (unlikely(ret == -EPIPE)) {
			goto deadlk;
		} else if (ret == -EBUSY) {
			goto schedule_tasklet;
		} else if (ret != 0) {
			GEM_WARN_ON(ret);	/* Unexpected */
963
			goto deadlk;
964
		}
965
	}
966 967

	guc->stalled_request = NULL;
968
	guc->submission_stall_reason = STALL_NONE;
969
	return submit;
970 971 972 973 974

deadlk:
	sched_engine->tasklet.callback = NULL;
	tasklet_disable_nosync(&sched_engine->tasklet);
	return false;
975 976 977 978

schedule_tasklet:
	tasklet_schedule(&sched_engine->tasklet);
	return false;
979 980
}

981
static void guc_submission_tasklet(struct tasklet_struct *t)
982
{
983 984
	struct i915_sched_engine *sched_engine =
		from_tasklet(sched_engine, t, tasklet);
985
	unsigned long flags;
986
	bool loop;
987

988
	spin_lock_irqsave(&sched_engine->lock, flags);
989

990 991 992
	do {
		loop = guc_dequeue_one_context(sched_engine->private_data);
	} while (loop);
993

994
	i915_sched_engine_reset_on_empty(sched_engine);
995

996
	spin_unlock_irqrestore(&sched_engine->lock, flags);
997 998
}

999 1000
static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
1001
	if (iir & GT_RENDER_USER_INTERRUPT)
1002 1003 1004
		intel_engine_signal_breadcrumbs(engine);
}

1005 1006 1007
static void __guc_context_destroy(struct intel_context *ce);
static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
static void guc_signal_context_fence(struct intel_context *ce);
1008
static void guc_cancel_context_requests(struct intel_context *ce);
1009
static void guc_blocked_fence_complete(struct intel_context *ce);
1010 1011 1012 1013 1014

static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
{
	struct intel_context *ce;
	unsigned long index, flags;
1015
	bool pending_disable, pending_enable, deregister, destroyed, banned;
1016

1017
	xa_lock_irqsave(&guc->context_lookup, flags);
1018
	xa_for_each(&guc->context_lookup, index, ce) {
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		/*
		 * Corner case where the ref count on the object is zero but and
		 * deregister G2H was lost. In this case we don't touch the ref
		 * count and finish the destroy of the context.
		 */
		bool do_put = kref_get_unless_zero(&ce->ref);

		xa_unlock(&guc->context_lookup);

		spin_lock(&ce->guc_state.lock);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

		/*
		 * Once we are at this point submission_disabled() is guaranteed
		 * to be visible to all callers who set the below flags (see above
		 * flush and flushes in reset_prepare). If submission_disabled()
		 * is set, the caller shouldn't set these flags.
		 */

		destroyed = context_destroyed(ce);
		pending_enable = context_pending_enable(ce);
		pending_disable = context_pending_disable(ce);
		deregister = context_wait_for_deregister_to_register(ce);
1041
		banned = context_banned(ce);
1042 1043
		init_sched_state(ce);

1044 1045
		spin_unlock(&ce->guc_state.lock);

1046
		if (pending_enable || destroyed || deregister) {
1047
			decr_outstanding_submission_g2h(guc);
1048 1049 1050
			if (deregister)
				guc_signal_context_fence(ce);
			if (destroyed) {
1051
				intel_gt_pm_put_async(guc_to_gt(guc));
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
				release_guc_id(guc, ce);
				__guc_context_destroy(ce);
			}
			if (pending_enable || deregister)
				intel_context_put(ce);
		}

		/* Not mutualy exclusive with above if statement. */
		if (pending_disable) {
			guc_signal_context_fence(ce);
1062 1063 1064 1065
			if (banned) {
				guc_cancel_context_requests(ce);
				intel_engine_signal_breadcrumbs(ce->engine);
			}
1066
			intel_context_sched_disable_unpin(ce);
1067
			decr_outstanding_submission_g2h(guc);
1068 1069

			spin_lock(&ce->guc_state.lock);
1070
			guc_blocked_fence_complete(ce);
1071
			spin_unlock(&ce->guc_state.lock);
1072

1073 1074
			intel_context_put(ce);
		}
1075 1076 1077 1078

		if (do_put)
			intel_context_put(ce);
		xa_lock(&guc->context_lookup);
1079
	}
1080
	xa_unlock_irqrestore(&guc->context_lookup, flags);
1081 1082
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
/*
 * GuC stores busyness stats for each engine at context in/out boundaries. A
 * context 'in' logs execution start time, 'out' adds in -> out delta to total.
 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
 * GuC.
 *
 * __i915_pmu_event_read samples engine busyness. When sampling, if context id
 * is valid (!= ~0) and start is non-zero, the engine is considered to be
 * active. For an active engine total busyness = total + (now - start), where
 * 'now' is the time at which the busyness is sampled. For inactive engine,
 * total busyness = total.
 *
 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
 *
 * The start and total values provided by GuC are 32 bits and wrap around in a
 * few minutes. Since perf pmu provides busyness as 64 bit monotonically
 * increasing ns values, there is a need for this implementation to account for
 * overflows and extend the GuC provided values to 64 bits before returning
 * busyness to the user. In order to do that, a worker runs periodically at
 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
 * 27 seconds for a gt clock frequency of 19.2 MHz).
 */

#define WRAP_TIME_CLKS U32_MAX
#define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)

static void
__extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
{
	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);

	if (new_start == lower_32_bits(*prev_start))
		return;

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	/*
	 * When gt is unparked, we update the gt timestamp and start the ping
	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
	 * is unparked, all switched in contexts will have a start time that is
	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
	 *
	 * If neither gt_stamp nor new_start has rolled over, then the
	 * gt_stamp_hi does not need to be adjusted, however if one of them has
	 * rolled over, we need to adjust gt_stamp_hi accordingly.
	 *
	 * The below conditions address the cases of new_start rollover and
	 * gt_stamp_last rollover respectively.
	 */
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	if (new_start < gt_stamp_last &&
	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
		gt_stamp_hi++;

	if (new_start > gt_stamp_last &&
	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
		gt_stamp_hi--;

	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/*
 * GuC updates shared memory and KMD reads it. Since this is not synchronized,
 * we run into a race where the value read is inconsistent. Sometimes the
 * inconsistency is in reading the upper MSB bytes of the last_in value when
 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
 * 24 bits are zero. Since these are non-zero values, it is non-trivial to
 * determine validity of these values. Instead we read the values multiple times
 * until they are consistent. In test runs, 3 attempts results in consistent
 * values. The upper bound is set to 6 attempts and may need to be tuned as per
 * any new occurences.
 */
static void __get_engine_usage_record(struct intel_engine_cs *engine,
				      u32 *last_in, u32 *id, u32 *total)
1155 1156
{
	struct guc_engine_usage_record *rec = intel_guc_engine_usage(engine);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	int i = 0;

	do {
		*last_in = READ_ONCE(rec->last_switch_in_stamp);
		*id = READ_ONCE(rec->current_context_index);
		*total = READ_ONCE(rec->total_runtime);

		if (READ_ONCE(rec->last_switch_in_stamp) == *last_in &&
		    READ_ONCE(rec->current_context_index) == *id &&
		    READ_ONCE(rec->total_runtime) == *total)
			break;
	} while (++i < 6);
}

static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
{
1173 1174
	struct intel_engine_guc_stats *stats = &engine->stats.guc;
	struct intel_guc *guc = &engine->gt->uc.guc;
1175
	u32 last_switch, ctx_id, total;
1176 1177 1178

	lockdep_assert_held(&guc->timestamp.lock);

1179 1180
	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	stats->running = ctx_id != ~0U && last_switch;
	if (stats->running)
		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);

	/*
	 * Instead of adjusting the total for overflow, just add the
	 * difference from previous sample stats->total_gt_clks
	 */
	if (total && total != ~0U) {
		stats->total_gt_clks += (u32)(total - stats->prev_total);
		stats->prev_total = total;
	}
}

1195
static u32 gpm_timestamp_shift(struct intel_gt *gt)
1196
{
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	intel_wakeref_t wakeref;
	u32 reg, shift;

	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);

	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;

	return 3 - shift;
}

static u64 gpm_timestamp(struct intel_gt *gt)
1210
{
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	u32 lo, hi, old_hi, loop = 0;

	hi = intel_uncore_read(gt->uncore, MISC_STATUS1);
	do {
		lo = intel_uncore_read(gt->uncore, MISC_STATUS0);
		old_hi = hi;
		hi = intel_uncore_read(gt->uncore, MISC_STATUS1);
	} while (old_hi != hi && loop++ < 2);

	return ((u64)hi << 32) | lo;
}

static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
{
	struct intel_gt *gt = guc_to_gt(guc);
	u32 gt_stamp_lo, gt_stamp_hi;
	u64 gpm_ts;
1228 1229 1230 1231

	lockdep_assert_held(&guc->timestamp.lock);

	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1232 1233
	gpm_ts = gpm_timestamp(gt) >> guc->timestamp.shift;
	gt_stamp_lo = lower_32_bits(gpm_ts);
1234 1235
	*now = ktime_get();

1236
	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1237 1238
		gt_stamp_hi++;

1239
	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
}

/*
 * Unlike the execlist mode of submission total and active times are in terms of
 * gt clocks. The *now parameter is retained to return the cpu time at which the
 * busyness was sampled.
 */
static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
{
	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
	struct intel_gt *gt = engine->gt;
	struct intel_guc *guc = &gt->uc.guc;
	u64 total, gt_stamp_saved;
	unsigned long flags;
	u32 reset_count;
1256
	bool in_reset;
1257 1258 1259 1260

	spin_lock_irqsave(&guc->timestamp.lock, flags);

	/*
1261 1262 1263 1264 1265 1266
	 * If a reset happened, we risk reading partially updated engine
	 * busyness from GuC, so we just use the driver stored copy of busyness.
	 * Synchronize with gt reset using reset_count and the
	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
	 * usable by checking the flag afterwards.
1267 1268
	 */
	reset_count = i915_reset_count(gpu_error);
1269
	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1270 1271 1272 1273 1274 1275 1276 1277 1278

	*now = ktime_get();

	/*
	 * The active busyness depends on start_gt_clk and gt_stamp.
	 * gt_stamp is updated by i915 only when gt is awake and the
	 * start_gt_clk is derived from GuC state. To get a consistent
	 * view of activity, we query the GuC state only if gt is awake.
	 */
1279
	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1280 1281
		stats_saved = *stats;
		gt_stamp_saved = guc->timestamp.gt_stamp;
1282 1283 1284 1285
		/*
		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
		 * start_gt_clk' calculation below for active engines.
		 */
1286
		guc_update_engine_gt_clks(engine);
1287
		guc_update_pm_timestamp(guc, now);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		intel_gt_pm_put_async(gt);
		if (i915_reset_count(gpu_error) != reset_count) {
			*stats = stats_saved;
			guc->timestamp.gt_stamp = gt_stamp_saved;
		}
	}

	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
	if (stats->running) {
		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;

		total += intel_gt_clock_interval_to_ns(gt, clk);
	}

	spin_unlock_irqrestore(&guc->timestamp.lock, flags);

	return ns_to_ktime(total);
}

static void __reset_guc_busyness_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned long flags;
	ktime_t unused;

	cancel_delayed_work_sync(&guc->timestamp.work);

	spin_lock_irqsave(&guc->timestamp.lock, flags);

1319
	guc_update_pm_timestamp(guc, &unused);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	for_each_engine(engine, gt, id) {
		guc_update_engine_gt_clks(engine);
		engine->stats.guc.prev_total = 0;
	}

	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
}

static void __update_guc_busyness_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
1333
	unsigned long flags;
1334 1335
	ktime_t unused;

1336
	spin_lock_irqsave(&guc->timestamp.lock, flags);
1337 1338 1339

	guc_update_pm_timestamp(guc, &unused);
	for_each_engine(engine, gt, id)
1340
		guc_update_engine_gt_clks(engine);
1341

1342
	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
}

static void guc_timestamp_ping(struct work_struct *wrk)
{
	struct intel_guc *guc = container_of(wrk, typeof(*guc),
					     timestamp.work.work);
	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
	struct intel_gt *gt = guc_to_gt(guc);
	intel_wakeref_t wakeref;
	int srcu, ret;

	/*
	 * Synchronize with gt reset to make sure the worker does not
	 * corrupt the engine/guc stats.
	 */
	ret = intel_gt_reset_trylock(gt, &srcu);
	if (ret)
		return;

	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
		__update_guc_busyness_stats(guc);

	intel_gt_reset_unlock(gt, srcu);

	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);
}

static int guc_action_enable_usage_stats(struct intel_guc *guc)
{
	u32 offset = intel_guc_engine_usage_offset(guc);
	u32 action[] = {
		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
		offset,
		0,
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

static void guc_init_engine_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	intel_wakeref_t wakeref;

	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);

	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
		int ret = guc_action_enable_usage_stats(guc);

		if (ret)
			drm_err(&gt->i915->drm,
				"Failed to enable usage stats: %d!\n", ret);
	}
}

void intel_guc_busyness_park(struct intel_gt *gt)
{
	struct intel_guc *guc = &gt->uc.guc;

	if (!guc_submission_initialized(guc))
		return;

	cancel_delayed_work(&guc->timestamp.work);
	__update_guc_busyness_stats(guc);
}

void intel_guc_busyness_unpark(struct intel_gt *gt)
{
	struct intel_guc *guc = &gt->uc.guc;
1414 1415
	unsigned long flags;
	ktime_t unused;
1416 1417 1418 1419

	if (!guc_submission_initialized(guc))
		return;

1420 1421 1422
	spin_lock_irqsave(&guc->timestamp.lock, flags);
	guc_update_pm_timestamp(guc, &unused);
	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1423 1424 1425 1426
	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);
}

1427 1428 1429 1430 1431 1432
static inline bool
submission_disabled(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;

	return unlikely(!sched_engine ||
1433 1434
			!__tasklet_is_enabled(&sched_engine->tasklet) ||
			intel_gt_is_wedged(guc_to_gt(guc)));
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
}

static void disable_submission(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;

	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
		GEM_BUG_ON(!guc->ct.enabled);
		__tasklet_disable_sync_once(&sched_engine->tasklet);
		sched_engine->tasklet.callback = NULL;
	}
}

static void enable_submission(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&guc->sched_engine->lock, flags);
	sched_engine->tasklet.callback = guc_submission_tasklet;
	wmb();	/* Make sure callback visible */
	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
	    __tasklet_enable(&sched_engine->tasklet)) {
		GEM_BUG_ON(!guc->ct.enabled);

		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&sched_engine->tasklet);
	}
	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
}

static void guc_flush_submissions(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&sched_engine->lock, flags);
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

1475 1476
static void guc_flush_destroyed_contexts(struct intel_guc *guc);

1477
void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1478
{
1479 1480 1481 1482 1483
	if (unlikely(!guc_submission_initialized(guc))) {
		/* Reset called during driver load? GuC not yet initialised! */
		return;
	}

1484
	intel_gt_park_heartbeats(guc_to_gt(guc));
1485 1486
	disable_submission(guc);
	guc->interrupts.disable(guc);
1487
	__reset_guc_busyness_stats(guc);
1488 1489 1490 1491 1492 1493

	/* Flush IRQ handler */
	spin_lock_irq(&guc_to_gt(guc)->irq_lock);
	spin_unlock_irq(&guc_to_gt(guc)->irq_lock);

	guc_flush_submissions(guc);
1494
	guc_flush_destroyed_contexts(guc);
1495
	flush_work(&guc->ct.requests.worker);
1496

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	scrub_guc_desc_for_outstanding_g2h(guc);
}

static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
{
	struct intel_engine_cs *engine;
	intel_engine_mask_t tmp, mask = ve->mask;
	unsigned int num_siblings = 0;

	for_each_engine_masked(engine, ve->gt, mask, tmp)
		if (num_siblings++ == sibling)
			return engine;

	return NULL;
}

static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;

	if (intel_engine_is_virtual(engine))
		engine = guc_virtual_get_sibling(engine, 0);

	return engine;
1523 1524
}

1525
static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1526
{
1527 1528
	struct intel_engine_cs *engine = __context_to_physical_engine(ce);

1529 1530 1531
	if (intel_context_is_banned(ce))
		return;

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	GEM_BUG_ON(!intel_context_is_pinned(ce));

	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub)
		lrc_init_regs(ce, engine, true);

	/* Rerun the request; its payload has been neutered (if guilty). */
	lrc_update_regs(ce, engine, head);
}

1549
static void guc_reset_nop(struct intel_engine_cs *engine)
1550
{
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
}

static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
{
}

static void
__unwind_incomplete_requests(struct intel_context *ce)
{
	struct i915_request *rq, *rn;
	struct list_head *pl;
	int prio = I915_PRIORITY_INVALID;
	struct i915_sched_engine * const sched_engine =
		ce->engine->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&sched_engine->lock, flags);
1568
	spin_lock(&ce->guc_state.lock);
1569
	list_for_each_entry_safe_reverse(rq, rn,
1570
					 &ce->guc_state.requests,
1571
					 sched.link) {
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		if (i915_request_completed(rq))
			continue;

		list_del_init(&rq->sched.link);
		__i915_request_unsubmit(rq);

		/* Push the request back into the queue for later resubmission. */
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != prio) {
			prio = rq_prio(rq);
			pl = i915_sched_lookup_priolist(sched_engine, prio);
		}
		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));

1586
		list_add(&rq->sched.link, pl);
1587 1588
		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	}
1589
	spin_unlock(&ce->guc_state.lock);
1590 1591 1592 1593 1594
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

static void __guc_reset_context(struct intel_context *ce, bool stalled)
{
1595
	bool local_stalled;
1596
	struct i915_request *rq;
1597
	unsigned long flags;
1598
	u32 head;
1599 1600 1601 1602
	int i, number_children = ce->parallel.number_children;
	struct intel_context *parent = ce;

	GEM_BUG_ON(intel_context_is_child(ce));
1603

1604 1605
	intel_context_get(ce);

1606
	/*
1607 1608 1609
	 * GuC will implicitly mark the context as non-schedulable when it sends
	 * the reset notification. Make sure our state reflects this change. The
	 * context will be marked enabled on resubmission.
1610
	 */
1611
	spin_lock_irqsave(&ce->guc_state.lock, flags);
1612
	clr_context_enabled(ce);
1613
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1614

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	/*
	 * For each context in the relationship find the hanging request
	 * resetting each context / request as needed
	 */
	for (i = 0; i < number_children + 1; ++i) {
		if (!intel_context_is_pinned(ce))
			goto next_context;

		local_stalled = false;
		rq = intel_context_find_active_request(ce);
		if (!rq) {
			head = ce->ring->tail;
			goto out_replay;
		}
1629

1630 1631
		if (i915_request_started(rq))
			local_stalled = true;
1632

1633 1634
		GEM_BUG_ON(i915_active_is_idle(&ce->active));
		head = intel_ring_wrap(ce->ring, rq->head);
1635

1636
		__i915_request_reset(rq, local_stalled && stalled);
1637
out_replay:
1638 1639 1640 1641 1642 1643 1644 1645
		guc_reset_state(ce, head, local_stalled && stalled);
next_context:
		if (i != number_children)
			ce = list_next_entry(ce, parallel.child_link);
	}

	__unwind_incomplete_requests(parent);
	intel_context_put(parent);
1646 1647 1648 1649 1650 1651
}

void intel_guc_submission_reset(struct intel_guc *guc, bool stalled)
{
	struct intel_context *ce;
	unsigned long index;
1652
	unsigned long flags;
1653 1654 1655 1656 1657 1658

	if (unlikely(!guc_submission_initialized(guc))) {
		/* Reset called during driver load? GuC not yet initialised! */
		return;
	}

1659 1660 1661 1662 1663 1664 1665
	xa_lock_irqsave(&guc->context_lookup, flags);
	xa_for_each(&guc->context_lookup, index, ce) {
		if (!kref_get_unless_zero(&ce->ref))
			continue;

		xa_unlock(&guc->context_lookup);

1666 1667
		if (intel_context_is_pinned(ce) &&
		    !intel_context_is_child(ce))
1668 1669
			__guc_reset_context(ce, stalled);

1670 1671 1672 1673 1674 1675
		intel_context_put(ce);

		xa_lock(&guc->context_lookup);
	}
	xa_unlock_irqrestore(&guc->context_lookup, flags);

1676 1677
	/* GuC is blown away, drop all references to contexts */
	xa_destroy(&guc->context_lookup);
1678 1679
}

1680 1681 1682 1683 1684 1685 1686 1687
static void guc_cancel_context_requests(struct intel_context *ce)
{
	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
	struct i915_request *rq;
	unsigned long flags;

	/* Mark all executing requests as skipped. */
	spin_lock_irqsave(&sched_engine->lock, flags);
1688 1689
	spin_lock(&ce->guc_state.lock);
	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1690
		i915_request_put(i915_request_mark_eio(rq));
1691
	spin_unlock(&ce->guc_state.lock);
1692 1693 1694 1695 1696
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

static void
guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1697 1698 1699 1700 1701
{
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

1702
	/* Can be called during boot if GuC fails to load */
1703
	if (!sched_engine)
1704 1705
		return;

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
1720
	spin_lock_irqsave(&sched_engine->lock, flags);
1721 1722

	/* Flush the queued requests to the timeline list (for retiring). */
1723
	while ((rb = rb_first_cached(&sched_engine->queue))) {
1724 1725
		struct i915_priolist *p = to_priolist(rb);

1726
		priolist_for_each_request_consume(rq, rn, p) {
1727
			list_del_init(&rq->sched.link);
1728

1729
			__i915_request_submit(rq);
1730 1731

			i915_request_put(i915_request_mark_eio(rq));
1732 1733
		}

1734
		rb_erase_cached(&p->node, &sched_engine->queue);
1735 1736 1737 1738 1739
		i915_priolist_free(p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

1740 1741
	sched_engine->queue_priority_hint = INT_MIN;
	sched_engine->queue = RB_ROOT_CACHED;
1742

1743
	spin_unlock_irqrestore(&sched_engine->lock, flags);
1744 1745
}

1746
void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1747
{
1748 1749
	struct intel_context *ce;
	unsigned long index;
1750 1751 1752 1753 1754 1755 1756 1757
	unsigned long flags;

	xa_lock_irqsave(&guc->context_lookup, flags);
	xa_for_each(&guc->context_lookup, index, ce) {
		if (!kref_get_unless_zero(&ce->ref))
			continue;

		xa_unlock(&guc->context_lookup);
1758

1759 1760
		if (intel_context_is_pinned(ce) &&
		    !intel_context_is_child(ce))
1761 1762
			guc_cancel_context_requests(ce);

1763 1764 1765 1766 1767 1768
		intel_context_put(ce);

		xa_lock(&guc->context_lookup);
	}
	xa_unlock_irqrestore(&guc->context_lookup, flags);

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	guc_cancel_sched_engine_requests(guc->sched_engine);

	/* GuC is blown away, drop all references to contexts */
	xa_destroy(&guc->context_lookup);
}

void intel_guc_submission_reset_finish(struct intel_guc *guc)
{
	/* Reset called during driver load or during wedge? */
	if (unlikely(!guc_submission_initialized(guc) ||
1779
		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1780 1781
		return;
	}
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791
	/*
	 * Technically possible for either of these values to be non-zero here,
	 * but very unlikely + harmless. Regardless let's add a warn so we can
	 * see in CI if this happens frequently / a precursor to taking down the
	 * machine.
	 */
	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
	atomic_set(&guc->outstanding_submission_g2h, 0);

1792
	intel_guc_global_policies_update(guc);
1793
	enable_submission(guc);
1794
	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1795 1796
}

1797
static void destroyed_worker_func(struct work_struct *w);
1798
static void reset_fail_worker_func(struct work_struct *w);
1799

1800
/*
1801 1802
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
1803
 */
1804
int intel_guc_submission_init(struct intel_guc *guc)
1805
{
1806
	struct intel_gt *gt = guc_to_gt(guc);
1807
	int ret;
1808

1809
	if (guc->lrc_desc_pool)
1810
		return 0;
1811

1812
	ret = guc_lrc_desc_pool_create(guc);
1813 1814
	if (ret)
		return ret;
1815 1816 1817 1818
	/*
	 * Keep static analysers happy, let them know that we allocated the
	 * vma after testing that it didn't exist earlier.
	 */
1819
	GEM_BUG_ON(!guc->lrc_desc_pool);
1820

1821 1822
	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);

1823 1824 1825
	spin_lock_init(&guc->submission_state.lock);
	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
	ida_init(&guc->submission_state.guc_ids);
1826 1827 1828
	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
	INIT_WORK(&guc->submission_state.destroyed_worker,
		  destroyed_worker_func);
1829 1830
	INIT_WORK(&guc->submission_state.reset_fail_worker,
		  reset_fail_worker_func);
1831

1832
	guc->submission_state.guc_ids_bitmap =
1833
		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1834 1835 1836
	if (!guc->submission_state.guc_ids_bitmap)
		return -ENOMEM;

1837 1838 1839
	spin_lock_init(&guc->timestamp.lock);
	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1840
	guc->timestamp.shift = gpm_timestamp_shift(gt);
1841

1842
	return 0;
1843 1844
}

1845
void intel_guc_submission_fini(struct intel_guc *guc)
1846
{
1847 1848 1849
	if (!guc->lrc_desc_pool)
		return;

1850
	guc_flush_destroyed_contexts(guc);
1851 1852
	guc_lrc_desc_pool_destroy(guc);
	i915_sched_engine_put(guc->sched_engine);
1853
	bitmap_free(guc->submission_state.guc_ids_bitmap);
1854 1855
}

1856 1857 1858
static inline void queue_request(struct i915_sched_engine *sched_engine,
				 struct i915_request *rq,
				 int prio)
1859
{
1860 1861 1862 1863
	GEM_BUG_ON(!list_empty(&rq->sched.link));
	list_add_tail(&rq->sched.link,
		      i915_sched_lookup_priolist(sched_engine, prio));
	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1864
	tasklet_hi_schedule(&sched_engine->tasklet);
1865 1866 1867 1868 1869
}

static int guc_bypass_tasklet_submit(struct intel_guc *guc,
				     struct i915_request *rq)
{
1870
	int ret = 0;
1871 1872 1873 1874 1875

	__i915_request_submit(rq);

	trace_i915_request_in(rq, 0);

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	if (is_multi_lrc_rq(rq)) {
		if (multi_lrc_submit(rq)) {
			ret = guc_wq_item_append(guc, rq);
			if (!ret)
				ret = guc_add_request(guc, rq);
		}
	} else {
		guc_set_lrc_tail(rq);
		ret = guc_add_request(guc, rq);
	}
1886

1887 1888 1889
	if (unlikely(ret == -EPIPE))
		disable_submission(guc);

1890 1891 1892
	return ret;
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
{
	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
	struct intel_context *ce = request_to_scheduling_context(rq);

	return submission_disabled(guc) || guc->stalled_request ||
		!i915_sched_engine_is_empty(sched_engine) ||
		!lrc_desc_registered(guc, ce->guc_id.id);
}

1903 1904 1905 1906 1907 1908 1909 1910 1911
static void guc_submit_request(struct i915_request *rq)
{
	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
	struct intel_guc *guc = &rq->engine->gt->uc.guc;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&sched_engine->lock, flags);

1912
	if (need_tasklet(guc, rq))
1913 1914 1915 1916 1917 1918 1919
		queue_request(sched_engine, rq, rq_prio(rq));
	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
		tasklet_hi_schedule(&sched_engine->tasklet);

	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

1920
static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
1921
{
1922 1923 1924 1925 1926 1927
	int ret;

	GEM_BUG_ON(intel_context_is_child(ce));

	if (intel_context_is_parent(ce))
		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
1928
					      NUMBER_MULTI_LRC_GUC_ID(guc),
1929 1930 1931 1932
					      order_base_2(ce->parallel.number_children
							   + 1));
	else
		ret = ida_simple_get(&guc->submission_state.guc_ids,
1933 1934
				     NUMBER_MULTI_LRC_GUC_ID(guc),
				     guc->submission_state.num_guc_ids,
1935 1936 1937 1938 1939 1940 1941
				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
				     __GFP_NOWARN);
	if (unlikely(ret < 0))
		return ret;

	ce->guc_id.id = ret;
	return 0;
1942 1943 1944 1945
}

static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
1946 1947
	GEM_BUG_ON(intel_context_is_child(ce));

1948
	if (!context_guc_id_invalid(ce)) {
1949 1950 1951 1952 1953 1954 1955 1956
		if (intel_context_is_parent(ce))
			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
					      ce->guc_id.id,
					      order_base_2(ce->parallel.number_children
							   + 1));
		else
			ida_simple_remove(&guc->submission_state.guc_ids,
					  ce->guc_id.id);
1957
		reset_lrc_desc(guc, ce->guc_id.id);
1958 1959
		set_context_guc_id_invalid(ce);
	}
1960 1961
	if (!list_empty(&ce->guc_id.link))
		list_del_init(&ce->guc_id.link);
1962 1963 1964 1965 1966 1967
}

static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	unsigned long flags;

1968
	spin_lock_irqsave(&guc->submission_state.lock, flags);
1969
	__release_guc_id(guc, ce);
1970
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
1971 1972
}

1973
static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
1974
{
1975
	struct intel_context *cn;
1976

1977
	lockdep_assert_held(&guc->submission_state.lock);
1978 1979
	GEM_BUG_ON(intel_context_is_child(ce));
	GEM_BUG_ON(intel_context_is_parent(ce));
1980

1981
	if (!list_empty(&guc->submission_state.guc_id_list)) {
1982
		cn = list_first_entry(&guc->submission_state.guc_id_list,
1983
				      struct intel_context,
1984
				      guc_id.link);
1985

1986 1987 1988 1989
		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
		GEM_BUG_ON(context_guc_id_invalid(cn));
		GEM_BUG_ON(intel_context_is_child(cn));
		GEM_BUG_ON(intel_context_is_parent(cn));
1990

1991
		list_del_init(&cn->guc_id.link);
1992
		ce->guc_id.id = cn->guc_id.id;
1993

1994
		spin_lock(&cn->guc_state.lock);
1995
		clr_context_registered(cn);
1996
		spin_unlock(&cn->guc_state.lock);
1997

1998 1999
		set_context_guc_id_invalid(cn);

2000 2001 2002 2003
#ifdef CONFIG_DRM_I915_SELFTEST
		guc->number_guc_id_stolen++;
#endif

2004
		return 0;
2005 2006 2007 2008 2009
	} else {
		return -EAGAIN;
	}
}

2010
static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2011 2012 2013
{
	int ret;

2014
	lockdep_assert_held(&guc->submission_state.lock);
2015
	GEM_BUG_ON(intel_context_is_child(ce));
2016

2017
	ret = new_guc_id(guc, ce);
2018
	if (unlikely(ret < 0)) {
2019 2020 2021 2022
		if (intel_context_is_parent(ce))
			return -ENOSPC;

		ret = steal_guc_id(guc, ce);
2023 2024 2025 2026
		if (ret < 0)
			return ret;
	}

2027 2028 2029 2030 2031 2032 2033 2034
	if (intel_context_is_parent(ce)) {
		struct intel_context *child;
		int i = 1;

		for_each_child(ce, child)
			child->guc_id.id = ce->guc_id.id + i++;
	}

2035 2036 2037 2038 2039 2040 2041 2042 2043
	return 0;
}

#define PIN_GUC_ID_TRIES	4
static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	int ret = 0;
	unsigned long flags, tries = PIN_GUC_ID_TRIES;

2044
	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2045 2046

try_again:
2047
	spin_lock_irqsave(&guc->submission_state.lock, flags);
2048

2049 2050
	might_lock(&ce->guc_state.lock);

2051
	if (context_guc_id_invalid(ce)) {
2052
		ret = assign_guc_id(guc, ce);
2053 2054 2055 2056
		if (ret)
			goto out_unlock;
		ret = 1;	/* Indidcates newly assigned guc_id */
	}
2057 2058 2059
	if (!list_empty(&ce->guc_id.link))
		list_del_init(&ce->guc_id.link);
	atomic_inc(&ce->guc_id.ref);
2060 2061

out_unlock:
2062
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2063 2064

	/*
2065
	 * -EAGAIN indicates no guc_id are available, let's retire any
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	 * outstanding requests to see if that frees up a guc_id. If the first
	 * retire didn't help, insert a sleep with the timeslice duration before
	 * attempting to retire more requests. Double the sleep period each
	 * subsequent pass before finally giving up. The sleep period has max of
	 * 100ms and minimum of 1ms.
	 */
	if (ret == -EAGAIN && --tries) {
		if (PIN_GUC_ID_TRIES - tries > 1) {
			unsigned int timeslice_shifted =
				ce->engine->props.timeslice_duration_ms <<
				(PIN_GUC_ID_TRIES - tries - 2);
			unsigned int max = min_t(unsigned int, 100,
						 timeslice_shifted);

			msleep(max_t(unsigned int, max, 1));
		}
		intel_gt_retire_requests(guc_to_gt(guc));
		goto try_again;
	}

	return ret;
}

static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	unsigned long flags;

2093
	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2094
	GEM_BUG_ON(intel_context_is_child(ce));
2095

2096 2097
	if (unlikely(context_guc_id_invalid(ce) ||
		     intel_context_is_parent(ce)))
2098 2099
		return;

2100
	spin_lock_irqsave(&guc->submission_state.lock, flags);
2101 2102
	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
	    !atomic_read(&ce->guc_id.ref))
2103 2104 2105
		list_add_tail(&ce->guc_id.link,
			      &guc->submission_state.guc_id_list);
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2106 2107
}

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
static int __guc_action_register_multi_lrc(struct intel_guc *guc,
					   struct intel_context *ce,
					   u32 guc_id,
					   u32 offset,
					   bool loop)
{
	struct intel_context *child;
	u32 action[4 + MAX_ENGINE_INSTANCE];
	int len = 0;

	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);

	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
	action[len++] = guc_id;
	action[len++] = ce->parallel.number_children + 1;
	action[len++] = offset;
	for_each_child(ce, child) {
		offset += sizeof(struct guc_lrc_desc);
		action[len++] = offset;
	}

	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
}

2132 2133
static int __guc_action_register_context(struct intel_guc *guc,
					 u32 guc_id,
2134 2135
					 u32 offset,
					 bool loop)
2136 2137 2138 2139 2140 2141 2142
{
	u32 action[] = {
		INTEL_GUC_ACTION_REGISTER_CONTEXT,
		guc_id,
		offset,
	};

2143
	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2144
					     0, loop);
2145 2146
}

2147
static int register_context(struct intel_context *ce, bool loop)
2148 2149 2150
{
	struct intel_guc *guc = ce_to_guc(ce);
	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool) +
2151
		ce->guc_id.id * sizeof(struct guc_lrc_desc);
2152
	int ret;
2153

2154
	GEM_BUG_ON(intel_context_is_child(ce));
2155 2156
	trace_intel_context_register(ce);

2157 2158 2159 2160 2161 2162
	if (intel_context_is_parent(ce))
		ret = __guc_action_register_multi_lrc(guc, ce, ce->guc_id.id,
						      offset, loop);
	else
		ret = __guc_action_register_context(guc, ce->guc_id.id, offset,
						    loop);
2163 2164 2165 2166
	if (likely(!ret)) {
		unsigned long flags;

		spin_lock_irqsave(&ce->guc_state.lock, flags);
2167
		set_context_registered(ce);
2168 2169
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	}
2170 2171

	return ret;
2172 2173 2174
}

static int __guc_action_deregister_context(struct intel_guc *guc,
2175
					   u32 guc_id)
2176 2177 2178 2179 2180 2181
{
	u32 action[] = {
		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
		guc_id,
	};

2182 2183
	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2184
					     true);
2185 2186
}

2187
static int deregister_context(struct intel_context *ce, u32 guc_id)
2188 2189 2190
{
	struct intel_guc *guc = ce_to_guc(ce);

2191
	GEM_BUG_ON(intel_context_is_child(ce));
2192 2193
	trace_intel_context_deregister(ce);

2194
	return __guc_action_deregister_context(guc, guc_id);
2195 2196
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
static inline void clear_children_join_go_memory(struct intel_context *ce)
{
	struct parent_scratch *ps = __get_parent_scratch(ce);
	int i;

	ps->go.semaphore = 0;
	for (i = 0; i < ce->parallel.number_children + 1; ++i)
		ps->join[i].semaphore = 0;
}

static inline u32 get_children_go_value(struct intel_context *ce)
{
	return __get_parent_scratch(ce)->go.semaphore;
}

static inline u32 get_children_join_value(struct intel_context *ce,
					  u8 child_index)
{
	return __get_parent_scratch(ce)->join[child_index].semaphore;
}

2218 2219 2220 2221 2222
static void guc_context_policy_init(struct intel_engine_cs *engine,
				    struct guc_lrc_desc *desc)
{
	desc->policy_flags = 0;

2223 2224 2225
	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE;

2226 2227 2228
	/* NB: For both of these, zero means disabled. */
	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2229 2230
}

2231
static int guc_lrc_desc_pin(struct intel_context *ce, bool loop)
2232 2233 2234 2235
{
	struct intel_engine_cs *engine = ce->engine;
	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
	struct intel_guc *guc = &engine->gt->uc.guc;
2236
	u32 desc_idx = ce->guc_id.id;
2237 2238 2239
	struct guc_lrc_desc *desc;
	bool context_registered;
	intel_wakeref_t wakeref;
2240
	struct intel_context *child;
2241 2242 2243
	int ret = 0;

	GEM_BUG_ON(!engine->mask);
2244
	GEM_BUG_ON(!sched_state_is_init(ce));
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

	/*
	 * Ensure LRC + CT vmas are is same region as write barrier is done
	 * based on CT vma region.
	 */
	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
		   i915_gem_object_is_lmem(ce->ring->vma->obj));

	context_registered = lrc_desc_registered(guc, desc_idx);

	reset_lrc_desc(guc, desc_idx);
	set_lrc_desc_registered(guc, desc_idx, ce);

	desc = __get_lrc_desc(guc, desc_idx);
	desc->engine_class = engine_class_to_guc_class(engine->class);
2260
	desc->engine_submit_mask = engine->logical_mask;
2261
	desc->hw_context_desc = ce->lrc.lrca;
2262
	desc->priority = ce->guc_state.prio;
2263 2264 2265
	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
	guc_context_policy_init(engine, desc);

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	/*
	 * If context is a parent, we need to register a process descriptor
	 * describing a work queue and register all child contexts.
	 */
	if (intel_context_is_parent(ce)) {
		struct guc_process_desc *pdesc;

		ce->parallel.guc.wqi_tail = 0;
		ce->parallel.guc.wqi_head = 0;

		desc->process_desc = i915_ggtt_offset(ce->state) +
2277
			__get_parent_scratch_offset(ce);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
		desc->wq_addr = i915_ggtt_offset(ce->state) +
			__get_wq_offset(ce);
		desc->wq_size = WQ_SIZE;

		pdesc = __get_process_desc(ce);
		memset(pdesc, 0, sizeof(*(pdesc)));
		pdesc->stage_id = ce->guc_id.id;
		pdesc->wq_base_addr = desc->wq_addr;
		pdesc->wq_size_bytes = desc->wq_size;
		pdesc->wq_status = WQ_STATUS_ACTIVE;

		for_each_child(ce, child) {
			desc = __get_lrc_desc(guc, child->guc_id.id);

			desc->engine_class =
				engine_class_to_guc_class(engine->class);
			desc->hw_context_desc = child->lrc.lrca;
			desc->priority = ce->guc_state.prio;
			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
			guc_context_policy_init(engine, desc);
		}
2299 2300

		clear_children_join_go_memory(ce);
2301 2302
	}

2303 2304 2305 2306 2307 2308 2309 2310 2311
	/*
	 * The context_lookup xarray is used to determine if the hardware
	 * context is currently registered. There are two cases in which it
	 * could be registered either the guc_id has been stolen from another
	 * context or the lrc descriptor address of this context has changed. In
	 * either case the context needs to be deregistered with the GuC before
	 * registering this context.
	 */
	if (context_registered) {
2312 2313 2314
		bool disabled;
		unsigned long flags;

2315
		trace_intel_context_steal_guc_id(ce);
2316 2317 2318 2319 2320 2321
		GEM_BUG_ON(!loop);

		/* Seal race with Reset */
		spin_lock_irqsave(&ce->guc_state.lock, flags);
		disabled = submission_disabled(guc);
		if (likely(!disabled)) {
2322 2323
			set_context_wait_for_deregister_to_register(ce);
			intel_context_get(ce);
2324 2325 2326 2327 2328
		}
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
		if (unlikely(disabled)) {
			reset_lrc_desc(guc, desc_idx);
			return 0;	/* Will get registered later */
2329
		}
2330 2331 2332 2333 2334 2335

		/*
		 * If stealing the guc_id, this ce has the same guc_id as the
		 * context whose guc_id was stolen.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref)
2336
			ret = deregister_context(ce, ce->guc_id.id);
2337
		if (unlikely(ret == -ENODEV))
2338
			ret = 0;	/* Will get registered later */
2339 2340
	} else {
		with_intel_runtime_pm(runtime_pm, wakeref)
2341
			ret = register_context(ce, loop);
2342 2343 2344
		if (unlikely(ret == -EBUSY)) {
			reset_lrc_desc(guc, desc_idx);
		} else if (unlikely(ret == -ENODEV)) {
2345 2346
			reset_lrc_desc(guc, desc_idx);
			ret = 0;	/* Will get registered later */
2347
		}
2348 2349 2350
	}

	return ret;
2351 2352
}

2353 2354 2355 2356
static int __guc_context_pre_pin(struct intel_context *ce,
				 struct intel_engine_cs *engine,
				 struct i915_gem_ww_ctx *ww,
				 void **vaddr)
2357
{
2358
	return lrc_pre_pin(ce, engine, ww, vaddr);
2359 2360
}

2361 2362 2363
static int __guc_context_pin(struct intel_context *ce,
			     struct intel_engine_cs *engine,
			     void *vaddr)
2364
{
2365 2366 2367 2368 2369 2370 2371 2372 2373
	if (i915_ggtt_offset(ce->state) !=
	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);

	/*
	 * GuC context gets pinned in guc_request_alloc. See that function for
	 * explaination of why.
	 */

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	return lrc_pin(ce, engine, vaddr);
}

static int guc_context_pre_pin(struct intel_context *ce,
			       struct i915_gem_ww_ctx *ww,
			       void **vaddr)
{
	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
}

static int guc_context_pin(struct intel_context *ce, void *vaddr)
{
2386 2387 2388 2389 2390 2391
	int ret = __guc_context_pin(ce, ce->engine, vaddr);

	if (likely(!ret && !intel_context_is_barrier(ce)))
		intel_engine_pm_get(ce->engine);

	return ret;
2392 2393
}

2394 2395 2396 2397 2398 2399
static void guc_context_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);
2400 2401 2402

	if (likely(!intel_context_is_barrier(ce)))
		intel_engine_pm_put_async(ce->engine);
2403 2404 2405 2406 2407 2408 2409
}

static void guc_context_post_unpin(struct intel_context *ce)
{
	lrc_post_unpin(ce);
}

2410 2411 2412 2413 2414
static void __guc_context_sched_enable(struct intel_guc *guc,
				       struct intel_context *ce)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2415
		ce->guc_id.id,
2416 2417 2418 2419 2420 2421 2422 2423 2424
		GUC_CONTEXT_ENABLE
	};

	trace_intel_context_sched_enable(ce);

	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
}

2425 2426 2427 2428 2429 2430
static void __guc_context_sched_disable(struct intel_guc *guc,
					struct intel_context *ce,
					u16 guc_id)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2431
		guc_id,	/* ce->guc_id.id not stable */
2432 2433 2434 2435 2436
		GUC_CONTEXT_DISABLE
	};

	GEM_BUG_ON(guc_id == GUC_INVALID_LRC_ID);

2437
	GEM_BUG_ON(intel_context_is_child(ce));
2438
	trace_intel_context_sched_disable(ce);
2439

2440 2441
	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2442 2443
}

2444 2445 2446 2447
static void guc_blocked_fence_complete(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

2448 2449
	if (!i915_sw_fence_done(&ce->guc_state.blocked))
		i915_sw_fence_complete(&ce->guc_state.blocked);
2450 2451 2452 2453 2454
}

static void guc_blocked_fence_reinit(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
2455
	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2456 2457 2458 2459 2460 2461

	/*
	 * This fence is always complete unless a pending schedule disable is
	 * outstanding. We arm the fence here and complete it when we receive
	 * the pending schedule disable complete message.
	 */
2462 2463 2464 2465
	i915_sw_fence_fini(&ce->guc_state.blocked);
	i915_sw_fence_reinit(&ce->guc_state.blocked);
	i915_sw_fence_await(&ce->guc_state.blocked);
	i915_sw_fence_commit(&ce->guc_state.blocked);
2466 2467
}

2468 2469 2470 2471 2472 2473
static u16 prep_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	set_context_pending_disable(ce);
	clr_context_enabled(ce);
2474
	guc_blocked_fence_reinit(ce);
2475
	intel_context_get(ce);
2476

2477
	return ce->guc_id.id;
2478 2479
}

2480 2481 2482 2483 2484 2485 2486 2487 2488
static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
	intel_wakeref_t wakeref;
	u16 guc_id;
	bool enabled;

2489 2490
	GEM_BUG_ON(intel_context_is_child(ce));

2491 2492 2493 2494 2495 2496 2497 2498 2499
	spin_lock_irqsave(&ce->guc_state.lock, flags);

	incr_context_blocked(ce);

	enabled = context_enabled(ce);
	if (unlikely(!enabled || submission_disabled(guc))) {
		if (enabled)
			clr_context_enabled(ce);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2500
		return &ce->guc_state.blocked;
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
	}

	/*
	 * We add +2 here as the schedule disable complete CTB handler calls
	 * intel_context_sched_disable_unpin (-2 to pin_count).
	 */
	atomic_add(2, &ce->pin_count);

	guc_id = prep_context_pending_disable(ce);

	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	with_intel_runtime_pm(runtime_pm, wakeref)
		__guc_context_sched_disable(guc, ce, guc_id);

2516
	return &ce->guc_state.blocked;
2517 2518
}

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
#define SCHED_STATE_MULTI_BLOCKED_MASK \
	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
#define SCHED_STATE_NO_UNBLOCK \
	(SCHED_STATE_MULTI_BLOCKED_MASK | \
	 SCHED_STATE_PENDING_DISABLE | \
	 SCHED_STATE_BANNED)

static bool context_cant_unblock(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
		context_guc_id_invalid(ce) ||
2532
		!lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id) ||
2533 2534 2535
		!intel_context_is_pinned(ce);
}

2536 2537 2538 2539 2540 2541 2542 2543 2544
static void guc_context_unblock(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
	intel_wakeref_t wakeref;
	bool enable;

	GEM_BUG_ON(context_enabled(ce));
2545
	GEM_BUG_ON(intel_context_is_child(ce));
2546 2547 2548 2549

	spin_lock_irqsave(&ce->guc_state.lock, flags);

	if (unlikely(submission_disabled(guc) ||
2550
		     context_cant_unblock(ce))) {
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
		enable = false;
	} else {
		enable = true;
		set_context_pending_enable(ce);
		set_context_enabled(ce);
		intel_context_get(ce);
	}

	decr_context_blocked(ce);

	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	if (enable) {
		with_intel_runtime_pm(runtime_pm, wakeref)
			__guc_context_sched_enable(guc, ce);
	}
}

static void guc_context_cancel_request(struct intel_context *ce,
				       struct i915_request *rq)
{
2572 2573 2574
	struct intel_context *block_context =
		request_to_scheduling_context(rq);

2575
	if (i915_sw_fence_signaled(&rq->submit)) {
2576
		struct i915_sw_fence *fence;
2577

2578
		intel_context_get(ce);
2579
		fence = guc_context_block(block_context);
2580 2581 2582 2583 2584 2585
		i915_sw_fence_wait(fence);
		if (!i915_request_completed(rq)) {
			__i915_request_skip(rq);
			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
					true);
		}
2586

2587
		guc_context_unblock(block_context);
2588
		intel_context_put(ce);
2589 2590 2591
	}
}

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
						 u16 guc_id,
						 u32 preemption_timeout)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SET_CONTEXT_PREEMPTION_TIMEOUT,
		guc_id,
		preemption_timeout
	};

	intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
}

static void guc_context_ban(struct intel_context *ce, struct i915_request *rq)
{
	struct intel_guc *guc = ce_to_guc(ce);
	struct intel_runtime_pm *runtime_pm =
		&ce->engine->gt->i915->runtime_pm;
	intel_wakeref_t wakeref;
	unsigned long flags;

2613 2614
	GEM_BUG_ON(intel_context_is_child(ce));

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	guc_flush_submissions(guc);

	spin_lock_irqsave(&ce->guc_state.lock, flags);
	set_context_banned(ce);

	if (submission_disabled(guc) ||
	    (!context_enabled(ce) && !context_pending_disable(ce))) {
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);

		guc_cancel_context_requests(ce);
		intel_engine_signal_breadcrumbs(ce->engine);
	} else if (!context_pending_disable(ce)) {
		u16 guc_id;

		/*
		 * We add +2 here as the schedule disable complete CTB handler
		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
		 */
		atomic_add(2, &ce->pin_count);

		guc_id = prep_context_pending_disable(ce);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);

		/*
		 * In addition to disabling scheduling, set the preemption
		 * timeout to the minimum value (1 us) so the banned context
		 * gets kicked off the HW ASAP.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref) {
			__guc_context_set_preemption_timeout(guc, guc_id, 1);
			__guc_context_sched_disable(guc, ce, guc_id);
		}
	} else {
		if (!context_guc_id_invalid(ce))
			with_intel_runtime_pm(runtime_pm, wakeref)
				__guc_context_set_preemption_timeout(guc,
2651
								     ce->guc_id.id,
2652 2653 2654 2655 2656
								     1);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	}
}

2657 2658 2659 2660
static void guc_context_sched_disable(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
2661
	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
2662
	intel_wakeref_t wakeref;
2663
	u16 guc_id;
2664

2665 2666
	GEM_BUG_ON(intel_context_is_child(ce));

2667
	spin_lock_irqsave(&ce->guc_state.lock, flags);
2668 2669

	/*
2670 2671 2672 2673 2674
	 * We have to check if the context has been disabled by another thread,
	 * check if submssion has been disabled to seal a race with reset and
	 * finally check if any more requests have been committed to the
	 * context ensursing that a request doesn't slip through the
	 * 'context_pending_disable' fence.
2675
	 */
2676 2677
	if (unlikely(!context_enabled(ce) || submission_disabled(guc) ||
		     context_has_committed_requests(ce))) {
2678
		clr_context_enabled(ce);
2679 2680 2681
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
		goto unpin;
	}
2682
	guc_id = prep_context_pending_disable(ce);
2683

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	with_intel_runtime_pm(runtime_pm, wakeref)
		__guc_context_sched_disable(guc, ce, guc_id);

	return;
unpin:
	intel_context_sched_disable_unpin(ce);
}

2694 2695 2696
static inline void guc_lrc_desc_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
2697 2698 2699
	struct intel_gt *gt = guc_to_gt(guc);
	unsigned long flags;
	bool disabled;
2700

2701
	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
2702 2703
	GEM_BUG_ON(!lrc_desc_registered(guc, ce->guc_id.id));
	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
2704
	GEM_BUG_ON(context_enabled(ce));
2705

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	/* Seal race with Reset */
	spin_lock_irqsave(&ce->guc_state.lock, flags);
	disabled = submission_disabled(guc);
	if (likely(!disabled)) {
		__intel_gt_pm_get(gt);
		set_context_destroyed(ce);
		clr_context_registered(ce);
	}
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	if (unlikely(disabled)) {
2716
		release_guc_id(guc, ce);
2717 2718 2719 2720
		__guc_context_destroy(ce);
		return;
	}

2721
	deregister_context(ce, ce->guc_id.id);
2722 2723
}

2724 2725
static void __guc_context_destroy(struct intel_context *ce)
{
2726 2727 2728 2729
	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
2730
	GEM_BUG_ON(ce->guc_state.number_committed_requests);
2731

2732 2733 2734 2735 2736 2737 2738
	lrc_fini(ce);
	intel_context_fini(ce);

	if (intel_engine_is_virtual(ce->engine)) {
		struct guc_virtual_engine *ve =
			container_of(ce, typeof(*ve), context);

2739 2740 2741
		if (ve->base.breadcrumbs)
			intel_breadcrumbs_put(ve->base.breadcrumbs);

2742 2743 2744 2745 2746 2747
		kfree(ve);
	} else {
		intel_context_free(ce);
	}
}

2748 2749
static void guc_flush_destroyed_contexts(struct intel_guc *guc)
{
2750
	struct intel_context *ce;
2751 2752 2753 2754 2755
	unsigned long flags;

	GEM_BUG_ON(!submission_disabled(guc) &&
		   guc_submission_initialized(guc));

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
		spin_lock_irqsave(&guc->submission_state.lock, flags);
		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
					      struct intel_context,
					      destroyed_link);
		if (ce)
			list_del_init(&ce->destroyed_link);
		spin_unlock_irqrestore(&guc->submission_state.lock, flags);

		if (!ce)
			break;

		release_guc_id(guc, ce);
2769 2770 2771 2772 2773 2774
		__guc_context_destroy(ce);
	}
}

static void deregister_destroyed_contexts(struct intel_guc *guc)
{
2775
	struct intel_context *ce;
2776 2777
	unsigned long flags;

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
		spin_lock_irqsave(&guc->submission_state.lock, flags);
		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
					      struct intel_context,
					      destroyed_link);
		if (ce)
			list_del_init(&ce->destroyed_link);
		spin_unlock_irqrestore(&guc->submission_state.lock, flags);

		if (!ce)
			break;

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
		guc_lrc_desc_unpin(ce);
	}
}

static void destroyed_worker_func(struct work_struct *w)
{
	struct intel_guc *guc = container_of(w, struct intel_guc,
					     submission_state.destroyed_worker);
	struct intel_gt *gt = guc_to_gt(guc);
	int tmp;

	with_intel_gt_pm(gt, tmp)
		deregister_destroyed_contexts(guc);
}

2805 2806 2807 2808 2809
static void guc_context_destroy(struct kref *kref)
{
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
2810
	bool destroy;
2811 2812 2813 2814

	/*
	 * If the guc_id is invalid this context has been stolen and we can free
	 * it immediately. Also can be freed immediately if the context is not
2815
	 * registered with the GuC or the GuC is in the middle of a reset.
2816
	 */
2817
	spin_lock_irqsave(&guc->submission_state.lock, flags);
2818 2819 2820 2821 2822 2823 2824 2825 2826
	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
		!lrc_desc_registered(guc, ce->guc_id.id);
	if (likely(!destroy)) {
		if (!list_empty(&ce->guc_id.link))
			list_del_init(&ce->guc_id.link);
		list_add_tail(&ce->destroyed_link,
			      &guc->submission_state.destroyed_contexts);
	} else {
		__release_guc_id(guc, ce);
2827
	}
2828
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2829
	if (unlikely(destroy)) {
2830 2831 2832 2833
		__guc_context_destroy(ce);
		return;
	}

2834
	/*
2835 2836 2837
	 * We use a worker to issue the H2G to deregister the context as we can
	 * take the GT PM for the first time which isn't allowed from an atomic
	 * context.
2838
	 */
2839
	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
2840 2841 2842 2843 2844 2845 2846
}

static int guc_context_alloc(struct intel_context *ce)
{
	return lrc_alloc(ce, ce->engine);
}

2847 2848 2849 2850 2851 2852
static void guc_context_set_prio(struct intel_guc *guc,
				 struct intel_context *ce,
				 u8 prio)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SET_CONTEXT_PRIORITY,
2853
		ce->guc_id.id,
2854 2855 2856 2857 2858
		prio,
	};

	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
		   prio > GUC_CLIENT_PRIORITY_NORMAL);
2859
	lockdep_assert_held(&ce->guc_state.lock);
2860

2861
	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
2862
	    !context_registered(ce)) {
2863
		ce->guc_state.prio = prio;
2864
		return;
2865
	}
2866 2867 2868

	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);

2869
	ce->guc_state.prio = prio;
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
	trace_intel_context_set_prio(ce);
}

static inline u8 map_i915_prio_to_guc_prio(int prio)
{
	if (prio == I915_PRIORITY_NORMAL)
		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
	else if (prio < I915_PRIORITY_NORMAL)
		return GUC_CLIENT_PRIORITY_NORMAL;
	else if (prio < I915_PRIORITY_DISPLAY)
		return GUC_CLIENT_PRIORITY_HIGH;
	else
		return GUC_CLIENT_PRIORITY_KMD_HIGH;
}

static inline void add_context_inflight_prio(struct intel_context *ce,
					     u8 guc_prio)
{
2888 2889
	lockdep_assert_held(&ce->guc_state.lock);
	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
2890

2891
	++ce->guc_state.prio_count[guc_prio];
2892 2893

	/* Overflow protection */
2894
	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
2895 2896 2897 2898 2899
}

static inline void sub_context_inflight_prio(struct intel_context *ce,
					     u8 guc_prio)
{
2900 2901
	lockdep_assert_held(&ce->guc_state.lock);
	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
2902 2903

	/* Underflow protection */
2904
	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
2905

2906
	--ce->guc_state.prio_count[guc_prio];
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
}

static inline void update_context_prio(struct intel_context *ce)
{
	struct intel_guc *guc = &ce->engine->gt->uc.guc;
	int i;

	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);

2917
	lockdep_assert_held(&ce->guc_state.lock);
2918

2919 2920
	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
		if (ce->guc_state.prio_count[i]) {
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
			guc_context_set_prio(guc, ce, i);
			break;
		}
	}
}

static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
{
	/* Lower value is higher priority */
	return new_guc_prio < old_guc_prio;
}

2933 2934
static void add_to_context(struct i915_request *rq)
{
2935
	struct intel_context *ce = request_to_scheduling_context(rq);
2936 2937
	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));

2938
	GEM_BUG_ON(intel_context_is_child(ce));
2939
	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
2940

2941 2942
	spin_lock(&ce->guc_state.lock);
	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

	if (rq->guc_prio == GUC_PRIO_INIT) {
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
		sub_context_inflight_prio(ce, rq->guc_prio);
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
	}
	update_context_prio(ce);

2954
	spin_unlock(&ce->guc_state.lock);
2955 2956
}

2957 2958
static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
{
2959
	lockdep_assert_held(&ce->guc_state.lock);
2960 2961 2962 2963 2964 2965 2966 2967 2968

	if (rq->guc_prio != GUC_PRIO_INIT &&
	    rq->guc_prio != GUC_PRIO_FINI) {
		sub_context_inflight_prio(ce, rq->guc_prio);
		update_context_prio(ce);
	}
	rq->guc_prio = GUC_PRIO_FINI;
}

2969 2970
static void remove_from_context(struct i915_request *rq)
{
2971 2972 2973
	struct intel_context *ce = request_to_scheduling_context(rq);

	GEM_BUG_ON(intel_context_is_child(ce));
2974

2975
	spin_lock_irq(&ce->guc_state.lock);
2976 2977 2978 2979 2980 2981 2982

	list_del_init(&rq->sched.link);
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);

	/* Prevent further __await_execution() registering a cb, then flush */
	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);

2983 2984
	guc_prio_fini(rq, ce);

2985
	decr_context_committed_requests(ce);
2986

2987 2988
	spin_unlock_irq(&ce->guc_state.lock);

2989
	atomic_dec(&ce->guc_id.ref);
2990 2991 2992
	i915_request_notify_execute_cb_imm(rq);
}

2993 2994 2995 2996 2997
static const struct intel_context_ops guc_context_ops = {
	.alloc = guc_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_context_pin,
2998 2999
	.unpin = guc_context_unpin,
	.post_unpin = guc_context_post_unpin,
3000

3001 3002
	.ban = guc_context_ban,

3003 3004
	.cancel_request = guc_context_cancel_request,

3005 3006 3007
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

3008 3009
	.sched_disable = guc_context_sched_disable,

3010
	.reset = lrc_reset,
3011
	.destroy = guc_context_destroy,
3012 3013

	.create_virtual = guc_create_virtual,
3014
	.create_parallel = guc_create_parallel,
3015 3016
};

3017 3018 3019 3020 3021 3022 3023 3024
static void submit_work_cb(struct irq_work *wrk)
{
	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);

	might_lock(&rq->engine->sched_engine->lock);
	i915_sw_fence_complete(&rq->submit);
}

3025 3026
static void __guc_signal_context_fence(struct intel_context *ce)
{
3027
	struct i915_request *rq, *rn;
3028 3029 3030

	lockdep_assert_held(&ce->guc_state.lock);

3031 3032 3033
	if (!list_empty(&ce->guc_state.fences))
		trace_intel_context_fence_release(ce);

3034 3035 3036 3037 3038 3039 3040 3041 3042
	/*
	 * Use an IRQ to ensure locking order of sched_engine->lock ->
	 * ce->guc_state.lock is preserved.
	 */
	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
				 guc_fence_link) {
		list_del(&rq->guc_fence_link);
		irq_work_queue(&rq->submit_work);
	}
3043 3044 3045 3046 3047 3048 3049 3050

	INIT_LIST_HEAD(&ce->guc_state.fences);
}

static void guc_signal_context_fence(struct intel_context *ce)
{
	unsigned long flags;

3051 3052
	GEM_BUG_ON(intel_context_is_child(ce));

3053 3054 3055 3056 3057 3058
	spin_lock_irqsave(&ce->guc_state.lock, flags);
	clr_context_wait_for_deregister_to_register(ce);
	__guc_signal_context_fence(ce);
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
}

3059 3060
static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
{
3061
	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3062
		!lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id)) &&
3063
		!submission_disabled(ce_to_guc(ce));
3064 3065
}

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
static void guc_context_init(struct intel_context *ce)
{
	const struct i915_gem_context *ctx;
	int prio = I915_CONTEXT_DEFAULT_PRIORITY;

	rcu_read_lock();
	ctx = rcu_dereference(ce->gem_context);
	if (ctx)
		prio = ctx->sched.priority;
	rcu_read_unlock();

3077
	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3078 3079 3080
	set_bit(CONTEXT_GUC_INIT, &ce->flags);
}

3081
static int guc_request_alloc(struct i915_request *rq)
3082
{
3083
	struct intel_context *ce = request_to_scheduling_context(rq);
3084
	struct intel_guc *guc = ce_to_guc(ce);
3085
	unsigned long flags;
3086 3087
	int ret;

3088
	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3089 3090 3091 3092 3093 3094

	/*
	 * Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
3095
	rq->reserved_space += GUC_REQUEST_SIZE;
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105

	/*
	 * Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	/* Unconditionally invalidate GPU caches and TLBs. */
3106
	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3107 3108 3109
	if (ret)
		return ret;

3110
	rq->reserved_space -= GUC_REQUEST_SIZE;
3111

3112 3113 3114
	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
		guc_context_init(ce);

3115 3116 3117
	/*
	 * Call pin_guc_id here rather than in the pinning step as with
	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3118 3119
	 * guc_id and creating horrible race conditions. This is especially bad
	 * when guc_id are being stolen due to over subscription. By the time
3120 3121
	 * this function is reached, it is guaranteed that the guc_id will be
	 * persistent until the generated request is retired. Thus, sealing these
3122
	 * race conditions. It is still safe to fail here if guc_id are
3123 3124 3125 3126 3127 3128 3129 3130 3131
	 * exhausted and return -EAGAIN to the user indicating that they can try
	 * again in the future.
	 *
	 * There is no need for a lock here as the timeline mutex ensures at
	 * most one context can be executing this code path at once. The
	 * guc_id_ref is incremented once for every request in flight and
	 * decremented on each retire. When it is zero, a lock around the
	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
	 */
3132
	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3133
		goto out;
3134

3135 3136 3137 3138
	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
	if (unlikely(ret < 0))
		return ret;
	if (context_needs_register(ce, !!ret)) {
3139
		ret = guc_lrc_desc_pin(ce, true);
3140
		if (unlikely(ret)) {	/* unwind */
3141 3142 3143 3144
			if (ret == -EPIPE) {
				disable_submission(guc);
				goto out;	/* GPU will be reset */
			}
3145
			atomic_dec(&ce->guc_id.ref);
3146 3147 3148 3149
			unpin_guc_id(guc, ce);
			return ret;
		}
	}
3150

3151
	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3152

3153 3154 3155
out:
	/*
	 * We block all requests on this context if a G2H is pending for a
3156 3157 3158 3159
	 * schedule disable or context deregistration as the GuC will fail a
	 * schedule enable or context registration if either G2H is pending
	 * respectfully. Once a G2H returns, the fence is released that is
	 * blocking these requests (see guc_signal_context_fence).
3160 3161
	 */
	spin_lock_irqsave(&ce->guc_state.lock, flags);
3162 3163
	if (context_wait_for_deregister_to_register(ce) ||
	    context_pending_disable(ce)) {
3164
		init_irq_work(&rq->submit_work, submit_work_cb);
3165 3166 3167 3168
		i915_sw_fence_await(&rq->submit);

		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
	}
3169
	incr_context_committed_requests(ce);
3170 3171
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

3172
	return 0;
3173 3174
}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
static int guc_virtual_context_pre_pin(struct intel_context *ce,
				       struct i915_gem_ww_ctx *ww,
				       void **vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	return __guc_context_pre_pin(ce, engine, ww, vaddr);
}

static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3187 3188 3189 3190 3191 3192
	int ret = __guc_context_pin(ce, engine, vaddr);
	intel_engine_mask_t tmp, mask = ce->engine->mask;

	if (likely(!ret))
		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
			intel_engine_pm_get(engine);
3193

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	return ret;
}

static void guc_virtual_context_unpin(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;
	struct intel_guc *guc = ce_to_guc(ce);

	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_put_async(engine);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
}

static void guc_virtual_context_enter(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_get(engine);

	intel_timeline_enter(ce->timeline);
}

static void guc_virtual_context_exit(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_put(engine);

	intel_timeline_exit(ce->timeline);
}

static int guc_virtual_context_alloc(struct intel_context *ce)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	return lrc_alloc(ce, engine);
}

static const struct intel_context_ops virtual_guc_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_virtual_context_pre_pin,
	.pin = guc_virtual_context_pin,
3247
	.unpin = guc_virtual_context_unpin,
3248 3249
	.post_unpin = guc_context_post_unpin,

3250 3251
	.ban = guc_context_ban,

3252 3253
	.cancel_request = guc_context_cancel_request,

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.sched_disable = guc_context_sched_disable,

	.destroy = guc_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
	struct intel_guc *guc = ce_to_guc(ce);
	int ret;

	GEM_BUG_ON(!intel_context_is_parent(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	ret = pin_guc_id(guc, ce);
	if (unlikely(ret < 0))
		return ret;

	return __guc_context_pin(ce, engine, vaddr);
}

static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	__intel_context_pin(ce->parallel.parent);
	return __guc_context_pin(ce, engine, vaddr);
}

static void guc_parent_context_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);

	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));
	GEM_BUG_ON(!intel_context_is_parent(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);
}

static void guc_child_context_unpin(struct intel_context *ce)
{
	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));
	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	lrc_unpin(ce);
}

static void guc_child_context_post_unpin(struct intel_context *ce)
{
	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	lrc_post_unpin(ce);
	intel_context_unpin(ce->parallel.parent);
}

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
static void guc_child_context_destroy(struct kref *kref)
{
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

	__guc_context_destroy(ce);
}

static const struct intel_context_ops virtual_parent_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_parent_context_pin,
	.unpin = guc_parent_context_unpin,
	.post_unpin = guc_context_post_unpin,

	.ban = guc_context_ban,

	.cancel_request = guc_context_cancel_request,

	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.sched_disable = guc_context_sched_disable,

	.destroy = guc_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

static const struct intel_context_ops virtual_child_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_child_context_pin,
	.unpin = guc_child_context_unpin,
	.post_unpin = guc_child_context_post_unpin,

	.cancel_request = guc_context_cancel_request,

	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.destroy = guc_child_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
/*
 * The below override of the breadcrumbs is enabled when the user configures a
 * context for parallel submission (multi-lrc, parent-child).
 *
 * The overridden breadcrumbs implements an algorithm which allows the GuC to
 * safely preempt all the hw contexts configured for parallel submission
 * between each BB. The contract between the i915 and GuC is if the parent
 * context can be preempted, all the children can be preempted, and the GuC will
 * always try to preempt the parent before the children. A handshake between the
 * parent / children breadcrumbs ensures the i915 holds up its end of the deal
 * creating a window to preempt between each set of BBs.
 */
static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
						     u64 offset, u32 len,
						     const unsigned int flags);
static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
						    u64 offset, u32 len,
						    const unsigned int flags);
static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						 u32 *cs);
static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						u32 *cs);

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
static struct intel_context *
guc_create_parallel(struct intel_engine_cs **engines,
		    unsigned int num_siblings,
		    unsigned int width)
{
	struct intel_engine_cs **siblings = NULL;
	struct intel_context *parent = NULL, *ce, *err;
	int i, j;

	siblings = kmalloc_array(num_siblings,
				 sizeof(*siblings),
				 GFP_KERNEL);
	if (!siblings)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < width; ++i) {
		for (j = 0; j < num_siblings; ++j)
			siblings[j] = engines[i * num_siblings + j];

		ce = intel_engine_create_virtual(siblings, num_siblings,
						 FORCE_VIRTUAL);
3417 3418
		if (IS_ERR(ce)) {
			err = ERR_CAST(ce);
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
			goto unwind;
		}

		if (i == 0) {
			parent = ce;
			parent->ops = &virtual_parent_context_ops;
		} else {
			ce->ops = &virtual_child_context_ops;
			intel_context_bind_parent_child(parent, ce);
		}
	}

M
Matthew Brost 已提交
3431 3432
	parent->parallel.fence_context = dma_fence_context_alloc(1);

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	parent->engine->emit_bb_start =
		emit_bb_start_parent_no_preempt_mid_batch;
	parent->engine->emit_fini_breadcrumb =
		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
	parent->engine->emit_fini_breadcrumb_dw =
		12 + 4 * parent->parallel.number_children;
	for_each_child(parent, ce) {
		ce->engine->emit_bb_start =
			emit_bb_start_child_no_preempt_mid_batch;
		ce->engine->emit_fini_breadcrumb =
			emit_fini_breadcrumb_child_no_preempt_mid_batch;
		ce->engine->emit_fini_breadcrumb_dw = 16;
	}

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	kfree(siblings);
	return parent;

unwind:
	if (parent)
		intel_context_put(parent);
	kfree(siblings);
	return err;
}

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *sibling;
	intel_engine_mask_t tmp, mask = b->engine_mask;
	bool result = false;

	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
		result |= intel_engine_irq_enable(sibling);

	return result;
}

static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *sibling;
	intel_engine_mask_t tmp, mask = b->engine_mask;

	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
		intel_engine_irq_disable(sibling);
}

static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
{
	int i;

	/*
	 * In GuC submission mode we do not know which physical engine a request
	 * will be scheduled on, this creates a problem because the breadcrumb
	 * interrupt is per physical engine. To work around this we attach
	 * requests and direct all breadcrumb interrupts to the first instance
	 * of an engine per class. In addition all breadcrumb interrupts are
	 * enabled / disabled across an engine class in unison.
	 */
	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
		struct intel_engine_cs *sibling =
			engine->gt->engine_class[engine->class][i];

		if (sibling) {
			if (engine->breadcrumbs != sibling->breadcrumbs) {
				intel_breadcrumbs_put(engine->breadcrumbs);
				engine->breadcrumbs =
					intel_breadcrumbs_get(sibling->breadcrumbs);
			}
			break;
		}
	}

	if (engine->breadcrumbs) {
		engine->breadcrumbs->engine_mask |= engine->mask;
		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
	}
}

3513 3514 3515
static void guc_bump_inflight_request_prio(struct i915_request *rq,
					   int prio)
{
3516
	struct intel_context *ce = request_to_scheduling_context(rq);
3517 3518 3519 3520 3521 3522 3523 3524 3525
	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);

	/* Short circuit function */
	if (prio < I915_PRIORITY_NORMAL ||
	    rq->guc_prio == GUC_PRIO_FINI ||
	    (rq->guc_prio != GUC_PRIO_INIT &&
	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
		return;

3526
	spin_lock(&ce->guc_state.lock);
3527 3528 3529 3530 3531 3532 3533
	if (rq->guc_prio != GUC_PRIO_FINI) {
		if (rq->guc_prio != GUC_PRIO_INIT)
			sub_context_inflight_prio(ce, rq->guc_prio);
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
		update_context_prio(ce);
	}
3534
	spin_unlock(&ce->guc_state.lock);
3535 3536 3537 3538
}

static void guc_retire_inflight_request_prio(struct i915_request *rq)
{
3539
	struct intel_context *ce = request_to_scheduling_context(rq);
3540

3541
	spin_lock(&ce->guc_state.lock);
3542
	guc_prio_fini(rq, ce);
3543
	spin_unlock(&ce->guc_state.lock);
3544 3545
}

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
static void sanitize_hwsp(struct intel_engine_cs *engine)
{
	struct intel_timeline *tl;

	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
		intel_timeline_reset_seqno(tl);
}

static void guc_sanitize(struct intel_engine_cs *engine)
{
	/*
	 * Poison residual state on resume, in case the suspend didn't!
	 *
	 * We have to assume that across suspend/resume (or other loss
	 * of control) that the contents of our pinned buffers has been
	 * lost, replaced by garbage. Since this doesn't always happen,
	 * let's poison such state so that we more quickly spot when
	 * we falsely assume it has been preserved.
	 */
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);

	/*
	 * The kernel_context HWSP is stored in the status_page. As above,
	 * that may be lost on resume/initialisation, and so we need to
	 * reset the value in the HWSP.
	 */
	sanitize_hwsp(engine);

	/* And scrub the dirty cachelines for the HWSP */
	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
3577 3578

	intel_engine_reset_pinned_contexts(engine);
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
}

static void setup_hwsp(struct intel_engine_cs *engine)
{
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */

	ENGINE_WRITE_FW(engine,
			RING_HWS_PGA,
			i915_ggtt_offset(engine->status_page.vma));
}

static void start_engine(struct intel_engine_cs *engine)
{
	ENGINE_WRITE_FW(engine,
			RING_MODE_GEN7,
			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));

	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
	ENGINE_POSTING_READ(engine, RING_MI_MODE);
}

static int guc_resume(struct intel_engine_cs *engine)
{
	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);

	intel_mocs_init_engine(engine);

	intel_breadcrumbs_reset(engine->breadcrumbs);

	setup_hwsp(engine);
	start_engine(engine);

	return 0;
}

3614 3615 3616 3617 3618
static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
{
	return !sched_engine->tasklet.callback;
}

3619 3620
static void guc_set_default_submission(struct intel_engine_cs *engine)
{
3621
	engine->submit_request = guc_submit_request;
3622 3623
}

3624 3625 3626 3627 3628
static inline void guc_kernel_context_pin(struct intel_guc *guc,
					  struct intel_context *ce)
{
	if (context_guc_id_invalid(ce))
		pin_guc_id(guc, ce);
3629
	guc_lrc_desc_pin(ce, true);
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
}

static inline void guc_init_lrc_mapping(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	/* make sure all descriptors are clean... */
	xa_destroy(&guc->context_lookup);

	/*
	 * Some contexts might have been pinned before we enabled GuC
	 * submission, so we need to add them to the GuC bookeeping.
	 * Also, after a reset the of the GuC we want to make sure that the
	 * information shared with GuC is properly reset. The kernel LRCs are
	 * not attached to the gem_context, so they need to be added separately.
	 *
	 * Note: we purposefully do not check the return of guc_lrc_desc_pin,
	 * because that function can only fail if a reset is just starting. This
	 * is at the end of reset so presumably another reset isn't happening
	 * and even it did this code would be run again.
	 */

3654 3655 3656 3657 3658 3659 3660
	for_each_engine(engine, gt, id) {
		struct intel_context *ce;

		list_for_each_entry(ce, &engine->pinned_contexts_list,
				    pinned_contexts_link)
			guc_kernel_context_pin(guc, ce);
	}
3661 3662
}

3663
static void guc_release(struct intel_engine_cs *engine)
3664
{
3665
	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3666

3667 3668 3669 3670
	intel_engine_cleanup_common(engine);
	lrc_fini_wa_ctx(engine);
}

3671 3672 3673 3674 3675 3676 3677 3678 3679
static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
{
	struct intel_engine_cs *e;
	intel_engine_mask_t tmp, mask = engine->mask;

	for_each_engine_masked(e, engine->gt, mask, tmp)
		e->serial++;
}

3680 3681 3682 3683 3684 3685 3686 3687
static void guc_default_vfuncs(struct intel_engine_cs *engine)
{
	/* Default vfuncs which can be overridden by each engine. */

	engine->resume = guc_resume;

	engine->cops = &guc_context_ops;
	engine->request_alloc = guc_request_alloc;
3688 3689
	engine->add_active_request = add_to_context;
	engine->remove_active_request = remove_from_context;
3690

3691
	engine->sched_engine->schedule = i915_schedule;
3692

3693 3694 3695 3696
	engine->reset.prepare = guc_reset_nop;
	engine->reset.rewind = guc_rewind_nop;
	engine->reset.cancel = guc_reset_nop;
	engine->reset.finish = guc_reset_nop;
3697

3698 3699 3700
	engine->emit_flush = gen8_emit_flush_xcs;
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3701
	if (GRAPHICS_VER(engine->i915) >= 12) {
3702 3703 3704 3705
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
		engine->emit_flush = gen12_emit_flush_xcs;
	}
	engine->set_default_submission = guc_set_default_submission;
3706
	engine->busyness = guc_engine_busyness;
3707

3708
	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3709
	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3710
	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720

	/*
	 * TODO: GuC supports timeslicing and semaphores as well, but they're
	 * handled by the firmware so some minor tweaks are required before
	 * enabling.
	 *
	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
	 */

	engine->emit_bb_start = gen8_emit_bb_start;
3721
}
3722

3723 3724
static void rcs_submission_override(struct intel_engine_cs *engine)
{
3725
	switch (GRAPHICS_VER(engine->i915)) {
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
	case 12:
		engine->emit_flush = gen12_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
		break;
	case 11:
		engine->emit_flush = gen11_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
		break;
	default:
		engine->emit_flush = gen8_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
		break;
3738
	}
3739 3740
}

3741 3742 3743
static inline void guc_default_irqs(struct intel_engine_cs *engine)
{
	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
3744
	intel_engine_set_irq_handler(engine, cs_irq_handler);
3745 3746
}

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
static void guc_sched_engine_destroy(struct kref *kref)
{
	struct i915_sched_engine *sched_engine =
		container_of(kref, typeof(*sched_engine), ref);
	struct intel_guc *guc = sched_engine->private_data;

	guc->sched_engine = NULL;
	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
	kfree(sched_engine);
}

3758 3759 3760
int intel_guc_submission_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
3761
	struct intel_guc *guc = &engine->gt->uc.guc;
3762 3763 3764 3765 3766

	/*
	 * The setup relies on several assumptions (e.g. irqs always enabled)
	 * that are only valid on gen11+
	 */
3767
	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
3768

3769 3770 3771 3772 3773 3774
	if (!guc->sched_engine) {
		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
		if (!guc->sched_engine)
			return -ENOMEM;

		guc->sched_engine->schedule = i915_schedule;
3775
		guc->sched_engine->disabled = guc_sched_engine_disabled;
3776
		guc->sched_engine->private_data = guc;
3777
		guc->sched_engine->destroy = guc_sched_engine_destroy;
3778 3779 3780 3781
		guc->sched_engine->bump_inflight_request_prio =
			guc_bump_inflight_request_prio;
		guc->sched_engine->retire_inflight_request_prio =
			guc_retire_inflight_request_prio;
3782 3783 3784 3785 3786
		tasklet_setup(&guc->sched_engine->tasklet,
			      guc_submission_tasklet);
	}
	i915_sched_engine_put(engine->sched_engine);
	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
3787 3788 3789

	guc_default_vfuncs(engine);
	guc_default_irqs(engine);
3790
	guc_init_breadcrumbs(engine);
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805

	if (engine->class == RENDER_CLASS)
		rcs_submission_override(engine);

	lrc_init_wa_ctx(engine);

	/* Finally, take ownership and responsibility for cleanup! */
	engine->sanitize = guc_sanitize;
	engine->release = guc_release;

	return 0;
}

void intel_guc_submission_enable(struct intel_guc *guc)
{
3806
	guc_init_lrc_mapping(guc);
3807
	guc_init_engine_stats(guc);
3808 3809
}

3810
void intel_guc_submission_disable(struct intel_guc *guc)
3811
{
3812
	/* Note: By the time we're here, GuC may have already been reset */
3813
}
3814

3815 3816 3817 3818 3819 3820 3821
static bool __guc_submission_supported(struct intel_guc *guc)
{
	/* GuC submission is unavailable for pre-Gen11 */
	return intel_guc_is_supported(guc) &&
	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
}

3822
static bool __guc_submission_selected(struct intel_guc *guc)
3823
{
3824 3825
	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;

3826
	if (!intel_guc_submission_is_supported(guc))
3827 3828
		return false;

3829
	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
3830 3831 3832 3833
}

void intel_guc_submission_init_early(struct intel_guc *guc)
{
3834
	guc->submission_state.num_guc_ids = GUC_MAX_LRC_DESCRIPTORS;
3835
	guc->submission_supported = __guc_submission_supported(guc);
3836
	guc->submission_selected = __guc_submission_selected(guc);
3837
}
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856

static inline struct intel_context *
g2h_context_lookup(struct intel_guc *guc, u32 desc_idx)
{
	struct intel_context *ce;

	if (unlikely(desc_idx >= GUC_MAX_LRC_DESCRIPTORS)) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Invalid desc_idx %u", desc_idx);
		return NULL;
	}

	ce = __get_context(guc, desc_idx);
	if (unlikely(!ce)) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Context is NULL, desc_idx %u", desc_idx);
		return NULL;
	}

3857 3858 3859 3860 3861 3862
	if (unlikely(intel_context_is_child(ce))) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Context is child, desc_idx %u", desc_idx);
		return NULL;
	}

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	return ce;
}

int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
					  const u32 *msg,
					  u32 len)
{
	struct intel_context *ce;
	u32 desc_idx = msg[0];

	if (unlikely(len < 1)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	ce = g2h_context_lookup(guc, desc_idx);
	if (unlikely(!ce))
		return -EPROTO;

3882 3883
	trace_intel_context_deregister_done(ce);

3884 3885 3886 3887 3888 3889 3890
#ifdef CONFIG_DRM_I915_SELFTEST
	if (unlikely(ce->drop_deregister)) {
		ce->drop_deregister = false;
		return 0;
	}
#endif

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	if (context_wait_for_deregister_to_register(ce)) {
		struct intel_runtime_pm *runtime_pm =
			&ce->engine->gt->i915->runtime_pm;
		intel_wakeref_t wakeref;

		/*
		 * Previous owner of this guc_id has been deregistered, now safe
		 * register this context.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref)
3901
			register_context(ce, true);
3902
		guc_signal_context_fence(ce);
3903 3904 3905
		intel_context_put(ce);
	} else if (context_destroyed(ce)) {
		/* Context has been destroyed */
3906
		intel_gt_pm_put_async(guc_to_gt(guc));
3907
		release_guc_id(guc, ce);
3908
		__guc_context_destroy(ce);
3909 3910
	}

3911 3912
	decr_outstanding_submission_g2h(guc);

3913 3914
	return 0;
}
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936

int intel_guc_sched_done_process_msg(struct intel_guc *guc,
				     const u32 *msg,
				     u32 len)
{
	struct intel_context *ce;
	unsigned long flags;
	u32 desc_idx = msg[0];

	if (unlikely(len < 2)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	ce = g2h_context_lookup(guc, desc_idx);
	if (unlikely(!ce))
		return -EPROTO;

	if (unlikely(context_destroyed(ce) ||
		     (!context_pending_enable(ce) &&
		     !context_pending_disable(ce)))) {
		drm_err(&guc_to_gt(guc)->i915->drm,
3937
			"Bad context sched_state 0x%x, desc_idx %u",
3938 3939 3940 3941
			ce->guc_state.sched_state, desc_idx);
		return -EPROTO;
	}

3942 3943
	trace_intel_context_sched_done(ce);

3944
	if (context_pending_enable(ce)) {
3945 3946 3947 3948 3949 3950 3951
#ifdef CONFIG_DRM_I915_SELFTEST
		if (unlikely(ce->drop_schedule_enable)) {
			ce->drop_schedule_enable = false;
			return 0;
		}
#endif

3952
		spin_lock_irqsave(&ce->guc_state.lock, flags);
3953
		clr_context_pending_enable(ce);
3954
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3955
	} else if (context_pending_disable(ce)) {
3956 3957
		bool banned;

3958 3959 3960 3961 3962 3963 3964
#ifdef CONFIG_DRM_I915_SELFTEST
		if (unlikely(ce->drop_schedule_disable)) {
			ce->drop_schedule_disable = false;
			return 0;
		}
#endif

3965 3966 3967 3968 3969 3970 3971
		/*
		 * Unpin must be done before __guc_signal_context_fence,
		 * otherwise a race exists between the requests getting
		 * submitted + retired before this unpin completes resulting in
		 * the pin_count going to zero and the context still being
		 * enabled.
		 */
3972 3973 3974
		intel_context_sched_disable_unpin(ce);

		spin_lock_irqsave(&ce->guc_state.lock, flags);
3975 3976
		banned = context_banned(ce);
		clr_context_banned(ce);
3977
		clr_context_pending_disable(ce);
3978
		__guc_signal_context_fence(ce);
3979
		guc_blocked_fence_complete(ce);
3980
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3981 3982 3983 3984 3985

		if (banned) {
			guc_cancel_context_requests(ce);
			intel_engine_signal_breadcrumbs(ce->engine);
		}
3986 3987
	}

3988
	decr_outstanding_submission_g2h(guc);
3989 3990 3991 3992
	intel_context_put(ce);

	return 0;
}
3993

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
static void capture_error_state(struct intel_guc *guc,
				struct intel_context *ce)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct drm_i915_private *i915 = gt->i915;
	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
	intel_wakeref_t wakeref;

	intel_engine_set_hung_context(engine, ce);
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
		i915_capture_error_state(gt, engine->mask);
	atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
}

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
static void guc_context_replay(struct intel_context *ce)
{
	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;

	__guc_reset_context(ce, true);
	tasklet_hi_schedule(&sched_engine->tasklet);
}

static void guc_handle_context_reset(struct intel_guc *guc,
				     struct intel_context *ce)
{
	trace_intel_context_reset(ce);
4020

4021
	if (likely(!intel_context_is_banned(ce))) {
4022 4023
		capture_error_state(guc, ce);
		guc_context_replay(ce);
4024 4025 4026 4027 4028
	} else {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Invalid GuC engine reset notificaion for 0x%04X on %s: banned = %d, blocked = %d",
			ce->guc_id.id, ce->engine->name, intel_context_is_banned(ce),
			context_blocked(ce));
4029
	}
4030 4031 4032 4033 4034 4035
}

int intel_guc_context_reset_process_msg(struct intel_guc *guc,
					const u32 *msg, u32 len)
{
	struct intel_context *ce;
4036
	unsigned long flags;
4037 4038 4039 4040 4041 4042 4043 4044
	int desc_idx;

	if (unlikely(len != 1)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	desc_idx = msg[0];
4045 4046 4047 4048 4049 4050 4051 4052

	/*
	 * The context lookup uses the xarray but lookups only require an RCU lock
	 * not the full spinlock. So take the lock explicitly and keep it until the
	 * context has been reference count locked to ensure it can't be destroyed
	 * asynchronously until the reset is done.
	 */
	xa_lock_irqsave(&guc->context_lookup, flags);
4053
	ce = g2h_context_lookup(guc, desc_idx);
4054 4055 4056 4057
	if (ce)
		intel_context_get(ce);
	xa_unlock_irqrestore(&guc->context_lookup, flags);

4058 4059 4060 4061
	if (unlikely(!ce))
		return -EPROTO;

	guc_handle_context_reset(guc, ce);
4062
	intel_context_put(ce);
4063 4064 4065 4066

	return 0;
}

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
int intel_guc_error_capture_process_msg(struct intel_guc *guc,
					const u32 *msg, u32 len)
{
	int status;

	if (unlikely(len != 1)) {
		drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	status = msg[0];
	drm_info(&guc_to_gt(guc)->i915->drm, "Got error capture: status = %d", status);

	/* FIXME: Do something with the capture */

	return 0;
}

4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
static struct intel_engine_cs *
guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
{
	struct intel_gt *gt = guc_to_gt(guc);
	u8 engine_class = guc_class_to_engine_class(guc_class);

	/* Class index is checked in class converter */
	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);

	return gt->engine_class[engine_class][instance];
}

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
static void reset_fail_worker_func(struct work_struct *w)
{
	struct intel_guc *guc = container_of(w, struct intel_guc,
					     submission_state.reset_fail_worker);
	struct intel_gt *gt = guc_to_gt(guc);
	intel_engine_mask_t reset_fail_mask;
	unsigned long flags;

	spin_lock_irqsave(&guc->submission_state.lock, flags);
	reset_fail_mask = guc->submission_state.reset_fail_mask;
	guc->submission_state.reset_fail_mask = 0;
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);

	if (likely(reset_fail_mask))
		intel_gt_handle_error(gt, reset_fail_mask,
				      I915_ERROR_CAPTURE,
				      "GuC failed to reset engine mask=0x%x\n",
				      reset_fail_mask);
}

4117 4118 4119 4120
int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
					 const u32 *msg, u32 len)
{
	struct intel_engine_cs *engine;
4121
	struct intel_gt *gt = guc_to_gt(guc);
4122 4123
	u8 guc_class, instance;
	u32 reason;
4124
	unsigned long flags;
4125 4126

	if (unlikely(len != 3)) {
4127
		drm_err(&gt->i915->drm, "Invalid length %u", len);
4128 4129 4130 4131 4132 4133 4134 4135 4136
		return -EPROTO;
	}

	guc_class = msg[0];
	instance = msg[1];
	reason = msg[2];

	engine = guc_lookup_engine(guc, guc_class, instance);
	if (unlikely(!engine)) {
4137
		drm_err(&gt->i915->drm,
4138 4139 4140 4141
			"Invalid engine %d:%d", guc_class, instance);
		return -EPROTO;
	}

4142 4143 4144 4145 4146 4147 4148
	/*
	 * This is an unexpected failure of a hardware feature. So, log a real
	 * error message not just the informational that comes with the reset.
	 */
	drm_err(&gt->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X",
		guc_class, instance, engine->name, reason);

4149 4150 4151 4152 4153 4154 4155 4156 4157
	spin_lock_irqsave(&guc->submission_state.lock, flags);
	guc->submission_state.reset_fail_mask |= engine->mask;
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);

	/*
	 * A GT reset flushes this worker queue (G2H handler) so we must use
	 * another worker to trigger a GT reset.
	 */
	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4158 4159 4160 4161

	return 0;
}

4162 4163 4164 4165 4166 4167
void intel_guc_find_hung_context(struct intel_engine_cs *engine)
{
	struct intel_guc *guc = &engine->gt->uc.guc;
	struct intel_context *ce;
	struct i915_request *rq;
	unsigned long index;
4168
	unsigned long flags;
4169 4170 4171 4172 4173

	/* Reset called during driver load? GuC not yet initialised! */
	if (unlikely(!guc_submission_initialized(guc)))
		return;

4174
	xa_lock_irqsave(&guc->context_lookup, flags);
4175
	xa_for_each(&guc->context_lookup, index, ce) {
4176
		if (!kref_get_unless_zero(&ce->ref))
4177 4178
			continue;

4179 4180 4181 4182 4183
		xa_unlock(&guc->context_lookup);

		if (!intel_context_is_pinned(ce))
			goto next;

4184 4185
		if (intel_engine_is_virtual(ce->engine)) {
			if (!(ce->engine->mask & engine->mask))
4186
				goto next;
4187 4188
		} else {
			if (ce->engine != engine)
4189
				goto next;
4190 4191
		}

4192
		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4193 4194 4195 4196 4197 4198
			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
				continue;

			intel_engine_set_hung_context(engine, ce);

			/* Can only cope with one hang at a time... */
4199 4200 4201
			intel_context_put(ce);
			xa_lock(&guc->context_lookup);
			goto done;
4202
		}
4203 4204 4205
next:
		intel_context_put(ce);
		xa_lock(&guc->context_lookup);
4206
	}
4207 4208
done:
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
}

void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
				    struct i915_request *hung_rq,
				    struct drm_printer *m)
{
	struct intel_guc *guc = &engine->gt->uc.guc;
	struct intel_context *ce;
	unsigned long index;
	unsigned long flags;

	/* Reset called during driver load? GuC not yet initialised! */
	if (unlikely(!guc_submission_initialized(guc)))
		return;

4224
	xa_lock_irqsave(&guc->context_lookup, flags);
4225
	xa_for_each(&guc->context_lookup, index, ce) {
4226
		if (!kref_get_unless_zero(&ce->ref))
4227 4228
			continue;

4229 4230 4231 4232 4233
		xa_unlock(&guc->context_lookup);

		if (!intel_context_is_pinned(ce))
			goto next;

4234 4235
		if (intel_engine_is_virtual(ce->engine)) {
			if (!(ce->engine->mask & engine->mask))
4236
				goto next;
4237 4238
		} else {
			if (ce->engine != engine)
4239
				goto next;
4240 4241
		}

4242 4243
		spin_lock(&ce->guc_state.lock);
		intel_engine_dump_active_requests(&ce->guc_state.requests,
4244
						  hung_rq, m);
4245
		spin_unlock(&ce->guc_state.lock);
4246 4247 4248 4249

next:
		intel_context_put(ce);
		xa_lock(&guc->context_lookup);
4250
	}
4251
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4252 4253
}

4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
void intel_guc_submission_print_info(struct intel_guc *guc,
				     struct drm_printer *p)
{
	struct i915_sched_engine *sched_engine = guc->sched_engine;
	struct rb_node *rb;
	unsigned long flags;

	if (!sched_engine)
		return;

	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
		   atomic_read(&guc->outstanding_submission_g2h));
	drm_printf(p, "GuC tasklet count: %u\n\n",
		   atomic_read(&sched_engine->tasklet.count));

	spin_lock_irqsave(&sched_engine->lock, flags);
	drm_printf(p, "Requests in GuC submit tasklet:\n");
	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *pl = to_priolist(rb);
		struct i915_request *rq;

		priolist_for_each_request(rq, pl)
			drm_printf(p, "guc_id=%u, seqno=%llu\n",
4277
				   rq->context->guc_id.id,
4278 4279 4280 4281 4282 4283
				   rq->fence.seqno);
	}
	spin_unlock_irqrestore(&sched_engine->lock, flags);
	drm_printf(p, "\n");
}

4284 4285 4286 4287 4288
static inline void guc_log_context_priority(struct drm_printer *p,
					    struct intel_context *ce)
{
	int i;

4289
	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4290 4291 4292 4293
	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4294
			   i, ce->guc_state.prio_count[i]);
4295 4296 4297 4298
	}
	drm_printf(p, "\n");
}

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
static inline void guc_log_context(struct drm_printer *p,
				   struct intel_context *ce)
{
	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
		   ce->ring->head,
		   ce->lrc_reg_state[CTX_RING_HEAD]);
	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
		   ce->ring->tail,
		   ce->lrc_reg_state[CTX_RING_TAIL]);
	drm_printf(p, "\t\tContext Pin Count: %u\n",
		   atomic_read(&ce->pin_count));
	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
		   atomic_read(&ce->guc_id.ref));
	drm_printf(p, "\t\tSchedule State: 0x%x\n\n",
		   ce->guc_state.sched_state);
}

4318 4319 4320 4321 4322
void intel_guc_submission_print_context_info(struct intel_guc *guc,
					     struct drm_printer *p)
{
	struct intel_context *ce;
	unsigned long index;
4323
	unsigned long flags;
4324

4325
	xa_lock_irqsave(&guc->context_lookup, flags);
4326
	xa_for_each(&guc->context_lookup, index, ce) {
4327
		GEM_BUG_ON(intel_context_is_child(ce));
4328

4329
		guc_log_context(p, ce);
4330
		guc_log_context_priority(p, ce);
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344

		if (intel_context_is_parent(ce)) {
			struct guc_process_desc *desc = __get_process_desc(ce);
			struct intel_context *child;

			drm_printf(p, "\t\tNumber children: %u\n",
				   ce->parallel.number_children);
			drm_printf(p, "\t\tWQI Head: %u\n",
				   READ_ONCE(desc->head));
			drm_printf(p, "\t\tWQI Tail: %u\n",
				   READ_ONCE(desc->tail));
			drm_printf(p, "\t\tWQI Status: %u\n\n",
				   READ_ONCE(desc->wq_status));

4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
			if (ce->engine->emit_bb_start ==
			    emit_bb_start_parent_no_preempt_mid_batch) {
				u8 i;

				drm_printf(p, "\t\tChildren Go: %u\n\n",
					   get_children_go_value(ce));
				for (i = 0; i < ce->parallel.number_children; ++i)
					drm_printf(p, "\t\tChildren Join: %u\n",
						   get_children_join_value(ce, i));
			}

4356 4357 4358
			for_each_child(ce, child)
				guc_log_context(p, child);
		}
4359
	}
4360
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4361
}
4362

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
static inline u32 get_children_go_addr(struct intel_context *ce)
{
	GEM_BUG_ON(!intel_context_is_parent(ce));

	return i915_ggtt_offset(ce->state) +
		__get_parent_scratch_offset(ce) +
		offsetof(struct parent_scratch, go.semaphore);
}

static inline u32 get_children_join_addr(struct intel_context *ce,
					 u8 child_index)
{
	GEM_BUG_ON(!intel_context_is_parent(ce));

	return i915_ggtt_offset(ce->state) +
		__get_parent_scratch_offset(ce) +
		offsetof(struct parent_scratch, join[child_index].semaphore);
}

#define PARENT_GO_BB			1
#define PARENT_GO_FINI_BREADCRUMB	0
#define CHILD_GO_BB			1
#define CHILD_GO_FINI_BREADCRUMB	0
static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
						     u64 offset, u32 len,
						     const unsigned int flags)
{
	struct intel_context *ce = rq->context;
	u32 *cs;
	u8 i;

	GEM_BUG_ON(!intel_context_is_parent(ce));

	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Wait on children */
	for (i = 0; i < ce->parallel.number_children; ++i) {
		*cs++ = (MI_SEMAPHORE_WAIT |
			 MI_SEMAPHORE_GLOBAL_GTT |
			 MI_SEMAPHORE_POLL |
			 MI_SEMAPHORE_SAD_EQ_SDD);
		*cs++ = PARENT_GO_BB;
		*cs++ = get_children_join_addr(ce, i);
		*cs++ = 0;
	}

	/* Turn off preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;

	/* Tell children go */
	cs = gen8_emit_ggtt_write(cs,
				  CHILD_GO_BB,
				  get_children_go_addr(ce),
				  0);

	/* Jump to batch */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	return 0;
}

static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
						    u64 offset, u32 len,
						    const unsigned int flags)
{
	struct intel_context *ce = rq->context;
	struct intel_context *parent = intel_context_to_parent(ce);
	u32 *cs;

	GEM_BUG_ON(!intel_context_is_child(ce));

	cs = intel_ring_begin(rq, 12);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Signal parent */
	cs = gen8_emit_ggtt_write(cs,
				  PARENT_GO_BB,
				  get_children_join_addr(parent,
							 ce->parallel.child_index),
				  0);

	/* Wait on parent for go */
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_EQ_SDD);
	*cs++ = CHILD_GO_BB;
	*cs++ = get_children_go_addr(parent);
	*cs++ = 0;

	/* Turn off preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* Jump to batch */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static u32 *
4478 4479
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						   u32 *cs)
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
{
	struct intel_context *ce = rq->context;
	u8 i;

	GEM_BUG_ON(!intel_context_is_parent(ce));

	/* Wait on children */
	for (i = 0; i < ce->parallel.number_children; ++i) {
		*cs++ = (MI_SEMAPHORE_WAIT |
			 MI_SEMAPHORE_GLOBAL_GTT |
			 MI_SEMAPHORE_POLL |
			 MI_SEMAPHORE_SAD_EQ_SDD);
		*cs++ = PARENT_GO_FINI_BREADCRUMB;
		*cs++ = get_children_join_addr(ce, i);
		*cs++ = 0;
	}

	/* Turn on preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*cs++ = MI_NOOP;

	/* Tell children go */
	cs = gen8_emit_ggtt_write(cs,
				  CHILD_GO_FINI_BREADCRUMB,
				  get_children_go_addr(ce),
				  0);

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
	return cs;
}

/*
 * If this true, a submission of multi-lrc requests had an error and the
 * requests need to be skipped. The front end (execuf IOCTL) should've called
 * i915_request_skip which squashes the BB but we still need to emit the fini
 * breadrcrumbs seqno write. At this point we don't know how many of the
 * requests in the multi-lrc submission were generated so we can't do the
 * handshake between the parent and children (e.g. if 4 requests should be
 * generated but 2nd hit an error only 1 would be seen by the GuC backend).
 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
 * has occurred on any of the requests in submission / relationship.
 */
static inline bool skip_handshake(struct i915_request *rq)
{
	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
}

4526
#define NON_SKIP_LEN	6
4527 4528 4529 4530 4531
static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						 u32 *cs)
{
	struct intel_context *ce = rq->context;
4532 4533
	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4534 4535 4536 4537 4538 4539

	GEM_BUG_ON(!intel_context_is_parent(ce));

	if (unlikely(skip_handshake(rq))) {
		/*
		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
4540
		 * the NON_SKIP_LEN comes from the length of the emits below.
4541 4542
		 */
		memset(cs, 0, sizeof(u32) *
4543 4544
		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4545 4546 4547 4548
	} else {
		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
	}

4549
	/* Emit fini breadcrumb */
4550
	before_fini_breadcrumb_user_interrupt_cs = cs;
4551 4552 4553 4554 4555 4556 4557 4558 4559
	cs = gen8_emit_ggtt_write(cs,
				  rq->fence.seqno,
				  i915_request_active_timeline(rq)->hwsp_offset,
				  0);

	/* User interrupt */
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

4560 4561 4562 4563 4564 4565
	/* Ensure our math for skip + emit is correct */
	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
		   cs);
	GEM_BUG_ON(start_fini_breadcrumb_cs +
		   ce->engine->emit_fini_breadcrumb_dw != cs);

4566 4567 4568 4569 4570 4571
	rq->tail = intel_ring_offset(rq, cs);

	return cs;
}

static u32 *
4572 4573
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						  u32 *cs)
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
{
	struct intel_context *ce = rq->context;
	struct intel_context *parent = intel_context_to_parent(ce);

	GEM_BUG_ON(!intel_context_is_child(ce));

	/* Turn on preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*cs++ = MI_NOOP;

	/* Signal parent */
	cs = gen8_emit_ggtt_write(cs,
				  PARENT_GO_FINI_BREADCRUMB,
				  get_children_join_addr(parent,
							 ce->parallel.child_index),
				  0);

	/* Wait parent on for go */
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_EQ_SDD);
	*cs++ = CHILD_GO_FINI_BREADCRUMB;
	*cs++ = get_children_go_addr(parent);
	*cs++ = 0;

4600 4601 4602 4603 4604 4605 4606 4607
	return cs;
}

static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						u32 *cs)
{
	struct intel_context *ce = rq->context;
4608 4609
	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4610 4611 4612 4613 4614 4615

	GEM_BUG_ON(!intel_context_is_child(ce));

	if (unlikely(skip_handshake(rq))) {
		/*
		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
4616
		 * the NON_SKIP_LEN comes from the length of the emits below.
4617 4618
		 */
		memset(cs, 0, sizeof(u32) *
4619 4620
		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4621 4622 4623 4624
	} else {
		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
	}

4625
	/* Emit fini breadcrumb */
4626
	before_fini_breadcrumb_user_interrupt_cs = cs;
4627 4628 4629 4630 4631 4632 4633 4634 4635
	cs = gen8_emit_ggtt_write(cs,
				  rq->fence.seqno,
				  i915_request_active_timeline(rq)->hwsp_offset,
				  0);

	/* User interrupt */
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

4636 4637 4638 4639 4640 4641
	/* Ensure our math for skip + emit is correct */
	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
		   cs);
	GEM_BUG_ON(start_fini_breadcrumb_cs +
		   ce->engine->emit_fini_breadcrumb_dw != cs);

4642 4643 4644 4645 4646
	rq->tail = intel_ring_offset(rq, cs);

	return cs;
}

4647 4648
#undef NON_SKIP_LEN

4649
static struct intel_context *
4650 4651
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
		   unsigned long flags)
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
{
	struct guc_virtual_engine *ve;
	struct intel_guc *guc;
	unsigned int n;
	int err;

	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

	guc = &siblings[0]->gt->uc.guc;

	ve->base.i915 = siblings[0]->i915;
	ve->base.gt = siblings[0]->gt;
	ve->base.uncore = siblings[0]->uncore;
	ve->base.id = -1;

	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.saturated = ALL_ENGINES;

	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);

	ve->base.cops = &virtual_guc_context_ops;
	ve->base.request_alloc = guc_request_alloc;
4680
	ve->base.bump_serial = virtual_guc_bump_serial;
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699

	ve->base.submit_request = guc_submit_request;

	ve->base.flags = I915_ENGINE_IS_VIRTUAL;

	intel_context_init(&ve->context, &ve->base);

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		ve->base.mask |= sibling->mask;
4700
		ve->base.logical_mask |= sibling->logical_mask;
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713

		if (n != 0 && ve->base.class != sibling->class) {
			DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
				  sibling->class, ve->base.class);
			err = -EINVAL;
			goto err_put;
		} else if (n == 0) {
			ve->base.class = sibling->class;
			ve->base.uabi_class = sibling->uabi_class;
			snprintf(ve->base.name, sizeof(ve->base.name),
				 "v%dx%d", ve->base.class, count);
			ve->base.context_size = sibling->context_size;

4714 4715 4716 4717
			ve->base.add_active_request =
				sibling->add_active_request;
			ve->base.remove_active_request =
				sibling->remove_active_request;
4718 4719 4720 4721 4722 4723 4724 4725
			ve->base.emit_bb_start = sibling->emit_bb_start;
			ve->base.emit_flush = sibling->emit_flush;
			ve->base.emit_init_breadcrumb =
				sibling->emit_init_breadcrumb;
			ve->base.emit_fini_breadcrumb =
				sibling->emit_fini_breadcrumb;
			ve->base.emit_fini_breadcrumb_dw =
				sibling->emit_fini_breadcrumb_dw;
4726 4727
			ve->base.breadcrumbs =
				intel_breadcrumbs_get(sibling->breadcrumbs);
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755

			ve->base.flags |= sibling->flags;

			ve->base.props.timeslice_duration_ms =
				sibling->props.timeslice_duration_ms;
			ve->base.props.preempt_timeout_ms =
				sibling->props.preempt_timeout_ms;
		}
	}

	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
{
	struct intel_engine_cs *engine;
	intel_engine_mask_t tmp, mask = ve->mask;

	for_each_engine_masked(engine, ve->gt, mask, tmp)
		if (READ_ONCE(engine->props.heartbeat_interval_ms))
			return true;

	return false;
}
4756 4757 4758

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_guc.c"
4759
#include "selftest_guc_multi_lrc.c"
4760
#endif