intel_guc_submission.c 129.7 KB
Newer Older
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2014 Intel Corporation
 */

6
#include <linux/circ_buf.h>
7

8
#include "gem/i915_gem_context.h"
9 10
#include "gt/gen8_engine_cs.h"
#include "gt/intel_breadcrumbs.h"
11
#include "gt/intel_context.h"
12
#include "gt/intel_engine_heartbeat.h"
13 14
#include "gt/intel_engine_pm.h"
#include "gt/intel_engine_regs.h"
15
#include "gt/intel_gpu_commands.h"
16
#include "gt/intel_gt.h"
17
#include "gt/intel_gt_clock_utils.h"
18
#include "gt/intel_gt_irq.h"
19
#include "gt/intel_gt_pm.h"
20
#include "gt/intel_gt_regs.h"
21
#include "gt/intel_gt_requests.h"
22
#include "gt/intel_lrc.h"
23
#include "gt/intel_lrc_reg.h"
24
#include "gt/intel_mocs.h"
25 26
#include "gt/intel_ring.h"

27
#include "intel_guc_ads.h"
28
#include "intel_guc_submission.h"
29

30
#include "i915_drv.h"
31
#include "i915_trace.h"
32

33
/**
A
Alex Dai 已提交
34
 * DOC: GuC-based command submission
35 36 37 38 39 40 41 42 43
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
 *
M
Matthew Brost 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
 * Command Transport buffers (CTBs):
 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
 * - G2H) are a message interface between the i915 and GuC.
 *
 * Context registration:
 * Before a context can be submitted it must be registered with the GuC via a
 * H2G. A unique guc_id is associated with each context. The context is either
 * registered at request creation time (normal operation) or at submission time
 * (abnormal operation, e.g. after a reset).
 *
 * Context submission:
 * The i915 updates the LRC tail value in memory. The i915 must enable the
 * scheduling of the context within the GuC for the GuC to actually consider it.
 * Therefore, the first time a disabled context is submitted we use a schedule
 * enable H2G, while follow up submissions are done via the context submit H2G,
 * which informs the GuC that a previously enabled context has new work
 * available.
 *
 * Context unpin:
 * To unpin a context a H2G is used to disable scheduling. When the
 * corresponding G2H returns indicating the scheduling disable operation has
 * completed it is safe to unpin the context. While a disable is in flight it
 * isn't safe to resubmit the context so a fence is used to stall all future
 * requests of that context until the G2H is returned.
 *
 * Context deregistration:
 * Before a context can be destroyed or if we steal its guc_id we must
 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
 * safe to submit anything to this guc_id until the deregister completes so a
 * fence is used to stall all requests associated with this guc_id until the
 * corresponding G2H returns indicating the guc_id has been deregistered.
 *
76
 * submission_state.guc_ids:
M
Matthew Brost 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
 * Unique number associated with private GuC context data passed in during
 * context registration / submission / deregistration. 64k available. Simple ida
 * is used for allocation.
 *
 * Stealing guc_ids:
 * If no guc_ids are available they can be stolen from another context at
 * request creation time if that context is unpinned. If a guc_id can't be found
 * we punt this problem to the user as we believe this is near impossible to hit
 * during normal use cases.
 *
 * Locking:
 * In the GuC submission code we have 3 basic spin locks which protect
 * everything. Details about each below.
 *
 * sched_engine->lock
 * This is the submission lock for all contexts that share an i915 schedule
 * engine (sched_engine), thus only one of the contexts which share a
 * sched_engine can be submitting at a time. Currently only one sched_engine is
 * used for all of GuC submission but that could change in the future.
 *
97
 * guc->submission_state.lock
98 99
 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
 * list.
M
Matthew Brost 已提交
100 101 102 103 104 105 106 107 108 109 110
 *
 * ce->guc_state.lock
 * Protects everything under ce->guc_state. Ensures that a context is in the
 * correct state before issuing a H2G. e.g. We don't issue a schedule disable
 * on a disabled context (bad idea), we don't issue a schedule enable when a
 * schedule disable is in flight, etc... Also protects list of inflight requests
 * on the context and the priority management state. Lock is individual to each
 * context.
 *
 * Lock ordering rules:
 * sched_engine->lock -> ce->guc_state.lock
111
 * guc->submission_state.lock -> ce->guc_state.lock
112
 *
M
Matthew Brost 已提交
113 114 115 116 117 118 119 120 121 122
 * Reset races:
 * When a full GT reset is triggered it is assumed that some G2H responses to
 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
 * fatal as we do certain operations upon receiving a G2H (e.g. destroy
 * contexts, release guc_ids, etc...). When this occurs we can scrub the
 * context state and cleanup appropriately, however this is quite racey.
 * To avoid races, the reset code must disable submission before scrubbing for
 * the missing G2H, while the submission code must check for submission being
 * disabled and skip sending H2Gs and updating context states when it is. Both
 * sides must also make sure to hold the relevant locks.
123 124
 */

125 126 127 128 129 130 131
/* GuC Virtual Engine */
struct guc_virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;
};

static struct intel_context *
132 133 134 135 136 137 138
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
		   unsigned long flags);

static struct intel_context *
guc_create_parallel(struct intel_engine_cs **engines,
		    unsigned int num_siblings,
		    unsigned int width);
139

140 141
#define GUC_REQUEST_SIZE 64 /* bytes */

142 143 144 145 146 147 148 149
/*
 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
 * per the GuC submission interface. A different allocation algorithm is used
 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
 * partition the guc_id space. We believe the number of multi-lrc contexts in
 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
 * multi-lrc.
 */
150 151
#define NUMBER_MULTI_LRC_GUC_ID(guc)	\
	((guc)->submission_state.num_guc_ids / 16)
152

153 154
/*
 * Below is a set of functions which control the GuC scheduling state which
155
 * require a lock.
156 157 158
 */
#define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
#define SCHED_STATE_DESTROYED				BIT(1)
159
#define SCHED_STATE_PENDING_DISABLE			BIT(2)
160
#define SCHED_STATE_BANNED				BIT(3)
161 162 163 164
#define SCHED_STATE_ENABLED				BIT(4)
#define SCHED_STATE_PENDING_ENABLE			BIT(5)
#define SCHED_STATE_REGISTERED				BIT(6)
#define SCHED_STATE_BLOCKED_SHIFT			7
165 166
#define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
#define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
167

168 169
static inline void init_sched_state(struct intel_context *ce)
{
170
	lockdep_assert_held(&ce->guc_state.lock);
171
	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
172 173
}

174 175 176
__maybe_unused
static bool sched_state_is_init(struct intel_context *ce)
{
177 178
	/* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */
	return !(ce->guc_state.sched_state &
179
		 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED));
180 181
}

182 183 184 185 186 187 188 189 190 191
static inline bool
context_wait_for_deregister_to_register(struct intel_context *ce)
{
	return ce->guc_state.sched_state &
		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline void
set_context_wait_for_deregister_to_register(struct intel_context *ce)
{
192
	lockdep_assert_held(&ce->guc_state.lock);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	ce->guc_state.sched_state |=
		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline void
clr_context_wait_for_deregister_to_register(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &=
		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline bool
context_destroyed(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
}

static inline void
set_context_destroyed(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static inline bool context_pending_disable(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
}

static inline void set_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
}

static inline void clr_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static inline bool context_banned(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
}

static inline void set_context_banned(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
}

static inline void clr_context_banned(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
static inline bool context_enabled(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
}

static inline void set_context_enabled(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
}

static inline void clr_context_enabled(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
}

static inline bool context_pending_enable(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
}

static inline void set_context_pending_enable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
}

static inline void clr_context_pending_enable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
}

static inline bool context_registered(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
}

static inline void set_context_registered(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
}

static inline void clr_context_registered(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static inline u32 context_blocked(struct intel_context *ce)
{
	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
		SCHED_STATE_BLOCKED_SHIFT;
}

static inline void incr_context_blocked(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;

	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
}

static inline void decr_context_blocked(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */

	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
static inline bool context_has_committed_requests(struct intel_context *ce)
{
	return !!ce->guc_state.number_committed_requests;
}

static inline void incr_context_committed_requests(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	++ce->guc_state.number_committed_requests;
	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
}

static inline void decr_context_committed_requests(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	--ce->guc_state.number_committed_requests;
	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
}

346 347 348 349 350 351
static struct intel_context *
request_to_scheduling_context(struct i915_request *rq)
{
	return intel_context_to_parent(rq->context);
}

352 353
static inline bool context_guc_id_invalid(struct intel_context *ce)
{
354
	return ce->guc_id.id == GUC_INVALID_LRC_ID;
355 356 357 358
}

static inline void set_context_guc_id_invalid(struct intel_context *ce)
{
359
	ce->guc_id.id = GUC_INVALID_LRC_ID;
360 361 362 363 364 365 366
}

static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
{
	return &ce->engine->gt->uc.guc;
}

367 368 369 370 371
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

372 373
/*
 * When using multi-lrc submission a scratch memory area is reserved in the
374 375 376
 * parent's context state for the process descriptor, work queue, and handshake
 * between the parent + children contexts to insert safe preemption points
 * between each of the BBs. Currently the scratch area is sized to a page.
377 378 379
 *
 * The layout of this scratch area is below:
 * 0						guc_process_desc
380 381 382 383
 * + sizeof(struct guc_process_desc)		child go
 * + CACHELINE_BYTES				child join[0]
 * ...
 * + CACHELINE_BYTES				child join[n - 1]
384 385 386 387 388 389 390
 * ...						unused
 * PARENT_SCRATCH_SIZE / 2			work queue start
 * ...						work queue
 * PARENT_SCRATCH_SIZE - 1			work queue end
 */
#define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
#define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

struct sync_semaphore {
	u32 semaphore;
	u8 unused[CACHELINE_BYTES - sizeof(u32)];
};

struct parent_scratch {
	struct guc_process_desc pdesc;

	struct sync_semaphore go;
	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];

	u8 unused[WQ_OFFSET - sizeof(struct guc_process_desc) -
		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];

	u32 wq[WQ_SIZE / sizeof(u32)];
};

static u32 __get_parent_scratch_offset(struct intel_context *ce)
410 411 412 413 414 415 416 417
{
	GEM_BUG_ON(!ce->parallel.guc.parent_page);

	return ce->parallel.guc.parent_page * PAGE_SIZE;
}

static u32 __get_wq_offset(struct intel_context *ce)
{
418 419 420
	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);

	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
421 422
}

423 424
static struct parent_scratch *
__get_parent_scratch(struct intel_context *ce)
425
{
426 427 428
	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);

429 430 431 432 433
	/*
	 * Need to subtract LRC_STATE_OFFSET here as the
	 * parallel.guc.parent_page is the offset into ce->state while
	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
	 */
434
	return (struct parent_scratch *)
435
		(ce->lrc_reg_state +
436
		 ((__get_parent_scratch_offset(ce) -
437 438 439
		   LRC_STATE_OFFSET) / sizeof(u32)));
}

440 441 442 443 444 445 446 447
static struct guc_process_desc *
__get_process_desc(struct intel_context *ce)
{
	struct parent_scratch *ps = __get_parent_scratch(ce);

	return &ps->pdesc;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static u32 *get_wq_pointer(struct guc_process_desc *desc,
			   struct intel_context *ce,
			   u32 wqi_size)
{
	/*
	 * Check for space in work queue. Caching a value of head pointer in
	 * intel_context structure in order reduce the number accesses to shared
	 * GPU memory which may be across a PCIe bus.
	 */
#define AVAILABLE_SPACE	\
	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
	if (wqi_size > AVAILABLE_SPACE) {
		ce->parallel.guc.wqi_head = READ_ONCE(desc->head);

		if (wqi_size > AVAILABLE_SPACE)
			return NULL;
	}
#undef AVAILABLE_SPACE

467
	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
468 469
}

470
static struct guc_lrc_desc *__get_lrc_desc(struct intel_guc *guc, u32 index)
471
{
472
	struct guc_lrc_desc *base = guc->lrc_desc_pool_vaddr;
473

474
	GEM_BUG_ON(index >= GUC_MAX_LRC_DESCRIPTORS);
475

476
	return &base[index];
477 478
}

479 480 481 482 483 484 485 486 487
static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
{
	struct intel_context *ce = xa_load(&guc->context_lookup, id);

	GEM_BUG_ON(id >= GUC_MAX_LRC_DESCRIPTORS);

	return ce;
}

488
static int guc_lrc_desc_pool_create(struct intel_guc *guc)
489
{
490 491
	u32 size;
	int ret;
492

493 494 495 496 497 498
	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc) *
			  GUC_MAX_LRC_DESCRIPTORS);
	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool,
					     (void **)&guc->lrc_desc_pool_vaddr);
	if (ret)
		return ret;
499

500
	return 0;
501 502
}

503
static void guc_lrc_desc_pool_destroy(struct intel_guc *guc)
504
{
505
	guc->lrc_desc_pool_vaddr = NULL;
506
	i915_vma_unpin_and_release(&guc->lrc_desc_pool, I915_VMA_RELEASE_MAP);
507 508
}

509 510 511 512 513
static inline bool guc_submission_initialized(struct intel_guc *guc)
{
	return !!guc->lrc_desc_pool_vaddr;
}

514 515
static inline void reset_lrc_desc(struct intel_guc *guc, u32 id)
{
516 517 518
	if (likely(guc_submission_initialized(guc))) {
		struct guc_lrc_desc *desc = __get_lrc_desc(guc, id);
		unsigned long flags;
519

520 521 522 523 524 525 526 527 528 529
		memset(desc, 0, sizeof(*desc));

		/*
		 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
		 * the lower level functions directly.
		 */
		xa_lock_irqsave(&guc->context_lookup, flags);
		__xa_erase(&guc->context_lookup, id);
		xa_unlock_irqrestore(&guc->context_lookup, flags);
	}
530 531 532 533 534 535 536 537 538 539
}

static inline bool lrc_desc_registered(struct intel_guc *guc, u32 id)
{
	return __get_context(guc, id);
}

static inline void set_lrc_desc_registered(struct intel_guc *guc, u32 id,
					   struct intel_context *ce)
{
540 541 542 543 544 545 546 547 548
	unsigned long flags;

	/*
	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
	 * lower level functions directly.
	 */
	xa_lock_irqsave(&guc->context_lookup, flags);
	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
	xa_unlock_irqrestore(&guc->context_lookup, flags);
549 550
}

551 552 553 554 555 556
static void decr_outstanding_submission_g2h(struct intel_guc *guc)
{
	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
		wake_up_all(&guc->ct.wq);
}

557 558 559 560 561 562
static int guc_submission_send_busy_loop(struct intel_guc *guc,
					 const u32 *action,
					 u32 len,
					 u32 g2h_len_dw,
					 bool loop)
{
563 564 565 566 567 568
	/*
	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
	 * so we don't handle the case where we don't get a reply because we
	 * aborted the send due to the channel being busy.
	 */
	GEM_BUG_ON(g2h_len_dw && !loop);
569

570
	if (g2h_len_dw)
571 572
		atomic_inc(&guc->outstanding_submission_g2h);

573
	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
574 575
}

576 577 578 579
int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
				   atomic_t *wait_var,
				   bool interruptible,
				   long timeout)
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
{
	const int state = interruptible ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	DEFINE_WAIT(wait);

	might_sleep();
	GEM_BUG_ON(timeout < 0);

	if (!atomic_read(wait_var))
		return 0;

	if (!timeout)
		return -ETIME;

	for (;;) {
		prepare_to_wait(&guc->ct.wq, &wait, state);

		if (!atomic_read(wait_var))
			break;

		if (signal_pending_state(state, current)) {
			timeout = -EINTR;
			break;
		}

		if (!timeout) {
			timeout = -ETIME;
			break;
		}

		timeout = io_schedule_timeout(timeout);
	}
	finish_wait(&guc->ct.wq, &wait);

	return (timeout < 0) ? timeout : 0;
}

int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
{
	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
		return 0;

622 623 624
	return intel_guc_wait_for_pending_msg(guc,
					      &guc->outstanding_submission_g2h,
					      true, timeout);
625 626
}

627 628
static int guc_lrc_desc_pin(struct intel_context *ce, bool loop);

629
static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
630
{
631
	int err = 0;
632
	struct intel_context *ce = request_to_scheduling_context(rq);
633 634
	u32 action[3];
	int len = 0;
635
	u32 g2h_len_dw = 0;
636
	bool enabled;
637

638 639
	lockdep_assert_held(&rq->engine->sched_engine->lock);

640 641 642 643 644 645 646
	/*
	 * Corner case where requests were sitting in the priority list or a
	 * request resubmitted after the context was banned.
	 */
	if (unlikely(intel_context_is_banned(ce))) {
		i915_request_put(i915_request_mark_eio(rq));
		intel_engine_signal_breadcrumbs(ce->engine);
647
		return 0;
648 649
	}

650
	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
651 652
	GEM_BUG_ON(context_guc_id_invalid(ce));

653 654
	spin_lock(&ce->guc_state.lock);

655 656
	/*
	 * The request / context will be run on the hardware when scheduling
657 658
	 * gets enabled in the unblock. For multi-lrc we still submit the
	 * context to move the LRC tails.
659
	 */
660
	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
661 662
		goto out;

663
	enabled = context_enabled(ce) || context_blocked(ce);
664

665 666
	if (!enabled) {
		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
667
		action[len++] = ce->guc_id.id;
668
		action[len++] = GUC_CONTEXT_ENABLE;
669 670
		set_context_pending_enable(ce);
		intel_context_get(ce);
671
		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
672 673
	} else {
		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
674
		action[len++] = ce->guc_id.id;
675
	}
676

677
	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
678
	if (!enabled && !err) {
679
		trace_intel_context_sched_enable(ce);
680
		atomic_inc(&guc->outstanding_submission_g2h);
681
		set_context_enabled(ce);
682 683 684 685 686 687 688 689 690 691 692 693

		/*
		 * Without multi-lrc KMD does the submission step (moving the
		 * lrc tail) so enabling scheduling is sufficient to submit the
		 * context. This isn't the case in multi-lrc submission as the
		 * GuC needs to move the tails, hence the need for another H2G
		 * to submit a multi-lrc context after enabling scheduling.
		 */
		if (intel_context_is_parent(ce)) {
			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
			err = intel_guc_send_nb(guc, action, len - 1, 0);
		}
694 695 696 697
	} else if (!enabled) {
		clr_context_pending_enable(ce);
		intel_context_put(ce);
	}
698 699
	if (likely(!err))
		trace_i915_request_guc_submit(rq);
700

701
out:
702
	spin_unlock(&ce->guc_state.lock);
703
	return err;
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717
static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
{
	int ret = __guc_add_request(guc, rq);

	if (unlikely(ret == -EBUSY)) {
		guc->stalled_request = rq;
		guc->submission_stall_reason = STALL_ADD_REQUEST;
	}

	return ret;
}

718 719 720 721 722 723
static inline void guc_set_lrc_tail(struct i915_request *rq)
{
	rq->context->lrc_reg_state[CTX_RING_TAIL] =
		intel_ring_set_tail(rq->ring, rq->tail);
}

724
static inline int rq_prio(const struct i915_request *rq)
725
{
726
	return rq->sched.attr.priority;
727 728
}

729 730
static bool is_multi_lrc_rq(struct i915_request *rq)
{
731
	return intel_context_is_parallel(rq->context);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
}

static bool can_merge_rq(struct i915_request *rq,
			 struct i915_request *last)
{
	return request_to_scheduling_context(rq) ==
		request_to_scheduling_context(last);
}

static u32 wq_space_until_wrap(struct intel_context *ce)
{
	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
}

static void write_wqi(struct guc_process_desc *desc,
		      struct intel_context *ce,
		      u32 wqi_size)
{
	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));

	/*
	 * Ensure WQI are visible before updating tail
	 */
	intel_guc_write_barrier(ce_to_guc(ce));

	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
		(WQ_SIZE - 1);
	WRITE_ONCE(desc->tail, ce->parallel.guc.wqi_tail);
}

static int guc_wq_noop_append(struct intel_context *ce)
{
	struct guc_process_desc *desc = __get_process_desc(ce);
	u32 *wqi = get_wq_pointer(desc, ce, wq_space_until_wrap(ce));
	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;

	if (!wqi)
		return -EBUSY;

	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));

	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
		FIELD_PREP(WQ_LEN_MASK, len_dw);
	ce->parallel.guc.wqi_tail = 0;

	return 0;
}

static int __guc_wq_item_append(struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);
	struct intel_context *child;
	struct guc_process_desc *desc = __get_process_desc(ce);
	unsigned int wqi_size = (ce->parallel.number_children + 4) *
		sizeof(u32);
	u32 *wqi;
	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
	int ret;

	/* Ensure context is in correct state updating work queue */
	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
	GEM_BUG_ON(context_guc_id_invalid(ce));
	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
	GEM_BUG_ON(!lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id));

	/* Insert NOOP if this work queue item will wrap the tail pointer. */
	if (wqi_size > wq_space_until_wrap(ce)) {
		ret = guc_wq_noop_append(ce);
		if (ret)
			return ret;
	}

	wqi = get_wq_pointer(desc, ce, wqi_size);
	if (!wqi)
		return -EBUSY;

	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));

	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
		FIELD_PREP(WQ_LEN_MASK, len_dw);
	*wqi++ = ce->lrc.lrca;
	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
	*wqi++ = 0;	/* fence_id */
	for_each_child(ce, child)
		*wqi++ = child->ring->tail / sizeof(u64);

	write_wqi(desc, ce, wqi_size);

	return 0;
}

static int guc_wq_item_append(struct intel_guc *guc,
			      struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);
	int ret = 0;

	if (likely(!intel_context_is_banned(ce))) {
		ret = __guc_wq_item_append(rq);

		if (unlikely(ret == -EBUSY)) {
			guc->stalled_request = rq;
			guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
		}
	}

	return ret;
}

static bool multi_lrc_submit(struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);

	intel_ring_set_tail(rq->ring, rq->tail);

	/*
	 * We expect the front end (execbuf IOCTL) to set this flag on the last
	 * request generated from a multi-BB submission. This indicates to the
	 * backend (GuC interface) that we should submit this context thus
	 * submitting all the requests generated in parallel.
	 */
	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
		intel_context_is_banned(ce);
}

858
static int guc_dequeue_one_context(struct intel_guc *guc)
859
{
860 861
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	struct i915_request *last = NULL;
862
	bool submit = false;
863
	struct rb_node *rb;
864
	int ret;
865

866
	lockdep_assert_held(&sched_engine->lock);
867

868 869 870
	if (guc->stalled_request) {
		submit = true;
		last = guc->stalled_request;
871 872 873 874 875 876 877 878 879 880 881

		switch (guc->submission_stall_reason) {
		case STALL_REGISTER_CONTEXT:
			goto register_context;
		case STALL_MOVE_LRC_TAIL:
			goto move_lrc_tail;
		case STALL_ADD_REQUEST:
			goto add_request;
		default:
			MISSING_CASE(guc->submission_stall_reason);
		}
882 883
	}

884
	while ((rb = rb_first_cached(&sched_engine->queue))) {
885
		struct i915_priolist *p = to_priolist(rb);
886
		struct i915_request *rq, *rn;
887

888
		priolist_for_each_request_consume(rq, rn, p) {
889 890
			if (last && !can_merge_rq(rq, last))
				goto register_context;
891

892
			list_del_init(&rq->sched.link);
893

894
			__i915_request_submit(rq);
895 896

			trace_i915_request_in(rq, 0);
897
			last = rq;
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

			if (is_multi_lrc_rq(rq)) {
				/*
				 * We need to coalesce all multi-lrc requests in
				 * a relationship into a single H2G. We are
				 * guaranteed that all of these requests will be
				 * submitted sequentially.
				 */
				if (multi_lrc_submit(rq)) {
					submit = true;
					goto register_context;
				}
			} else {
				submit = true;
			}
913 914
		}

915
		rb_erase_cached(&p->node, &sched_engine->queue);
916
		i915_priolist_free(p);
917
	}
918 919

register_context:
920
	if (submit) {
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
		struct intel_context *ce = request_to_scheduling_context(last);

		if (unlikely(!lrc_desc_registered(guc, ce->guc_id.id) &&
			     !intel_context_is_banned(ce))) {
			ret = guc_lrc_desc_pin(ce, false);
			if (unlikely(ret == -EPIPE)) {
				goto deadlk;
			} else if (ret == -EBUSY) {
				guc->stalled_request = last;
				guc->submission_stall_reason =
					STALL_REGISTER_CONTEXT;
				goto schedule_tasklet;
			} else if (ret != 0) {
				GEM_WARN_ON(ret);	/* Unexpected */
				goto deadlk;
			}
		}

move_lrc_tail:
		if (is_multi_lrc_rq(last)) {
			ret = guc_wq_item_append(guc, last);
			if (ret == -EBUSY) {
				goto schedule_tasklet;
			} else if (ret != 0) {
				GEM_WARN_ON(ret);	/* Unexpected */
				goto deadlk;
			}
		} else {
			guc_set_lrc_tail(last);
		}

add_request:
953
		ret = guc_add_request(guc, last);
954 955 956 957 958 959
		if (unlikely(ret == -EPIPE)) {
			goto deadlk;
		} else if (ret == -EBUSY) {
			goto schedule_tasklet;
		} else if (ret != 0) {
			GEM_WARN_ON(ret);	/* Unexpected */
960
			goto deadlk;
961
		}
962
	}
963 964

	guc->stalled_request = NULL;
965
	guc->submission_stall_reason = STALL_NONE;
966
	return submit;
967 968 969 970 971

deadlk:
	sched_engine->tasklet.callback = NULL;
	tasklet_disable_nosync(&sched_engine->tasklet);
	return false;
972 973 974 975

schedule_tasklet:
	tasklet_schedule(&sched_engine->tasklet);
	return false;
976 977
}

978
static void guc_submission_tasklet(struct tasklet_struct *t)
979
{
980 981
	struct i915_sched_engine *sched_engine =
		from_tasklet(sched_engine, t, tasklet);
982
	unsigned long flags;
983
	bool loop;
984

985
	spin_lock_irqsave(&sched_engine->lock, flags);
986

987 988 989
	do {
		loop = guc_dequeue_one_context(sched_engine->private_data);
	} while (loop);
990

991
	i915_sched_engine_reset_on_empty(sched_engine);
992

993
	spin_unlock_irqrestore(&sched_engine->lock, flags);
994 995
}

996 997
static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
998
	if (iir & GT_RENDER_USER_INTERRUPT)
999 1000 1001
		intel_engine_signal_breadcrumbs(engine);
}

1002 1003 1004
static void __guc_context_destroy(struct intel_context *ce);
static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
static void guc_signal_context_fence(struct intel_context *ce);
1005
static void guc_cancel_context_requests(struct intel_context *ce);
1006
static void guc_blocked_fence_complete(struct intel_context *ce);
1007 1008 1009 1010 1011

static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
{
	struct intel_context *ce;
	unsigned long index, flags;
1012
	bool pending_disable, pending_enable, deregister, destroyed, banned;
1013

1014
	xa_lock_irqsave(&guc->context_lookup, flags);
1015
	xa_for_each(&guc->context_lookup, index, ce) {
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		/*
		 * Corner case where the ref count on the object is zero but and
		 * deregister G2H was lost. In this case we don't touch the ref
		 * count and finish the destroy of the context.
		 */
		bool do_put = kref_get_unless_zero(&ce->ref);

		xa_unlock(&guc->context_lookup);

		spin_lock(&ce->guc_state.lock);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

		/*
		 * Once we are at this point submission_disabled() is guaranteed
		 * to be visible to all callers who set the below flags (see above
		 * flush and flushes in reset_prepare). If submission_disabled()
		 * is set, the caller shouldn't set these flags.
		 */

		destroyed = context_destroyed(ce);
		pending_enable = context_pending_enable(ce);
		pending_disable = context_pending_disable(ce);
		deregister = context_wait_for_deregister_to_register(ce);
1038
		banned = context_banned(ce);
1039 1040
		init_sched_state(ce);

1041 1042
		spin_unlock(&ce->guc_state.lock);

1043
		if (pending_enable || destroyed || deregister) {
1044
			decr_outstanding_submission_g2h(guc);
1045 1046 1047
			if (deregister)
				guc_signal_context_fence(ce);
			if (destroyed) {
1048
				intel_gt_pm_put_async(guc_to_gt(guc));
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
				release_guc_id(guc, ce);
				__guc_context_destroy(ce);
			}
			if (pending_enable || deregister)
				intel_context_put(ce);
		}

		/* Not mutualy exclusive with above if statement. */
		if (pending_disable) {
			guc_signal_context_fence(ce);
1059 1060 1061 1062
			if (banned) {
				guc_cancel_context_requests(ce);
				intel_engine_signal_breadcrumbs(ce->engine);
			}
1063
			intel_context_sched_disable_unpin(ce);
1064
			decr_outstanding_submission_g2h(guc);
1065 1066

			spin_lock(&ce->guc_state.lock);
1067
			guc_blocked_fence_complete(ce);
1068
			spin_unlock(&ce->guc_state.lock);
1069

1070 1071
			intel_context_put(ce);
		}
1072 1073 1074 1075

		if (do_put)
			intel_context_put(ce);
		xa_lock(&guc->context_lookup);
1076
	}
1077
	xa_unlock_irqrestore(&guc->context_lookup, flags);
1078 1079
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/*
 * GuC stores busyness stats for each engine at context in/out boundaries. A
 * context 'in' logs execution start time, 'out' adds in -> out delta to total.
 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
 * GuC.
 *
 * __i915_pmu_event_read samples engine busyness. When sampling, if context id
 * is valid (!= ~0) and start is non-zero, the engine is considered to be
 * active. For an active engine total busyness = total + (now - start), where
 * 'now' is the time at which the busyness is sampled. For inactive engine,
 * total busyness = total.
 *
 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
 *
 * The start and total values provided by GuC are 32 bits and wrap around in a
 * few minutes. Since perf pmu provides busyness as 64 bit monotonically
 * increasing ns values, there is a need for this implementation to account for
 * overflows and extend the GuC provided values to 64 bits before returning
 * busyness to the user. In order to do that, a worker runs periodically at
 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
 * 27 seconds for a gt clock frequency of 19.2 MHz).
 */

#define WRAP_TIME_CLKS U32_MAX
#define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)

static void
__extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
{
	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);

	if (new_start == lower_32_bits(*prev_start))
		return;

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	/*
	 * When gt is unparked, we update the gt timestamp and start the ping
	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
	 * is unparked, all switched in contexts will have a start time that is
	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
	 *
	 * If neither gt_stamp nor new_start has rolled over, then the
	 * gt_stamp_hi does not need to be adjusted, however if one of them has
	 * rolled over, we need to adjust gt_stamp_hi accordingly.
	 *
	 * The below conditions address the cases of new_start rollover and
	 * gt_stamp_last rollover respectively.
	 */
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	if (new_start < gt_stamp_last &&
	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
		gt_stamp_hi++;

	if (new_start > gt_stamp_last &&
	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
		gt_stamp_hi--;

	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
}

1139 1140 1141
#define record_read(map_, field_) \
	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/*
 * GuC updates shared memory and KMD reads it. Since this is not synchronized,
 * we run into a race where the value read is inconsistent. Sometimes the
 * inconsistency is in reading the upper MSB bytes of the last_in value when
 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
 * 24 bits are zero. Since these are non-zero values, it is non-trivial to
 * determine validity of these values. Instead we read the values multiple times
 * until they are consistent. In test runs, 3 attempts results in consistent
 * values. The upper bound is set to 6 attempts and may need to be tuned as per
 * any new occurences.
 */
static void __get_engine_usage_record(struct intel_engine_cs *engine,
				      u32 *last_in, u32 *id, u32 *total)
1155
{
1156
	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1157 1158 1159
	int i = 0;

	do {
1160 1161 1162
		*last_in = record_read(&rec_map, last_switch_in_stamp);
		*id = record_read(&rec_map, current_context_index);
		*total = record_read(&rec_map, total_runtime);
1163

1164 1165 1166
		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
		    record_read(&rec_map, current_context_index) == *id &&
		    record_read(&rec_map, total_runtime) == *total)
1167 1168 1169 1170 1171 1172
			break;
	} while (++i < 6);
}

static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
{
1173 1174
	struct intel_engine_guc_stats *stats = &engine->stats.guc;
	struct intel_guc *guc = &engine->gt->uc.guc;
1175
	u32 last_switch, ctx_id, total;
1176 1177 1178

	lockdep_assert_held(&guc->timestamp.lock);

1179 1180
	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	stats->running = ctx_id != ~0U && last_switch;
	if (stats->running)
		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);

	/*
	 * Instead of adjusting the total for overflow, just add the
	 * difference from previous sample stats->total_gt_clks
	 */
	if (total && total != ~0U) {
		stats->total_gt_clks += (u32)(total - stats->prev_total);
		stats->prev_total = total;
	}
}

1195
static u32 gpm_timestamp_shift(struct intel_gt *gt)
1196
{
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	intel_wakeref_t wakeref;
	u32 reg, shift;

	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);

	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;

	return 3 - shift;
}

static u64 gpm_timestamp(struct intel_gt *gt)
1210
{
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	u32 lo, hi, old_hi, loop = 0;

	hi = intel_uncore_read(gt->uncore, MISC_STATUS1);
	do {
		lo = intel_uncore_read(gt->uncore, MISC_STATUS0);
		old_hi = hi;
		hi = intel_uncore_read(gt->uncore, MISC_STATUS1);
	} while (old_hi != hi && loop++ < 2);

	return ((u64)hi << 32) | lo;
}

static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
{
	struct intel_gt *gt = guc_to_gt(guc);
	u32 gt_stamp_lo, gt_stamp_hi;
	u64 gpm_ts;
1228 1229 1230 1231

	lockdep_assert_held(&guc->timestamp.lock);

	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1232 1233
	gpm_ts = gpm_timestamp(gt) >> guc->timestamp.shift;
	gt_stamp_lo = lower_32_bits(gpm_ts);
1234 1235
	*now = ktime_get();

1236
	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1237 1238
		gt_stamp_hi++;

1239
	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
}

/*
 * Unlike the execlist mode of submission total and active times are in terms of
 * gt clocks. The *now parameter is retained to return the cpu time at which the
 * busyness was sampled.
 */
static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
{
	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
	struct intel_gt *gt = engine->gt;
	struct intel_guc *guc = &gt->uc.guc;
	u64 total, gt_stamp_saved;
	unsigned long flags;
	u32 reset_count;
1256
	bool in_reset;
1257 1258 1259 1260

	spin_lock_irqsave(&guc->timestamp.lock, flags);

	/*
1261 1262 1263 1264 1265 1266
	 * If a reset happened, we risk reading partially updated engine
	 * busyness from GuC, so we just use the driver stored copy of busyness.
	 * Synchronize with gt reset using reset_count and the
	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
	 * usable by checking the flag afterwards.
1267 1268
	 */
	reset_count = i915_reset_count(gpu_error);
1269
	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1270 1271 1272 1273 1274 1275 1276 1277 1278

	*now = ktime_get();

	/*
	 * The active busyness depends on start_gt_clk and gt_stamp.
	 * gt_stamp is updated by i915 only when gt is awake and the
	 * start_gt_clk is derived from GuC state. To get a consistent
	 * view of activity, we query the GuC state only if gt is awake.
	 */
1279
	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1280 1281
		stats_saved = *stats;
		gt_stamp_saved = guc->timestamp.gt_stamp;
1282 1283 1284 1285
		/*
		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
		 * start_gt_clk' calculation below for active engines.
		 */
1286
		guc_update_engine_gt_clks(engine);
1287
		guc_update_pm_timestamp(guc, now);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		intel_gt_pm_put_async(gt);
		if (i915_reset_count(gpu_error) != reset_count) {
			*stats = stats_saved;
			guc->timestamp.gt_stamp = gt_stamp_saved;
		}
	}

	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
	if (stats->running) {
		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;

		total += intel_gt_clock_interval_to_ns(gt, clk);
	}

	spin_unlock_irqrestore(&guc->timestamp.lock, flags);

	return ns_to_ktime(total);
}

static void __reset_guc_busyness_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned long flags;
	ktime_t unused;

	cancel_delayed_work_sync(&guc->timestamp.work);

	spin_lock_irqsave(&guc->timestamp.lock, flags);

1319
	guc_update_pm_timestamp(guc, &unused);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	for_each_engine(engine, gt, id) {
		guc_update_engine_gt_clks(engine);
		engine->stats.guc.prev_total = 0;
	}

	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
}

static void __update_guc_busyness_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
1333
	unsigned long flags;
1334 1335
	ktime_t unused;

1336
	spin_lock_irqsave(&guc->timestamp.lock, flags);
1337 1338 1339

	guc_update_pm_timestamp(guc, &unused);
	for_each_engine(engine, gt, id)
1340
		guc_update_engine_gt_clks(engine);
1341

1342
	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
}

static void guc_timestamp_ping(struct work_struct *wrk)
{
	struct intel_guc *guc = container_of(wrk, typeof(*guc),
					     timestamp.work.work);
	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
	struct intel_gt *gt = guc_to_gt(guc);
	intel_wakeref_t wakeref;
	int srcu, ret;

	/*
	 * Synchronize with gt reset to make sure the worker does not
	 * corrupt the engine/guc stats.
	 */
	ret = intel_gt_reset_trylock(gt, &srcu);
	if (ret)
		return;

	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
		__update_guc_busyness_stats(guc);

	intel_gt_reset_unlock(gt, srcu);

	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);
}

static int guc_action_enable_usage_stats(struct intel_guc *guc)
{
	u32 offset = intel_guc_engine_usage_offset(guc);
	u32 action[] = {
		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
		offset,
		0,
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

static void guc_init_engine_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	intel_wakeref_t wakeref;

	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);

	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
		int ret = guc_action_enable_usage_stats(guc);

		if (ret)
			drm_err(&gt->i915->drm,
				"Failed to enable usage stats: %d!\n", ret);
	}
}

void intel_guc_busyness_park(struct intel_gt *gt)
{
	struct intel_guc *guc = &gt->uc.guc;

	if (!guc_submission_initialized(guc))
		return;

	cancel_delayed_work(&guc->timestamp.work);
	__update_guc_busyness_stats(guc);
}

void intel_guc_busyness_unpark(struct intel_gt *gt)
{
	struct intel_guc *guc = &gt->uc.guc;
1414 1415
	unsigned long flags;
	ktime_t unused;
1416 1417 1418 1419

	if (!guc_submission_initialized(guc))
		return;

1420 1421 1422
	spin_lock_irqsave(&guc->timestamp.lock, flags);
	guc_update_pm_timestamp(guc, &unused);
	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1423 1424 1425 1426
	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);
}

1427 1428 1429 1430 1431 1432
static inline bool
submission_disabled(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;

	return unlikely(!sched_engine ||
1433 1434
			!__tasklet_is_enabled(&sched_engine->tasklet) ||
			intel_gt_is_wedged(guc_to_gt(guc)));
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
}

static void disable_submission(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;

	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
		GEM_BUG_ON(!guc->ct.enabled);
		__tasklet_disable_sync_once(&sched_engine->tasklet);
		sched_engine->tasklet.callback = NULL;
	}
}

static void enable_submission(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&guc->sched_engine->lock, flags);
	sched_engine->tasklet.callback = guc_submission_tasklet;
	wmb();	/* Make sure callback visible */
	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
	    __tasklet_enable(&sched_engine->tasklet)) {
		GEM_BUG_ON(!guc->ct.enabled);

		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&sched_engine->tasklet);
	}
	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
}

static void guc_flush_submissions(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&sched_engine->lock, flags);
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

1475 1476
static void guc_flush_destroyed_contexts(struct intel_guc *guc);

1477
void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1478
{
1479 1480 1481 1482 1483
	if (unlikely(!guc_submission_initialized(guc))) {
		/* Reset called during driver load? GuC not yet initialised! */
		return;
	}

1484
	intel_gt_park_heartbeats(guc_to_gt(guc));
1485 1486
	disable_submission(guc);
	guc->interrupts.disable(guc);
1487
	__reset_guc_busyness_stats(guc);
1488 1489 1490 1491 1492 1493

	/* Flush IRQ handler */
	spin_lock_irq(&guc_to_gt(guc)->irq_lock);
	spin_unlock_irq(&guc_to_gt(guc)->irq_lock);

	guc_flush_submissions(guc);
1494
	guc_flush_destroyed_contexts(guc);
1495
	flush_work(&guc->ct.requests.worker);
1496

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	scrub_guc_desc_for_outstanding_g2h(guc);
}

static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
{
	struct intel_engine_cs *engine;
	intel_engine_mask_t tmp, mask = ve->mask;
	unsigned int num_siblings = 0;

	for_each_engine_masked(engine, ve->gt, mask, tmp)
		if (num_siblings++ == sibling)
			return engine;

	return NULL;
}

static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;

	if (intel_engine_is_virtual(engine))
		engine = guc_virtual_get_sibling(engine, 0);

	return engine;
1523 1524
}

1525
static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1526
{
1527 1528
	struct intel_engine_cs *engine = __context_to_physical_engine(ce);

1529 1530 1531
	if (intel_context_is_banned(ce))
		return;

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	GEM_BUG_ON(!intel_context_is_pinned(ce));

	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub)
		lrc_init_regs(ce, engine, true);

	/* Rerun the request; its payload has been neutered (if guilty). */
	lrc_update_regs(ce, engine, head);
}

1549
static void guc_reset_nop(struct intel_engine_cs *engine)
1550
{
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
}

static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
{
}

static void
__unwind_incomplete_requests(struct intel_context *ce)
{
	struct i915_request *rq, *rn;
	struct list_head *pl;
	int prio = I915_PRIORITY_INVALID;
	struct i915_sched_engine * const sched_engine =
		ce->engine->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&sched_engine->lock, flags);
1568
	spin_lock(&ce->guc_state.lock);
1569
	list_for_each_entry_safe_reverse(rq, rn,
1570
					 &ce->guc_state.requests,
1571
					 sched.link) {
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		if (i915_request_completed(rq))
			continue;

		list_del_init(&rq->sched.link);
		__i915_request_unsubmit(rq);

		/* Push the request back into the queue for later resubmission. */
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != prio) {
			prio = rq_prio(rq);
			pl = i915_sched_lookup_priolist(sched_engine, prio);
		}
		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));

1586
		list_add(&rq->sched.link, pl);
1587 1588
		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	}
1589
	spin_unlock(&ce->guc_state.lock);
1590 1591 1592 1593 1594
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

static void __guc_reset_context(struct intel_context *ce, bool stalled)
{
1595
	bool local_stalled;
1596
	struct i915_request *rq;
1597
	unsigned long flags;
1598
	u32 head;
1599 1600 1601 1602
	int i, number_children = ce->parallel.number_children;
	struct intel_context *parent = ce;

	GEM_BUG_ON(intel_context_is_child(ce));
1603

1604 1605
	intel_context_get(ce);

1606
	/*
1607 1608 1609
	 * GuC will implicitly mark the context as non-schedulable when it sends
	 * the reset notification. Make sure our state reflects this change. The
	 * context will be marked enabled on resubmission.
1610
	 */
1611
	spin_lock_irqsave(&ce->guc_state.lock, flags);
1612
	clr_context_enabled(ce);
1613
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1614

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	/*
	 * For each context in the relationship find the hanging request
	 * resetting each context / request as needed
	 */
	for (i = 0; i < number_children + 1; ++i) {
		if (!intel_context_is_pinned(ce))
			goto next_context;

		local_stalled = false;
		rq = intel_context_find_active_request(ce);
		if (!rq) {
			head = ce->ring->tail;
			goto out_replay;
		}
1629

1630 1631
		if (i915_request_started(rq))
			local_stalled = true;
1632

1633 1634
		GEM_BUG_ON(i915_active_is_idle(&ce->active));
		head = intel_ring_wrap(ce->ring, rq->head);
1635

1636
		__i915_request_reset(rq, local_stalled && stalled);
1637
out_replay:
1638 1639 1640 1641 1642 1643 1644 1645
		guc_reset_state(ce, head, local_stalled && stalled);
next_context:
		if (i != number_children)
			ce = list_next_entry(ce, parallel.child_link);
	}

	__unwind_incomplete_requests(parent);
	intel_context_put(parent);
1646 1647 1648 1649 1650 1651
}

void intel_guc_submission_reset(struct intel_guc *guc, bool stalled)
{
	struct intel_context *ce;
	unsigned long index;
1652
	unsigned long flags;
1653 1654 1655 1656 1657 1658

	if (unlikely(!guc_submission_initialized(guc))) {
		/* Reset called during driver load? GuC not yet initialised! */
		return;
	}

1659 1660 1661 1662 1663 1664 1665
	xa_lock_irqsave(&guc->context_lookup, flags);
	xa_for_each(&guc->context_lookup, index, ce) {
		if (!kref_get_unless_zero(&ce->ref))
			continue;

		xa_unlock(&guc->context_lookup);

1666 1667
		if (intel_context_is_pinned(ce) &&
		    !intel_context_is_child(ce))
1668 1669
			__guc_reset_context(ce, stalled);

1670 1671 1672 1673 1674 1675
		intel_context_put(ce);

		xa_lock(&guc->context_lookup);
	}
	xa_unlock_irqrestore(&guc->context_lookup, flags);

1676 1677
	/* GuC is blown away, drop all references to contexts */
	xa_destroy(&guc->context_lookup);
1678 1679
}

1680 1681 1682 1683 1684 1685 1686 1687
static void guc_cancel_context_requests(struct intel_context *ce)
{
	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
	struct i915_request *rq;
	unsigned long flags;

	/* Mark all executing requests as skipped. */
	spin_lock_irqsave(&sched_engine->lock, flags);
1688 1689
	spin_lock(&ce->guc_state.lock);
	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1690
		i915_request_put(i915_request_mark_eio(rq));
1691
	spin_unlock(&ce->guc_state.lock);
1692 1693 1694 1695 1696
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

static void
guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1697 1698 1699 1700 1701
{
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

1702
	/* Can be called during boot if GuC fails to load */
1703
	if (!sched_engine)
1704 1705
		return;

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
1720
	spin_lock_irqsave(&sched_engine->lock, flags);
1721 1722

	/* Flush the queued requests to the timeline list (for retiring). */
1723
	while ((rb = rb_first_cached(&sched_engine->queue))) {
1724 1725
		struct i915_priolist *p = to_priolist(rb);

1726
		priolist_for_each_request_consume(rq, rn, p) {
1727
			list_del_init(&rq->sched.link);
1728

1729
			__i915_request_submit(rq);
1730 1731

			i915_request_put(i915_request_mark_eio(rq));
1732 1733
		}

1734
		rb_erase_cached(&p->node, &sched_engine->queue);
1735 1736 1737 1738 1739
		i915_priolist_free(p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

1740 1741
	sched_engine->queue_priority_hint = INT_MIN;
	sched_engine->queue = RB_ROOT_CACHED;
1742

1743
	spin_unlock_irqrestore(&sched_engine->lock, flags);
1744 1745
}

1746
void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1747
{
1748 1749
	struct intel_context *ce;
	unsigned long index;
1750 1751 1752 1753 1754 1755 1756 1757
	unsigned long flags;

	xa_lock_irqsave(&guc->context_lookup, flags);
	xa_for_each(&guc->context_lookup, index, ce) {
		if (!kref_get_unless_zero(&ce->ref))
			continue;

		xa_unlock(&guc->context_lookup);
1758

1759 1760
		if (intel_context_is_pinned(ce) &&
		    !intel_context_is_child(ce))
1761 1762
			guc_cancel_context_requests(ce);

1763 1764 1765 1766 1767 1768
		intel_context_put(ce);

		xa_lock(&guc->context_lookup);
	}
	xa_unlock_irqrestore(&guc->context_lookup, flags);

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	guc_cancel_sched_engine_requests(guc->sched_engine);

	/* GuC is blown away, drop all references to contexts */
	xa_destroy(&guc->context_lookup);
}

void intel_guc_submission_reset_finish(struct intel_guc *guc)
{
	/* Reset called during driver load or during wedge? */
	if (unlikely(!guc_submission_initialized(guc) ||
1779
		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1780 1781
		return;
	}
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791
	/*
	 * Technically possible for either of these values to be non-zero here,
	 * but very unlikely + harmless. Regardless let's add a warn so we can
	 * see in CI if this happens frequently / a precursor to taking down the
	 * machine.
	 */
	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
	atomic_set(&guc->outstanding_submission_g2h, 0);

1792
	intel_guc_global_policies_update(guc);
1793
	enable_submission(guc);
1794
	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1795 1796
}

1797
static void destroyed_worker_func(struct work_struct *w);
1798
static void reset_fail_worker_func(struct work_struct *w);
1799

1800
/*
1801 1802
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
1803
 */
1804
int intel_guc_submission_init(struct intel_guc *guc)
1805
{
1806
	struct intel_gt *gt = guc_to_gt(guc);
1807
	int ret;
1808

1809
	if (guc->lrc_desc_pool)
1810
		return 0;
1811

1812
	ret = guc_lrc_desc_pool_create(guc);
1813 1814
	if (ret)
		return ret;
1815 1816 1817 1818
	/*
	 * Keep static analysers happy, let them know that we allocated the
	 * vma after testing that it didn't exist earlier.
	 */
1819
	GEM_BUG_ON(!guc->lrc_desc_pool);
1820

1821
	guc->submission_state.guc_ids_bitmap =
1822
		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1823 1824 1825
	if (!guc->submission_state.guc_ids_bitmap)
		return -ENOMEM;

1826
	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1827
	guc->timestamp.shift = gpm_timestamp_shift(gt);
1828

1829
	return 0;
1830 1831
}

1832
void intel_guc_submission_fini(struct intel_guc *guc)
1833
{
1834 1835 1836
	if (!guc->lrc_desc_pool)
		return;

1837
	guc_flush_destroyed_contexts(guc);
1838 1839
	guc_lrc_desc_pool_destroy(guc);
	i915_sched_engine_put(guc->sched_engine);
1840
	bitmap_free(guc->submission_state.guc_ids_bitmap);
1841 1842
}

1843 1844 1845
static inline void queue_request(struct i915_sched_engine *sched_engine,
				 struct i915_request *rq,
				 int prio)
1846
{
1847 1848 1849 1850
	GEM_BUG_ON(!list_empty(&rq->sched.link));
	list_add_tail(&rq->sched.link,
		      i915_sched_lookup_priolist(sched_engine, prio));
	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1851
	tasklet_hi_schedule(&sched_engine->tasklet);
1852 1853 1854 1855 1856
}

static int guc_bypass_tasklet_submit(struct intel_guc *guc,
				     struct i915_request *rq)
{
1857
	int ret = 0;
1858 1859 1860 1861 1862

	__i915_request_submit(rq);

	trace_i915_request_in(rq, 0);

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	if (is_multi_lrc_rq(rq)) {
		if (multi_lrc_submit(rq)) {
			ret = guc_wq_item_append(guc, rq);
			if (!ret)
				ret = guc_add_request(guc, rq);
		}
	} else {
		guc_set_lrc_tail(rq);
		ret = guc_add_request(guc, rq);
	}
1873

1874 1875 1876
	if (unlikely(ret == -EPIPE))
		disable_submission(guc);

1877 1878 1879
	return ret;
}

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
{
	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
	struct intel_context *ce = request_to_scheduling_context(rq);

	return submission_disabled(guc) || guc->stalled_request ||
		!i915_sched_engine_is_empty(sched_engine) ||
		!lrc_desc_registered(guc, ce->guc_id.id);
}

1890 1891 1892 1893 1894 1895 1896 1897 1898
static void guc_submit_request(struct i915_request *rq)
{
	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
	struct intel_guc *guc = &rq->engine->gt->uc.guc;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&sched_engine->lock, flags);

1899
	if (need_tasklet(guc, rq))
1900 1901 1902 1903 1904 1905 1906
		queue_request(sched_engine, rq, rq_prio(rq));
	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
		tasklet_hi_schedule(&sched_engine->tasklet);

	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

1907
static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
1908
{
1909 1910 1911 1912 1913 1914
	int ret;

	GEM_BUG_ON(intel_context_is_child(ce));

	if (intel_context_is_parent(ce))
		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
1915
					      NUMBER_MULTI_LRC_GUC_ID(guc),
1916 1917 1918 1919
					      order_base_2(ce->parallel.number_children
							   + 1));
	else
		ret = ida_simple_get(&guc->submission_state.guc_ids,
1920 1921
				     NUMBER_MULTI_LRC_GUC_ID(guc),
				     guc->submission_state.num_guc_ids,
1922 1923 1924 1925 1926 1927 1928
				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
				     __GFP_NOWARN);
	if (unlikely(ret < 0))
		return ret;

	ce->guc_id.id = ret;
	return 0;
1929 1930 1931 1932
}

static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
1933 1934
	GEM_BUG_ON(intel_context_is_child(ce));

1935
	if (!context_guc_id_invalid(ce)) {
1936 1937 1938 1939 1940 1941 1942 1943
		if (intel_context_is_parent(ce))
			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
					      ce->guc_id.id,
					      order_base_2(ce->parallel.number_children
							   + 1));
		else
			ida_simple_remove(&guc->submission_state.guc_ids,
					  ce->guc_id.id);
1944
		reset_lrc_desc(guc, ce->guc_id.id);
1945 1946
		set_context_guc_id_invalid(ce);
	}
1947 1948
	if (!list_empty(&ce->guc_id.link))
		list_del_init(&ce->guc_id.link);
1949 1950 1951 1952 1953 1954
}

static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	unsigned long flags;

1955
	spin_lock_irqsave(&guc->submission_state.lock, flags);
1956
	__release_guc_id(guc, ce);
1957
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
1958 1959
}

1960
static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
1961
{
1962
	struct intel_context *cn;
1963

1964
	lockdep_assert_held(&guc->submission_state.lock);
1965 1966
	GEM_BUG_ON(intel_context_is_child(ce));
	GEM_BUG_ON(intel_context_is_parent(ce));
1967

1968
	if (!list_empty(&guc->submission_state.guc_id_list)) {
1969
		cn = list_first_entry(&guc->submission_state.guc_id_list,
1970
				      struct intel_context,
1971
				      guc_id.link);
1972

1973 1974 1975 1976
		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
		GEM_BUG_ON(context_guc_id_invalid(cn));
		GEM_BUG_ON(intel_context_is_child(cn));
		GEM_BUG_ON(intel_context_is_parent(cn));
1977

1978
		list_del_init(&cn->guc_id.link);
1979
		ce->guc_id.id = cn->guc_id.id;
1980

1981
		spin_lock(&cn->guc_state.lock);
1982
		clr_context_registered(cn);
1983
		spin_unlock(&cn->guc_state.lock);
1984

1985 1986
		set_context_guc_id_invalid(cn);

1987 1988 1989 1990
#ifdef CONFIG_DRM_I915_SELFTEST
		guc->number_guc_id_stolen++;
#endif

1991
		return 0;
1992 1993 1994 1995 1996
	} else {
		return -EAGAIN;
	}
}

1997
static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
1998 1999 2000
{
	int ret;

2001
	lockdep_assert_held(&guc->submission_state.lock);
2002
	GEM_BUG_ON(intel_context_is_child(ce));
2003

2004
	ret = new_guc_id(guc, ce);
2005
	if (unlikely(ret < 0)) {
2006 2007 2008 2009
		if (intel_context_is_parent(ce))
			return -ENOSPC;

		ret = steal_guc_id(guc, ce);
2010 2011 2012 2013
		if (ret < 0)
			return ret;
	}

2014 2015 2016 2017 2018 2019 2020 2021
	if (intel_context_is_parent(ce)) {
		struct intel_context *child;
		int i = 1;

		for_each_child(ce, child)
			child->guc_id.id = ce->guc_id.id + i++;
	}

2022 2023 2024 2025 2026 2027 2028 2029 2030
	return 0;
}

#define PIN_GUC_ID_TRIES	4
static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	int ret = 0;
	unsigned long flags, tries = PIN_GUC_ID_TRIES;

2031
	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2032 2033

try_again:
2034
	spin_lock_irqsave(&guc->submission_state.lock, flags);
2035

2036 2037
	might_lock(&ce->guc_state.lock);

2038
	if (context_guc_id_invalid(ce)) {
2039
		ret = assign_guc_id(guc, ce);
2040 2041 2042 2043
		if (ret)
			goto out_unlock;
		ret = 1;	/* Indidcates newly assigned guc_id */
	}
2044 2045 2046
	if (!list_empty(&ce->guc_id.link))
		list_del_init(&ce->guc_id.link);
	atomic_inc(&ce->guc_id.ref);
2047 2048

out_unlock:
2049
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2050 2051

	/*
2052
	 * -EAGAIN indicates no guc_id are available, let's retire any
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	 * outstanding requests to see if that frees up a guc_id. If the first
	 * retire didn't help, insert a sleep with the timeslice duration before
	 * attempting to retire more requests. Double the sleep period each
	 * subsequent pass before finally giving up. The sleep period has max of
	 * 100ms and minimum of 1ms.
	 */
	if (ret == -EAGAIN && --tries) {
		if (PIN_GUC_ID_TRIES - tries > 1) {
			unsigned int timeslice_shifted =
				ce->engine->props.timeslice_duration_ms <<
				(PIN_GUC_ID_TRIES - tries - 2);
			unsigned int max = min_t(unsigned int, 100,
						 timeslice_shifted);

			msleep(max_t(unsigned int, max, 1));
		}
		intel_gt_retire_requests(guc_to_gt(guc));
		goto try_again;
	}

	return ret;
}

static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	unsigned long flags;

2080
	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2081
	GEM_BUG_ON(intel_context_is_child(ce));
2082

2083 2084
	if (unlikely(context_guc_id_invalid(ce) ||
		     intel_context_is_parent(ce)))
2085 2086
		return;

2087
	spin_lock_irqsave(&guc->submission_state.lock, flags);
2088 2089
	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
	    !atomic_read(&ce->guc_id.ref))
2090 2091 2092
		list_add_tail(&ce->guc_id.link,
			      &guc->submission_state.guc_id_list);
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2093 2094
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static int __guc_action_register_multi_lrc(struct intel_guc *guc,
					   struct intel_context *ce,
					   u32 guc_id,
					   u32 offset,
					   bool loop)
{
	struct intel_context *child;
	u32 action[4 + MAX_ENGINE_INSTANCE];
	int len = 0;

	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);

	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
	action[len++] = guc_id;
	action[len++] = ce->parallel.number_children + 1;
	action[len++] = offset;
	for_each_child(ce, child) {
		offset += sizeof(struct guc_lrc_desc);
		action[len++] = offset;
	}

	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
}

2119 2120
static int __guc_action_register_context(struct intel_guc *guc,
					 u32 guc_id,
2121 2122
					 u32 offset,
					 bool loop)
2123 2124 2125 2126 2127 2128 2129
{
	u32 action[] = {
		INTEL_GUC_ACTION_REGISTER_CONTEXT,
		guc_id,
		offset,
	};

2130
	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2131
					     0, loop);
2132 2133
}

2134
static int register_context(struct intel_context *ce, bool loop)
2135 2136 2137
{
	struct intel_guc *guc = ce_to_guc(ce);
	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool) +
2138
		ce->guc_id.id * sizeof(struct guc_lrc_desc);
2139
	int ret;
2140

2141
	GEM_BUG_ON(intel_context_is_child(ce));
2142 2143
	trace_intel_context_register(ce);

2144 2145 2146 2147 2148 2149
	if (intel_context_is_parent(ce))
		ret = __guc_action_register_multi_lrc(guc, ce, ce->guc_id.id,
						      offset, loop);
	else
		ret = __guc_action_register_context(guc, ce->guc_id.id, offset,
						    loop);
2150 2151 2152 2153
	if (likely(!ret)) {
		unsigned long flags;

		spin_lock_irqsave(&ce->guc_state.lock, flags);
2154
		set_context_registered(ce);
2155 2156
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	}
2157 2158

	return ret;
2159 2160 2161
}

static int __guc_action_deregister_context(struct intel_guc *guc,
2162
					   u32 guc_id)
2163 2164 2165 2166 2167 2168
{
	u32 action[] = {
		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
		guc_id,
	};

2169 2170
	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2171
					     true);
2172 2173
}

2174
static int deregister_context(struct intel_context *ce, u32 guc_id)
2175 2176 2177
{
	struct intel_guc *guc = ce_to_guc(ce);

2178
	GEM_BUG_ON(intel_context_is_child(ce));
2179 2180
	trace_intel_context_deregister(ce);

2181
	return __guc_action_deregister_context(guc, guc_id);
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
static inline void clear_children_join_go_memory(struct intel_context *ce)
{
	struct parent_scratch *ps = __get_parent_scratch(ce);
	int i;

	ps->go.semaphore = 0;
	for (i = 0; i < ce->parallel.number_children + 1; ++i)
		ps->join[i].semaphore = 0;
}

static inline u32 get_children_go_value(struct intel_context *ce)
{
	return __get_parent_scratch(ce)->go.semaphore;
}

static inline u32 get_children_join_value(struct intel_context *ce,
					  u8 child_index)
{
	return __get_parent_scratch(ce)->join[child_index].semaphore;
}

2205 2206 2207 2208 2209
static void guc_context_policy_init(struct intel_engine_cs *engine,
				    struct guc_lrc_desc *desc)
{
	desc->policy_flags = 0;

2210 2211 2212
	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE;

2213 2214 2215
	/* NB: For both of these, zero means disabled. */
	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2216 2217
}

2218
static int guc_lrc_desc_pin(struct intel_context *ce, bool loop)
2219 2220 2221 2222
{
	struct intel_engine_cs *engine = ce->engine;
	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
	struct intel_guc *guc = &engine->gt->uc.guc;
2223
	u32 desc_idx = ce->guc_id.id;
2224 2225 2226
	struct guc_lrc_desc *desc;
	bool context_registered;
	intel_wakeref_t wakeref;
2227
	struct intel_context *child;
2228 2229 2230
	int ret = 0;

	GEM_BUG_ON(!engine->mask);
2231
	GEM_BUG_ON(!sched_state_is_init(ce));
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246

	/*
	 * Ensure LRC + CT vmas are is same region as write barrier is done
	 * based on CT vma region.
	 */
	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
		   i915_gem_object_is_lmem(ce->ring->vma->obj));

	context_registered = lrc_desc_registered(guc, desc_idx);

	reset_lrc_desc(guc, desc_idx);
	set_lrc_desc_registered(guc, desc_idx, ce);

	desc = __get_lrc_desc(guc, desc_idx);
	desc->engine_class = engine_class_to_guc_class(engine->class);
2247
	desc->engine_submit_mask = engine->logical_mask;
2248
	desc->hw_context_desc = ce->lrc.lrca;
2249
	desc->priority = ce->guc_state.prio;
2250 2251 2252
	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
	guc_context_policy_init(engine, desc);

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	/*
	 * If context is a parent, we need to register a process descriptor
	 * describing a work queue and register all child contexts.
	 */
	if (intel_context_is_parent(ce)) {
		struct guc_process_desc *pdesc;

		ce->parallel.guc.wqi_tail = 0;
		ce->parallel.guc.wqi_head = 0;

		desc->process_desc = i915_ggtt_offset(ce->state) +
2264
			__get_parent_scratch_offset(ce);
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
		desc->wq_addr = i915_ggtt_offset(ce->state) +
			__get_wq_offset(ce);
		desc->wq_size = WQ_SIZE;

		pdesc = __get_process_desc(ce);
		memset(pdesc, 0, sizeof(*(pdesc)));
		pdesc->stage_id = ce->guc_id.id;
		pdesc->wq_base_addr = desc->wq_addr;
		pdesc->wq_size_bytes = desc->wq_size;
		pdesc->wq_status = WQ_STATUS_ACTIVE;

		for_each_child(ce, child) {
			desc = __get_lrc_desc(guc, child->guc_id.id);

			desc->engine_class =
				engine_class_to_guc_class(engine->class);
			desc->hw_context_desc = child->lrc.lrca;
			desc->priority = ce->guc_state.prio;
			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
			guc_context_policy_init(engine, desc);
		}
2286 2287

		clear_children_join_go_memory(ce);
2288 2289
	}

2290 2291 2292 2293 2294 2295 2296 2297 2298
	/*
	 * The context_lookup xarray is used to determine if the hardware
	 * context is currently registered. There are two cases in which it
	 * could be registered either the guc_id has been stolen from another
	 * context or the lrc descriptor address of this context has changed. In
	 * either case the context needs to be deregistered with the GuC before
	 * registering this context.
	 */
	if (context_registered) {
2299 2300 2301
		bool disabled;
		unsigned long flags;

2302
		trace_intel_context_steal_guc_id(ce);
2303 2304 2305 2306 2307 2308
		GEM_BUG_ON(!loop);

		/* Seal race with Reset */
		spin_lock_irqsave(&ce->guc_state.lock, flags);
		disabled = submission_disabled(guc);
		if (likely(!disabled)) {
2309 2310
			set_context_wait_for_deregister_to_register(ce);
			intel_context_get(ce);
2311 2312 2313 2314 2315
		}
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
		if (unlikely(disabled)) {
			reset_lrc_desc(guc, desc_idx);
			return 0;	/* Will get registered later */
2316
		}
2317 2318 2319 2320 2321 2322

		/*
		 * If stealing the guc_id, this ce has the same guc_id as the
		 * context whose guc_id was stolen.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref)
2323
			ret = deregister_context(ce, ce->guc_id.id);
2324
		if (unlikely(ret == -ENODEV))
2325
			ret = 0;	/* Will get registered later */
2326 2327
	} else {
		with_intel_runtime_pm(runtime_pm, wakeref)
2328
			ret = register_context(ce, loop);
2329 2330 2331
		if (unlikely(ret == -EBUSY)) {
			reset_lrc_desc(guc, desc_idx);
		} else if (unlikely(ret == -ENODEV)) {
2332 2333
			reset_lrc_desc(guc, desc_idx);
			ret = 0;	/* Will get registered later */
2334
		}
2335 2336 2337
	}

	return ret;
2338 2339
}

2340 2341 2342 2343
static int __guc_context_pre_pin(struct intel_context *ce,
				 struct intel_engine_cs *engine,
				 struct i915_gem_ww_ctx *ww,
				 void **vaddr)
2344
{
2345
	return lrc_pre_pin(ce, engine, ww, vaddr);
2346 2347
}

2348 2349 2350
static int __guc_context_pin(struct intel_context *ce,
			     struct intel_engine_cs *engine,
			     void *vaddr)
2351
{
2352 2353 2354 2355 2356 2357 2358 2359 2360
	if (i915_ggtt_offset(ce->state) !=
	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);

	/*
	 * GuC context gets pinned in guc_request_alloc. See that function for
	 * explaination of why.
	 */

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	return lrc_pin(ce, engine, vaddr);
}

static int guc_context_pre_pin(struct intel_context *ce,
			       struct i915_gem_ww_ctx *ww,
			       void **vaddr)
{
	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
}

static int guc_context_pin(struct intel_context *ce, void *vaddr)
{
2373 2374 2375 2376 2377 2378
	int ret = __guc_context_pin(ce, ce->engine, vaddr);

	if (likely(!ret && !intel_context_is_barrier(ce)))
		intel_engine_pm_get(ce->engine);

	return ret;
2379 2380
}

2381 2382 2383 2384 2385 2386
static void guc_context_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);
2387 2388 2389

	if (likely(!intel_context_is_barrier(ce)))
		intel_engine_pm_put_async(ce->engine);
2390 2391 2392 2393 2394 2395 2396
}

static void guc_context_post_unpin(struct intel_context *ce)
{
	lrc_post_unpin(ce);
}

2397 2398 2399 2400 2401
static void __guc_context_sched_enable(struct intel_guc *guc,
				       struct intel_context *ce)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2402
		ce->guc_id.id,
2403 2404 2405 2406 2407 2408 2409 2410 2411
		GUC_CONTEXT_ENABLE
	};

	trace_intel_context_sched_enable(ce);

	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
}

2412 2413 2414 2415 2416 2417
static void __guc_context_sched_disable(struct intel_guc *guc,
					struct intel_context *ce,
					u16 guc_id)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2418
		guc_id,	/* ce->guc_id.id not stable */
2419 2420 2421 2422 2423
		GUC_CONTEXT_DISABLE
	};

	GEM_BUG_ON(guc_id == GUC_INVALID_LRC_ID);

2424
	GEM_BUG_ON(intel_context_is_child(ce));
2425
	trace_intel_context_sched_disable(ce);
2426

2427 2428
	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2429 2430
}

2431 2432 2433 2434
static void guc_blocked_fence_complete(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

2435 2436
	if (!i915_sw_fence_done(&ce->guc_state.blocked))
		i915_sw_fence_complete(&ce->guc_state.blocked);
2437 2438 2439 2440 2441
}

static void guc_blocked_fence_reinit(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
2442
	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2443 2444 2445 2446 2447 2448

	/*
	 * This fence is always complete unless a pending schedule disable is
	 * outstanding. We arm the fence here and complete it when we receive
	 * the pending schedule disable complete message.
	 */
2449 2450 2451 2452
	i915_sw_fence_fini(&ce->guc_state.blocked);
	i915_sw_fence_reinit(&ce->guc_state.blocked);
	i915_sw_fence_await(&ce->guc_state.blocked);
	i915_sw_fence_commit(&ce->guc_state.blocked);
2453 2454
}

2455 2456 2457 2458 2459 2460
static u16 prep_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	set_context_pending_disable(ce);
	clr_context_enabled(ce);
2461
	guc_blocked_fence_reinit(ce);
2462
	intel_context_get(ce);
2463

2464
	return ce->guc_id.id;
2465 2466
}

2467 2468 2469 2470 2471 2472 2473 2474 2475
static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
	intel_wakeref_t wakeref;
	u16 guc_id;
	bool enabled;

2476 2477
	GEM_BUG_ON(intel_context_is_child(ce));

2478 2479 2480 2481 2482 2483 2484 2485 2486
	spin_lock_irqsave(&ce->guc_state.lock, flags);

	incr_context_blocked(ce);

	enabled = context_enabled(ce);
	if (unlikely(!enabled || submission_disabled(guc))) {
		if (enabled)
			clr_context_enabled(ce);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2487
		return &ce->guc_state.blocked;
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	}

	/*
	 * We add +2 here as the schedule disable complete CTB handler calls
	 * intel_context_sched_disable_unpin (-2 to pin_count).
	 */
	atomic_add(2, &ce->pin_count);

	guc_id = prep_context_pending_disable(ce);

	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	with_intel_runtime_pm(runtime_pm, wakeref)
		__guc_context_sched_disable(guc, ce, guc_id);

2503
	return &ce->guc_state.blocked;
2504 2505
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
#define SCHED_STATE_MULTI_BLOCKED_MASK \
	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
#define SCHED_STATE_NO_UNBLOCK \
	(SCHED_STATE_MULTI_BLOCKED_MASK | \
	 SCHED_STATE_PENDING_DISABLE | \
	 SCHED_STATE_BANNED)

static bool context_cant_unblock(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
		context_guc_id_invalid(ce) ||
2519
		!lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id) ||
2520 2521 2522
		!intel_context_is_pinned(ce);
}

2523 2524 2525 2526 2527 2528 2529 2530 2531
static void guc_context_unblock(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
	intel_wakeref_t wakeref;
	bool enable;

	GEM_BUG_ON(context_enabled(ce));
2532
	GEM_BUG_ON(intel_context_is_child(ce));
2533 2534 2535 2536

	spin_lock_irqsave(&ce->guc_state.lock, flags);

	if (unlikely(submission_disabled(guc) ||
2537
		     context_cant_unblock(ce))) {
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
		enable = false;
	} else {
		enable = true;
		set_context_pending_enable(ce);
		set_context_enabled(ce);
		intel_context_get(ce);
	}

	decr_context_blocked(ce);

	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	if (enable) {
		with_intel_runtime_pm(runtime_pm, wakeref)
			__guc_context_sched_enable(guc, ce);
	}
}

static void guc_context_cancel_request(struct intel_context *ce,
				       struct i915_request *rq)
{
2559 2560 2561
	struct intel_context *block_context =
		request_to_scheduling_context(rq);

2562
	if (i915_sw_fence_signaled(&rq->submit)) {
2563
		struct i915_sw_fence *fence;
2564

2565
		intel_context_get(ce);
2566
		fence = guc_context_block(block_context);
2567 2568 2569 2570 2571 2572
		i915_sw_fence_wait(fence);
		if (!i915_request_completed(rq)) {
			__i915_request_skip(rq);
			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
					true);
		}
2573

2574
		guc_context_unblock(block_context);
2575
		intel_context_put(ce);
2576 2577 2578
	}
}

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
						 u16 guc_id,
						 u32 preemption_timeout)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SET_CONTEXT_PREEMPTION_TIMEOUT,
		guc_id,
		preemption_timeout
	};

	intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
}

static void guc_context_ban(struct intel_context *ce, struct i915_request *rq)
{
	struct intel_guc *guc = ce_to_guc(ce);
	struct intel_runtime_pm *runtime_pm =
		&ce->engine->gt->i915->runtime_pm;
	intel_wakeref_t wakeref;
	unsigned long flags;

2600 2601
	GEM_BUG_ON(intel_context_is_child(ce));

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	guc_flush_submissions(guc);

	spin_lock_irqsave(&ce->guc_state.lock, flags);
	set_context_banned(ce);

	if (submission_disabled(guc) ||
	    (!context_enabled(ce) && !context_pending_disable(ce))) {
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);

		guc_cancel_context_requests(ce);
		intel_engine_signal_breadcrumbs(ce->engine);
	} else if (!context_pending_disable(ce)) {
		u16 guc_id;

		/*
		 * We add +2 here as the schedule disable complete CTB handler
		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
		 */
		atomic_add(2, &ce->pin_count);

		guc_id = prep_context_pending_disable(ce);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);

		/*
		 * In addition to disabling scheduling, set the preemption
		 * timeout to the minimum value (1 us) so the banned context
		 * gets kicked off the HW ASAP.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref) {
			__guc_context_set_preemption_timeout(guc, guc_id, 1);
			__guc_context_sched_disable(guc, ce, guc_id);
		}
	} else {
		if (!context_guc_id_invalid(ce))
			with_intel_runtime_pm(runtime_pm, wakeref)
				__guc_context_set_preemption_timeout(guc,
2638
								     ce->guc_id.id,
2639 2640 2641 2642 2643
								     1);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	}
}

2644 2645 2646 2647
static void guc_context_sched_disable(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
2648
	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
2649
	intel_wakeref_t wakeref;
2650
	u16 guc_id;
2651

2652 2653
	GEM_BUG_ON(intel_context_is_child(ce));

2654
	spin_lock_irqsave(&ce->guc_state.lock, flags);
2655 2656

	/*
2657 2658 2659 2660 2661
	 * We have to check if the context has been disabled by another thread,
	 * check if submssion has been disabled to seal a race with reset and
	 * finally check if any more requests have been committed to the
	 * context ensursing that a request doesn't slip through the
	 * 'context_pending_disable' fence.
2662
	 */
2663 2664
	if (unlikely(!context_enabled(ce) || submission_disabled(guc) ||
		     context_has_committed_requests(ce))) {
2665
		clr_context_enabled(ce);
2666 2667 2668
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
		goto unpin;
	}
2669
	guc_id = prep_context_pending_disable(ce);
2670

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	with_intel_runtime_pm(runtime_pm, wakeref)
		__guc_context_sched_disable(guc, ce, guc_id);

	return;
unpin:
	intel_context_sched_disable_unpin(ce);
}

2681 2682 2683
static inline void guc_lrc_desc_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
2684 2685 2686
	struct intel_gt *gt = guc_to_gt(guc);
	unsigned long flags;
	bool disabled;
2687

2688
	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
2689 2690
	GEM_BUG_ON(!lrc_desc_registered(guc, ce->guc_id.id));
	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
2691
	GEM_BUG_ON(context_enabled(ce));
2692

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	/* Seal race with Reset */
	spin_lock_irqsave(&ce->guc_state.lock, flags);
	disabled = submission_disabled(guc);
	if (likely(!disabled)) {
		__intel_gt_pm_get(gt);
		set_context_destroyed(ce);
		clr_context_registered(ce);
	}
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	if (unlikely(disabled)) {
2703
		release_guc_id(guc, ce);
2704 2705 2706 2707
		__guc_context_destroy(ce);
		return;
	}

2708
	deregister_context(ce, ce->guc_id.id);
2709 2710
}

2711 2712
static void __guc_context_destroy(struct intel_context *ce)
{
2713 2714 2715 2716
	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
2717
	GEM_BUG_ON(ce->guc_state.number_committed_requests);
2718

2719 2720 2721 2722 2723 2724 2725
	lrc_fini(ce);
	intel_context_fini(ce);

	if (intel_engine_is_virtual(ce->engine)) {
		struct guc_virtual_engine *ve =
			container_of(ce, typeof(*ve), context);

2726 2727 2728
		if (ve->base.breadcrumbs)
			intel_breadcrumbs_put(ve->base.breadcrumbs);

2729 2730 2731 2732 2733 2734
		kfree(ve);
	} else {
		intel_context_free(ce);
	}
}

2735 2736
static void guc_flush_destroyed_contexts(struct intel_guc *guc)
{
2737
	struct intel_context *ce;
2738 2739 2740 2741 2742
	unsigned long flags;

	GEM_BUG_ON(!submission_disabled(guc) &&
		   guc_submission_initialized(guc));

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
		spin_lock_irqsave(&guc->submission_state.lock, flags);
		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
					      struct intel_context,
					      destroyed_link);
		if (ce)
			list_del_init(&ce->destroyed_link);
		spin_unlock_irqrestore(&guc->submission_state.lock, flags);

		if (!ce)
			break;

		release_guc_id(guc, ce);
2756 2757 2758 2759 2760 2761
		__guc_context_destroy(ce);
	}
}

static void deregister_destroyed_contexts(struct intel_guc *guc)
{
2762
	struct intel_context *ce;
2763 2764
	unsigned long flags;

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
		spin_lock_irqsave(&guc->submission_state.lock, flags);
		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
					      struct intel_context,
					      destroyed_link);
		if (ce)
			list_del_init(&ce->destroyed_link);
		spin_unlock_irqrestore(&guc->submission_state.lock, flags);

		if (!ce)
			break;

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
		guc_lrc_desc_unpin(ce);
	}
}

static void destroyed_worker_func(struct work_struct *w)
{
	struct intel_guc *guc = container_of(w, struct intel_guc,
					     submission_state.destroyed_worker);
	struct intel_gt *gt = guc_to_gt(guc);
	int tmp;

	with_intel_gt_pm(gt, tmp)
		deregister_destroyed_contexts(guc);
}

2792 2793 2794 2795 2796
static void guc_context_destroy(struct kref *kref)
{
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
2797
	bool destroy;
2798 2799 2800 2801

	/*
	 * If the guc_id is invalid this context has been stolen and we can free
	 * it immediately. Also can be freed immediately if the context is not
2802
	 * registered with the GuC or the GuC is in the middle of a reset.
2803
	 */
2804
	spin_lock_irqsave(&guc->submission_state.lock, flags);
2805 2806 2807 2808 2809 2810 2811 2812 2813
	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
		!lrc_desc_registered(guc, ce->guc_id.id);
	if (likely(!destroy)) {
		if (!list_empty(&ce->guc_id.link))
			list_del_init(&ce->guc_id.link);
		list_add_tail(&ce->destroyed_link,
			      &guc->submission_state.destroyed_contexts);
	} else {
		__release_guc_id(guc, ce);
2814
	}
2815
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2816
	if (unlikely(destroy)) {
2817 2818 2819 2820
		__guc_context_destroy(ce);
		return;
	}

2821
	/*
2822 2823 2824
	 * We use a worker to issue the H2G to deregister the context as we can
	 * take the GT PM for the first time which isn't allowed from an atomic
	 * context.
2825
	 */
2826
	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
2827 2828 2829 2830 2831 2832 2833
}

static int guc_context_alloc(struct intel_context *ce)
{
	return lrc_alloc(ce, ce->engine);
}

2834 2835 2836 2837 2838 2839
static void guc_context_set_prio(struct intel_guc *guc,
				 struct intel_context *ce,
				 u8 prio)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SET_CONTEXT_PRIORITY,
2840
		ce->guc_id.id,
2841 2842 2843 2844 2845
		prio,
	};

	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
		   prio > GUC_CLIENT_PRIORITY_NORMAL);
2846
	lockdep_assert_held(&ce->guc_state.lock);
2847

2848
	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
2849
	    !context_registered(ce)) {
2850
		ce->guc_state.prio = prio;
2851
		return;
2852
	}
2853 2854 2855

	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);

2856
	ce->guc_state.prio = prio;
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	trace_intel_context_set_prio(ce);
}

static inline u8 map_i915_prio_to_guc_prio(int prio)
{
	if (prio == I915_PRIORITY_NORMAL)
		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
	else if (prio < I915_PRIORITY_NORMAL)
		return GUC_CLIENT_PRIORITY_NORMAL;
	else if (prio < I915_PRIORITY_DISPLAY)
		return GUC_CLIENT_PRIORITY_HIGH;
	else
		return GUC_CLIENT_PRIORITY_KMD_HIGH;
}

static inline void add_context_inflight_prio(struct intel_context *ce,
					     u8 guc_prio)
{
2875 2876
	lockdep_assert_held(&ce->guc_state.lock);
	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
2877

2878
	++ce->guc_state.prio_count[guc_prio];
2879 2880

	/* Overflow protection */
2881
	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
2882 2883 2884 2885 2886
}

static inline void sub_context_inflight_prio(struct intel_context *ce,
					     u8 guc_prio)
{
2887 2888
	lockdep_assert_held(&ce->guc_state.lock);
	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
2889 2890

	/* Underflow protection */
2891
	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
2892

2893
	--ce->guc_state.prio_count[guc_prio];
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
}

static inline void update_context_prio(struct intel_context *ce)
{
	struct intel_guc *guc = &ce->engine->gt->uc.guc;
	int i;

	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);

2904
	lockdep_assert_held(&ce->guc_state.lock);
2905

2906 2907
	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
		if (ce->guc_state.prio_count[i]) {
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
			guc_context_set_prio(guc, ce, i);
			break;
		}
	}
}

static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
{
	/* Lower value is higher priority */
	return new_guc_prio < old_guc_prio;
}

2920 2921
static void add_to_context(struct i915_request *rq)
{
2922
	struct intel_context *ce = request_to_scheduling_context(rq);
2923 2924
	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));

2925
	GEM_BUG_ON(intel_context_is_child(ce));
2926
	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
2927

2928 2929
	spin_lock(&ce->guc_state.lock);
	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	if (rq->guc_prio == GUC_PRIO_INIT) {
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
		sub_context_inflight_prio(ce, rq->guc_prio);
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
	}
	update_context_prio(ce);

2941
	spin_unlock(&ce->guc_state.lock);
2942 2943
}

2944 2945
static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
{
2946
	lockdep_assert_held(&ce->guc_state.lock);
2947 2948 2949 2950 2951 2952 2953 2954 2955

	if (rq->guc_prio != GUC_PRIO_INIT &&
	    rq->guc_prio != GUC_PRIO_FINI) {
		sub_context_inflight_prio(ce, rq->guc_prio);
		update_context_prio(ce);
	}
	rq->guc_prio = GUC_PRIO_FINI;
}

2956 2957
static void remove_from_context(struct i915_request *rq)
{
2958 2959 2960
	struct intel_context *ce = request_to_scheduling_context(rq);

	GEM_BUG_ON(intel_context_is_child(ce));
2961

2962
	spin_lock_irq(&ce->guc_state.lock);
2963 2964 2965 2966 2967 2968 2969

	list_del_init(&rq->sched.link);
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);

	/* Prevent further __await_execution() registering a cb, then flush */
	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);

2970 2971
	guc_prio_fini(rq, ce);

2972
	decr_context_committed_requests(ce);
2973

2974 2975
	spin_unlock_irq(&ce->guc_state.lock);

2976
	atomic_dec(&ce->guc_id.ref);
2977 2978 2979
	i915_request_notify_execute_cb_imm(rq);
}

2980 2981 2982 2983 2984
static const struct intel_context_ops guc_context_ops = {
	.alloc = guc_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_context_pin,
2985 2986
	.unpin = guc_context_unpin,
	.post_unpin = guc_context_post_unpin,
2987

2988 2989
	.ban = guc_context_ban,

2990 2991
	.cancel_request = guc_context_cancel_request,

2992 2993 2994
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

2995 2996
	.sched_disable = guc_context_sched_disable,

2997
	.reset = lrc_reset,
2998
	.destroy = guc_context_destroy,
2999 3000

	.create_virtual = guc_create_virtual,
3001
	.create_parallel = guc_create_parallel,
3002 3003
};

3004 3005 3006 3007 3008 3009 3010 3011
static void submit_work_cb(struct irq_work *wrk)
{
	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);

	might_lock(&rq->engine->sched_engine->lock);
	i915_sw_fence_complete(&rq->submit);
}

3012 3013
static void __guc_signal_context_fence(struct intel_context *ce)
{
3014
	struct i915_request *rq, *rn;
3015 3016 3017

	lockdep_assert_held(&ce->guc_state.lock);

3018 3019 3020
	if (!list_empty(&ce->guc_state.fences))
		trace_intel_context_fence_release(ce);

3021 3022 3023 3024 3025 3026 3027 3028 3029
	/*
	 * Use an IRQ to ensure locking order of sched_engine->lock ->
	 * ce->guc_state.lock is preserved.
	 */
	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
				 guc_fence_link) {
		list_del(&rq->guc_fence_link);
		irq_work_queue(&rq->submit_work);
	}
3030 3031 3032 3033 3034 3035 3036 3037

	INIT_LIST_HEAD(&ce->guc_state.fences);
}

static void guc_signal_context_fence(struct intel_context *ce)
{
	unsigned long flags;

3038 3039
	GEM_BUG_ON(intel_context_is_child(ce));

3040 3041 3042 3043 3044 3045
	spin_lock_irqsave(&ce->guc_state.lock, flags);
	clr_context_wait_for_deregister_to_register(ce);
	__guc_signal_context_fence(ce);
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
}

3046 3047
static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
{
3048
	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3049
		!lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id)) &&
3050
		!submission_disabled(ce_to_guc(ce));
3051 3052
}

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
static void guc_context_init(struct intel_context *ce)
{
	const struct i915_gem_context *ctx;
	int prio = I915_CONTEXT_DEFAULT_PRIORITY;

	rcu_read_lock();
	ctx = rcu_dereference(ce->gem_context);
	if (ctx)
		prio = ctx->sched.priority;
	rcu_read_unlock();

3064
	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3065 3066 3067
	set_bit(CONTEXT_GUC_INIT, &ce->flags);
}

3068
static int guc_request_alloc(struct i915_request *rq)
3069
{
3070
	struct intel_context *ce = request_to_scheduling_context(rq);
3071
	struct intel_guc *guc = ce_to_guc(ce);
3072
	unsigned long flags;
3073 3074
	int ret;

3075
	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3076 3077 3078 3079 3080 3081

	/*
	 * Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
3082
	rq->reserved_space += GUC_REQUEST_SIZE;
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092

	/*
	 * Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	/* Unconditionally invalidate GPU caches and TLBs. */
3093
	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3094 3095 3096
	if (ret)
		return ret;

3097
	rq->reserved_space -= GUC_REQUEST_SIZE;
3098

3099 3100 3101
	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
		guc_context_init(ce);

3102 3103 3104
	/*
	 * Call pin_guc_id here rather than in the pinning step as with
	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3105 3106
	 * guc_id and creating horrible race conditions. This is especially bad
	 * when guc_id are being stolen due to over subscription. By the time
3107 3108
	 * this function is reached, it is guaranteed that the guc_id will be
	 * persistent until the generated request is retired. Thus, sealing these
3109
	 * race conditions. It is still safe to fail here if guc_id are
3110 3111 3112 3113 3114 3115 3116 3117 3118
	 * exhausted and return -EAGAIN to the user indicating that they can try
	 * again in the future.
	 *
	 * There is no need for a lock here as the timeline mutex ensures at
	 * most one context can be executing this code path at once. The
	 * guc_id_ref is incremented once for every request in flight and
	 * decremented on each retire. When it is zero, a lock around the
	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
	 */
3119
	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3120
		goto out;
3121

3122 3123 3124 3125
	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
	if (unlikely(ret < 0))
		return ret;
	if (context_needs_register(ce, !!ret)) {
3126
		ret = guc_lrc_desc_pin(ce, true);
3127
		if (unlikely(ret)) {	/* unwind */
3128 3129 3130 3131
			if (ret == -EPIPE) {
				disable_submission(guc);
				goto out;	/* GPU will be reset */
			}
3132
			atomic_dec(&ce->guc_id.ref);
3133 3134 3135 3136
			unpin_guc_id(guc, ce);
			return ret;
		}
	}
3137

3138
	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3139

3140 3141 3142
out:
	/*
	 * We block all requests on this context if a G2H is pending for a
3143 3144 3145 3146
	 * schedule disable or context deregistration as the GuC will fail a
	 * schedule enable or context registration if either G2H is pending
	 * respectfully. Once a G2H returns, the fence is released that is
	 * blocking these requests (see guc_signal_context_fence).
3147 3148
	 */
	spin_lock_irqsave(&ce->guc_state.lock, flags);
3149 3150
	if (context_wait_for_deregister_to_register(ce) ||
	    context_pending_disable(ce)) {
3151
		init_irq_work(&rq->submit_work, submit_work_cb);
3152 3153 3154 3155
		i915_sw_fence_await(&rq->submit);

		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
	}
3156
	incr_context_committed_requests(ce);
3157 3158
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

3159
	return 0;
3160 3161
}

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
static int guc_virtual_context_pre_pin(struct intel_context *ce,
				       struct i915_gem_ww_ctx *ww,
				       void **vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	return __guc_context_pre_pin(ce, engine, ww, vaddr);
}

static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3174 3175 3176 3177 3178 3179
	int ret = __guc_context_pin(ce, engine, vaddr);
	intel_engine_mask_t tmp, mask = ce->engine->mask;

	if (likely(!ret))
		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
			intel_engine_pm_get(engine);
3180

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	return ret;
}

static void guc_virtual_context_unpin(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;
	struct intel_guc *guc = ce_to_guc(ce);

	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_put_async(engine);
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
}

static void guc_virtual_context_enter(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_get(engine);

	intel_timeline_enter(ce->timeline);
}

static void guc_virtual_context_exit(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_put(engine);

	intel_timeline_exit(ce->timeline);
}

static int guc_virtual_context_alloc(struct intel_context *ce)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	return lrc_alloc(ce, engine);
}

static const struct intel_context_ops virtual_guc_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_virtual_context_pre_pin,
	.pin = guc_virtual_context_pin,
3234
	.unpin = guc_virtual_context_unpin,
3235 3236
	.post_unpin = guc_context_post_unpin,

3237 3238
	.ban = guc_context_ban,

3239 3240
	.cancel_request = guc_context_cancel_request,

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.sched_disable = guc_context_sched_disable,

	.destroy = guc_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
	struct intel_guc *guc = ce_to_guc(ce);
	int ret;

	GEM_BUG_ON(!intel_context_is_parent(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	ret = pin_guc_id(guc, ce);
	if (unlikely(ret < 0))
		return ret;

	return __guc_context_pin(ce, engine, vaddr);
}

static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	__intel_context_pin(ce->parallel.parent);
	return __guc_context_pin(ce, engine, vaddr);
}

static void guc_parent_context_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);

	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));
	GEM_BUG_ON(!intel_context_is_parent(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);
}

static void guc_child_context_unpin(struct intel_context *ce)
{
	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));
	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	lrc_unpin(ce);
}

static void guc_child_context_post_unpin(struct intel_context *ce)
{
	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	lrc_post_unpin(ce);
	intel_context_unpin(ce->parallel.parent);
}

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
static void guc_child_context_destroy(struct kref *kref)
{
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

	__guc_context_destroy(ce);
}

static const struct intel_context_ops virtual_parent_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_parent_context_pin,
	.unpin = guc_parent_context_unpin,
	.post_unpin = guc_context_post_unpin,

	.ban = guc_context_ban,

	.cancel_request = guc_context_cancel_request,

	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.sched_disable = guc_context_sched_disable,

	.destroy = guc_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

static const struct intel_context_ops virtual_child_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_child_context_pin,
	.unpin = guc_child_context_unpin,
	.post_unpin = guc_child_context_post_unpin,

	.cancel_request = guc_context_cancel_request,

	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.destroy = guc_child_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
/*
 * The below override of the breadcrumbs is enabled when the user configures a
 * context for parallel submission (multi-lrc, parent-child).
 *
 * The overridden breadcrumbs implements an algorithm which allows the GuC to
 * safely preempt all the hw contexts configured for parallel submission
 * between each BB. The contract between the i915 and GuC is if the parent
 * context can be preempted, all the children can be preempted, and the GuC will
 * always try to preempt the parent before the children. A handshake between the
 * parent / children breadcrumbs ensures the i915 holds up its end of the deal
 * creating a window to preempt between each set of BBs.
 */
static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
						     u64 offset, u32 len,
						     const unsigned int flags);
static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
						    u64 offset, u32 len,
						    const unsigned int flags);
static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						 u32 *cs);
static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						u32 *cs);

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
static struct intel_context *
guc_create_parallel(struct intel_engine_cs **engines,
		    unsigned int num_siblings,
		    unsigned int width)
{
	struct intel_engine_cs **siblings = NULL;
	struct intel_context *parent = NULL, *ce, *err;
	int i, j;

	siblings = kmalloc_array(num_siblings,
				 sizeof(*siblings),
				 GFP_KERNEL);
	if (!siblings)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < width; ++i) {
		for (j = 0; j < num_siblings; ++j)
			siblings[j] = engines[i * num_siblings + j];

		ce = intel_engine_create_virtual(siblings, num_siblings,
						 FORCE_VIRTUAL);
3404 3405
		if (IS_ERR(ce)) {
			err = ERR_CAST(ce);
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
			goto unwind;
		}

		if (i == 0) {
			parent = ce;
			parent->ops = &virtual_parent_context_ops;
		} else {
			ce->ops = &virtual_child_context_ops;
			intel_context_bind_parent_child(parent, ce);
		}
	}

M
Matthew Brost 已提交
3418 3419
	parent->parallel.fence_context = dma_fence_context_alloc(1);

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	parent->engine->emit_bb_start =
		emit_bb_start_parent_no_preempt_mid_batch;
	parent->engine->emit_fini_breadcrumb =
		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
	parent->engine->emit_fini_breadcrumb_dw =
		12 + 4 * parent->parallel.number_children;
	for_each_child(parent, ce) {
		ce->engine->emit_bb_start =
			emit_bb_start_child_no_preempt_mid_batch;
		ce->engine->emit_fini_breadcrumb =
			emit_fini_breadcrumb_child_no_preempt_mid_batch;
		ce->engine->emit_fini_breadcrumb_dw = 16;
	}

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	kfree(siblings);
	return parent;

unwind:
	if (parent)
		intel_context_put(parent);
	kfree(siblings);
	return err;
}

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *sibling;
	intel_engine_mask_t tmp, mask = b->engine_mask;
	bool result = false;

	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
		result |= intel_engine_irq_enable(sibling);

	return result;
}

static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *sibling;
	intel_engine_mask_t tmp, mask = b->engine_mask;

	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
		intel_engine_irq_disable(sibling);
}

static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
{
	int i;

	/*
	 * In GuC submission mode we do not know which physical engine a request
	 * will be scheduled on, this creates a problem because the breadcrumb
	 * interrupt is per physical engine. To work around this we attach
	 * requests and direct all breadcrumb interrupts to the first instance
	 * of an engine per class. In addition all breadcrumb interrupts are
	 * enabled / disabled across an engine class in unison.
	 */
	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
		struct intel_engine_cs *sibling =
			engine->gt->engine_class[engine->class][i];

		if (sibling) {
			if (engine->breadcrumbs != sibling->breadcrumbs) {
				intel_breadcrumbs_put(engine->breadcrumbs);
				engine->breadcrumbs =
					intel_breadcrumbs_get(sibling->breadcrumbs);
			}
			break;
		}
	}

	if (engine->breadcrumbs) {
		engine->breadcrumbs->engine_mask |= engine->mask;
		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
	}
}

3500 3501 3502
static void guc_bump_inflight_request_prio(struct i915_request *rq,
					   int prio)
{
3503
	struct intel_context *ce = request_to_scheduling_context(rq);
3504 3505 3506 3507 3508 3509 3510 3511 3512
	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);

	/* Short circuit function */
	if (prio < I915_PRIORITY_NORMAL ||
	    rq->guc_prio == GUC_PRIO_FINI ||
	    (rq->guc_prio != GUC_PRIO_INIT &&
	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
		return;

3513
	spin_lock(&ce->guc_state.lock);
3514 3515 3516 3517 3518 3519 3520
	if (rq->guc_prio != GUC_PRIO_FINI) {
		if (rq->guc_prio != GUC_PRIO_INIT)
			sub_context_inflight_prio(ce, rq->guc_prio);
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
		update_context_prio(ce);
	}
3521
	spin_unlock(&ce->guc_state.lock);
3522 3523 3524 3525
}

static void guc_retire_inflight_request_prio(struct i915_request *rq)
{
3526
	struct intel_context *ce = request_to_scheduling_context(rq);
3527

3528
	spin_lock(&ce->guc_state.lock);
3529
	guc_prio_fini(rq, ce);
3530
	spin_unlock(&ce->guc_state.lock);
3531 3532
}

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
static void sanitize_hwsp(struct intel_engine_cs *engine)
{
	struct intel_timeline *tl;

	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
		intel_timeline_reset_seqno(tl);
}

static void guc_sanitize(struct intel_engine_cs *engine)
{
	/*
	 * Poison residual state on resume, in case the suspend didn't!
	 *
	 * We have to assume that across suspend/resume (or other loss
	 * of control) that the contents of our pinned buffers has been
	 * lost, replaced by garbage. Since this doesn't always happen,
	 * let's poison such state so that we more quickly spot when
	 * we falsely assume it has been preserved.
	 */
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);

	/*
	 * The kernel_context HWSP is stored in the status_page. As above,
	 * that may be lost on resume/initialisation, and so we need to
	 * reset the value in the HWSP.
	 */
	sanitize_hwsp(engine);

	/* And scrub the dirty cachelines for the HWSP */
	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
3564 3565

	intel_engine_reset_pinned_contexts(engine);
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
}

static void setup_hwsp(struct intel_engine_cs *engine)
{
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */

	ENGINE_WRITE_FW(engine,
			RING_HWS_PGA,
			i915_ggtt_offset(engine->status_page.vma));
}

static void start_engine(struct intel_engine_cs *engine)
{
	ENGINE_WRITE_FW(engine,
			RING_MODE_GEN7,
			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));

	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
	ENGINE_POSTING_READ(engine, RING_MI_MODE);
}

static int guc_resume(struct intel_engine_cs *engine)
{
	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);

	intel_mocs_init_engine(engine);

	intel_breadcrumbs_reset(engine->breadcrumbs);

	setup_hwsp(engine);
	start_engine(engine);

3598 3599 3600
	if (engine->class == RENDER_CLASS)
		xehp_enable_ccs_engines(engine);

3601 3602 3603
	return 0;
}

3604 3605 3606 3607 3608
static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
{
	return !sched_engine->tasklet.callback;
}

3609 3610
static void guc_set_default_submission(struct intel_engine_cs *engine)
{
3611
	engine->submit_request = guc_submit_request;
3612 3613
}

3614 3615 3616 3617 3618
static inline void guc_kernel_context_pin(struct intel_guc *guc,
					  struct intel_context *ce)
{
	if (context_guc_id_invalid(ce))
		pin_guc_id(guc, ce);
3619
	guc_lrc_desc_pin(ce, true);
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
}

static inline void guc_init_lrc_mapping(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	/* make sure all descriptors are clean... */
	xa_destroy(&guc->context_lookup);

	/*
	 * Some contexts might have been pinned before we enabled GuC
	 * submission, so we need to add them to the GuC bookeeping.
	 * Also, after a reset the of the GuC we want to make sure that the
	 * information shared with GuC is properly reset. The kernel LRCs are
	 * not attached to the gem_context, so they need to be added separately.
	 *
	 * Note: we purposefully do not check the return of guc_lrc_desc_pin,
	 * because that function can only fail if a reset is just starting. This
	 * is at the end of reset so presumably another reset isn't happening
	 * and even it did this code would be run again.
	 */

3644 3645 3646 3647 3648 3649 3650
	for_each_engine(engine, gt, id) {
		struct intel_context *ce;

		list_for_each_entry(ce, &engine->pinned_contexts_list,
				    pinned_contexts_link)
			guc_kernel_context_pin(guc, ce);
	}
3651 3652
}

3653
static void guc_release(struct intel_engine_cs *engine)
3654
{
3655
	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3656

3657 3658 3659 3660
	intel_engine_cleanup_common(engine);
	lrc_fini_wa_ctx(engine);
}

3661 3662 3663 3664 3665 3666 3667 3668 3669
static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
{
	struct intel_engine_cs *e;
	intel_engine_mask_t tmp, mask = engine->mask;

	for_each_engine_masked(e, engine->gt, mask, tmp)
		e->serial++;
}

3670 3671 3672 3673 3674 3675 3676 3677
static void guc_default_vfuncs(struct intel_engine_cs *engine)
{
	/* Default vfuncs which can be overridden by each engine. */

	engine->resume = guc_resume;

	engine->cops = &guc_context_ops;
	engine->request_alloc = guc_request_alloc;
3678 3679
	engine->add_active_request = add_to_context;
	engine->remove_active_request = remove_from_context;
3680

3681
	engine->sched_engine->schedule = i915_schedule;
3682

3683 3684 3685 3686
	engine->reset.prepare = guc_reset_nop;
	engine->reset.rewind = guc_rewind_nop;
	engine->reset.cancel = guc_reset_nop;
	engine->reset.finish = guc_reset_nop;
3687

3688 3689 3690
	engine->emit_flush = gen8_emit_flush_xcs;
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3691
	if (GRAPHICS_VER(engine->i915) >= 12) {
3692 3693 3694 3695
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
		engine->emit_flush = gen12_emit_flush_xcs;
	}
	engine->set_default_submission = guc_set_default_submission;
3696
	engine->busyness = guc_engine_busyness;
3697

3698
	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3699
	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3700
	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710

	/*
	 * TODO: GuC supports timeslicing and semaphores as well, but they're
	 * handled by the firmware so some minor tweaks are required before
	 * enabling.
	 *
	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
	 */

	engine->emit_bb_start = gen8_emit_bb_start;
3711
}
3712

3713 3714
static void rcs_submission_override(struct intel_engine_cs *engine)
{
3715
	switch (GRAPHICS_VER(engine->i915)) {
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
	case 12:
		engine->emit_flush = gen12_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
		break;
	case 11:
		engine->emit_flush = gen11_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
		break;
	default:
		engine->emit_flush = gen8_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
		break;
3728
	}
3729 3730
}

3731 3732 3733
static inline void guc_default_irqs(struct intel_engine_cs *engine)
{
	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
3734
	intel_engine_set_irq_handler(engine, cs_irq_handler);
3735 3736
}

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
static void guc_sched_engine_destroy(struct kref *kref)
{
	struct i915_sched_engine *sched_engine =
		container_of(kref, typeof(*sched_engine), ref);
	struct intel_guc *guc = sched_engine->private_data;

	guc->sched_engine = NULL;
	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
	kfree(sched_engine);
}

3748 3749 3750
int intel_guc_submission_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
3751
	struct intel_guc *guc = &engine->gt->uc.guc;
3752 3753 3754 3755 3756

	/*
	 * The setup relies on several assumptions (e.g. irqs always enabled)
	 * that are only valid on gen11+
	 */
3757
	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
3758

3759 3760 3761 3762 3763 3764
	if (!guc->sched_engine) {
		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
		if (!guc->sched_engine)
			return -ENOMEM;

		guc->sched_engine->schedule = i915_schedule;
3765
		guc->sched_engine->disabled = guc_sched_engine_disabled;
3766
		guc->sched_engine->private_data = guc;
3767
		guc->sched_engine->destroy = guc_sched_engine_destroy;
3768 3769 3770 3771
		guc->sched_engine->bump_inflight_request_prio =
			guc_bump_inflight_request_prio;
		guc->sched_engine->retire_inflight_request_prio =
			guc_retire_inflight_request_prio;
3772 3773 3774 3775 3776
		tasklet_setup(&guc->sched_engine->tasklet,
			      guc_submission_tasklet);
	}
	i915_sched_engine_put(engine->sched_engine);
	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
3777 3778 3779

	guc_default_vfuncs(engine);
	guc_default_irqs(engine);
3780
	guc_init_breadcrumbs(engine);
3781

3782
	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
		rcs_submission_override(engine);

	lrc_init_wa_ctx(engine);

	/* Finally, take ownership and responsibility for cleanup! */
	engine->sanitize = guc_sanitize;
	engine->release = guc_release;

	return 0;
}

void intel_guc_submission_enable(struct intel_guc *guc)
{
3796
	guc_init_lrc_mapping(guc);
3797
	guc_init_engine_stats(guc);
3798 3799
}

3800
void intel_guc_submission_disable(struct intel_guc *guc)
3801
{
3802
	/* Note: By the time we're here, GuC may have already been reset */
3803
}
3804

3805 3806 3807 3808 3809 3810 3811
static bool __guc_submission_supported(struct intel_guc *guc)
{
	/* GuC submission is unavailable for pre-Gen11 */
	return intel_guc_is_supported(guc) &&
	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
}

3812
static bool __guc_submission_selected(struct intel_guc *guc)
3813
{
3814 3815
	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;

3816
	if (!intel_guc_submission_is_supported(guc))
3817 3818
		return false;

3819
	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
3820 3821 3822 3823
}

void intel_guc_submission_init_early(struct intel_guc *guc)
{
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);

	spin_lock_init(&guc->submission_state.lock);
	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
	ida_init(&guc->submission_state.guc_ids);
	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
	INIT_WORK(&guc->submission_state.destroyed_worker,
		  destroyed_worker_func);
	INIT_WORK(&guc->submission_state.reset_fail_worker,
		  reset_fail_worker_func);

	spin_lock_init(&guc->timestamp.lock);
	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);

3838
	guc->submission_state.num_guc_ids = GUC_MAX_LRC_DESCRIPTORS;
3839
	guc->submission_supported = __guc_submission_supported(guc);
3840
	guc->submission_selected = __guc_submission_selected(guc);
3841
}
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860

static inline struct intel_context *
g2h_context_lookup(struct intel_guc *guc, u32 desc_idx)
{
	struct intel_context *ce;

	if (unlikely(desc_idx >= GUC_MAX_LRC_DESCRIPTORS)) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Invalid desc_idx %u", desc_idx);
		return NULL;
	}

	ce = __get_context(guc, desc_idx);
	if (unlikely(!ce)) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Context is NULL, desc_idx %u", desc_idx);
		return NULL;
	}

3861 3862 3863 3864 3865 3866
	if (unlikely(intel_context_is_child(ce))) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Context is child, desc_idx %u", desc_idx);
		return NULL;
	}

3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	return ce;
}

int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
					  const u32 *msg,
					  u32 len)
{
	struct intel_context *ce;
	u32 desc_idx = msg[0];

	if (unlikely(len < 1)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	ce = g2h_context_lookup(guc, desc_idx);
	if (unlikely(!ce))
		return -EPROTO;

3886 3887
	trace_intel_context_deregister_done(ce);

3888 3889 3890 3891 3892 3893 3894
#ifdef CONFIG_DRM_I915_SELFTEST
	if (unlikely(ce->drop_deregister)) {
		ce->drop_deregister = false;
		return 0;
	}
#endif

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
	if (context_wait_for_deregister_to_register(ce)) {
		struct intel_runtime_pm *runtime_pm =
			&ce->engine->gt->i915->runtime_pm;
		intel_wakeref_t wakeref;

		/*
		 * Previous owner of this guc_id has been deregistered, now safe
		 * register this context.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref)
3905
			register_context(ce, true);
3906
		guc_signal_context_fence(ce);
3907 3908 3909
		intel_context_put(ce);
	} else if (context_destroyed(ce)) {
		/* Context has been destroyed */
3910
		intel_gt_pm_put_async(guc_to_gt(guc));
3911
		release_guc_id(guc, ce);
3912
		__guc_context_destroy(ce);
3913 3914
	}

3915 3916
	decr_outstanding_submission_g2h(guc);

3917 3918
	return 0;
}
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940

int intel_guc_sched_done_process_msg(struct intel_guc *guc,
				     const u32 *msg,
				     u32 len)
{
	struct intel_context *ce;
	unsigned long flags;
	u32 desc_idx = msg[0];

	if (unlikely(len < 2)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	ce = g2h_context_lookup(guc, desc_idx);
	if (unlikely(!ce))
		return -EPROTO;

	if (unlikely(context_destroyed(ce) ||
		     (!context_pending_enable(ce) &&
		     !context_pending_disable(ce)))) {
		drm_err(&guc_to_gt(guc)->i915->drm,
3941
			"Bad context sched_state 0x%x, desc_idx %u",
3942 3943 3944 3945
			ce->guc_state.sched_state, desc_idx);
		return -EPROTO;
	}

3946 3947
	trace_intel_context_sched_done(ce);

3948
	if (context_pending_enable(ce)) {
3949 3950 3951 3952 3953 3954 3955
#ifdef CONFIG_DRM_I915_SELFTEST
		if (unlikely(ce->drop_schedule_enable)) {
			ce->drop_schedule_enable = false;
			return 0;
		}
#endif

3956
		spin_lock_irqsave(&ce->guc_state.lock, flags);
3957
		clr_context_pending_enable(ce);
3958
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3959
	} else if (context_pending_disable(ce)) {
3960 3961
		bool banned;

3962 3963 3964 3965 3966 3967 3968
#ifdef CONFIG_DRM_I915_SELFTEST
		if (unlikely(ce->drop_schedule_disable)) {
			ce->drop_schedule_disable = false;
			return 0;
		}
#endif

3969 3970 3971 3972 3973 3974 3975
		/*
		 * Unpin must be done before __guc_signal_context_fence,
		 * otherwise a race exists between the requests getting
		 * submitted + retired before this unpin completes resulting in
		 * the pin_count going to zero and the context still being
		 * enabled.
		 */
3976 3977 3978
		intel_context_sched_disable_unpin(ce);

		spin_lock_irqsave(&ce->guc_state.lock, flags);
3979 3980
		banned = context_banned(ce);
		clr_context_banned(ce);
3981
		clr_context_pending_disable(ce);
3982
		__guc_signal_context_fence(ce);
3983
		guc_blocked_fence_complete(ce);
3984
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3985 3986 3987 3988 3989

		if (banned) {
			guc_cancel_context_requests(ce);
			intel_engine_signal_breadcrumbs(ce->engine);
		}
3990 3991
	}

3992
	decr_outstanding_submission_g2h(guc);
3993 3994 3995 3996
	intel_context_put(ce);

	return 0;
}
3997

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
static void capture_error_state(struct intel_guc *guc,
				struct intel_context *ce)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct drm_i915_private *i915 = gt->i915;
	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
	intel_wakeref_t wakeref;

	intel_engine_set_hung_context(engine, ce);
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
		i915_capture_error_state(gt, engine->mask);
	atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
}

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
static void guc_context_replay(struct intel_context *ce)
{
	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;

	__guc_reset_context(ce, true);
	tasklet_hi_schedule(&sched_engine->tasklet);
}

static void guc_handle_context_reset(struct intel_guc *guc,
				     struct intel_context *ce)
{
	trace_intel_context_reset(ce);
4024

4025
	if (likely(!intel_context_is_banned(ce))) {
4026 4027
		capture_error_state(guc, ce);
		guc_context_replay(ce);
4028
	} else {
4029 4030 4031
		drm_info(&guc_to_gt(guc)->i915->drm,
			 "Ignoring context reset notification of banned context 0x%04X on %s",
			 ce->guc_id.id, ce->engine->name);
4032
	}
4033 4034 4035 4036 4037 4038
}

int intel_guc_context_reset_process_msg(struct intel_guc *guc,
					const u32 *msg, u32 len)
{
	struct intel_context *ce;
4039
	unsigned long flags;
4040 4041 4042 4043 4044 4045 4046 4047
	int desc_idx;

	if (unlikely(len != 1)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	desc_idx = msg[0];
4048 4049 4050 4051 4052 4053 4054 4055

	/*
	 * The context lookup uses the xarray but lookups only require an RCU lock
	 * not the full spinlock. So take the lock explicitly and keep it until the
	 * context has been reference count locked to ensure it can't be destroyed
	 * asynchronously until the reset is done.
	 */
	xa_lock_irqsave(&guc->context_lookup, flags);
4056
	ce = g2h_context_lookup(guc, desc_idx);
4057 4058 4059 4060
	if (ce)
		intel_context_get(ce);
	xa_unlock_irqrestore(&guc->context_lookup, flags);

4061 4062 4063 4064
	if (unlikely(!ce))
		return -EPROTO;

	guc_handle_context_reset(guc, ce);
4065
	intel_context_put(ce);
4066 4067 4068 4069

	return 0;
}

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
int intel_guc_error_capture_process_msg(struct intel_guc *guc,
					const u32 *msg, u32 len)
{
	int status;

	if (unlikely(len != 1)) {
		drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	status = msg[0];
	drm_info(&guc_to_gt(guc)->i915->drm, "Got error capture: status = %d", status);

	/* FIXME: Do something with the capture */

	return 0;
}

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
static struct intel_engine_cs *
guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
{
	struct intel_gt *gt = guc_to_gt(guc);
	u8 engine_class = guc_class_to_engine_class(guc_class);

	/* Class index is checked in class converter */
	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);

	return gt->engine_class[engine_class][instance];
}

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
static void reset_fail_worker_func(struct work_struct *w)
{
	struct intel_guc *guc = container_of(w, struct intel_guc,
					     submission_state.reset_fail_worker);
	struct intel_gt *gt = guc_to_gt(guc);
	intel_engine_mask_t reset_fail_mask;
	unsigned long flags;

	spin_lock_irqsave(&guc->submission_state.lock, flags);
	reset_fail_mask = guc->submission_state.reset_fail_mask;
	guc->submission_state.reset_fail_mask = 0;
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);

	if (likely(reset_fail_mask))
		intel_gt_handle_error(gt, reset_fail_mask,
				      I915_ERROR_CAPTURE,
				      "GuC failed to reset engine mask=0x%x\n",
				      reset_fail_mask);
}

4120 4121 4122 4123
int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
					 const u32 *msg, u32 len)
{
	struct intel_engine_cs *engine;
4124
	struct intel_gt *gt = guc_to_gt(guc);
4125 4126
	u8 guc_class, instance;
	u32 reason;
4127
	unsigned long flags;
4128 4129

	if (unlikely(len != 3)) {
4130
		drm_err(&gt->i915->drm, "Invalid length %u", len);
4131 4132 4133 4134 4135 4136 4137 4138 4139
		return -EPROTO;
	}

	guc_class = msg[0];
	instance = msg[1];
	reason = msg[2];

	engine = guc_lookup_engine(guc, guc_class, instance);
	if (unlikely(!engine)) {
4140
		drm_err(&gt->i915->drm,
4141 4142 4143 4144
			"Invalid engine %d:%d", guc_class, instance);
		return -EPROTO;
	}

4145 4146 4147 4148 4149 4150 4151
	/*
	 * This is an unexpected failure of a hardware feature. So, log a real
	 * error message not just the informational that comes with the reset.
	 */
	drm_err(&gt->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X",
		guc_class, instance, engine->name, reason);

4152 4153 4154 4155 4156 4157 4158 4159 4160
	spin_lock_irqsave(&guc->submission_state.lock, flags);
	guc->submission_state.reset_fail_mask |= engine->mask;
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);

	/*
	 * A GT reset flushes this worker queue (G2H handler) so we must use
	 * another worker to trigger a GT reset.
	 */
	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4161 4162 4163 4164

	return 0;
}

4165 4166 4167 4168 4169 4170
void intel_guc_find_hung_context(struct intel_engine_cs *engine)
{
	struct intel_guc *guc = &engine->gt->uc.guc;
	struct intel_context *ce;
	struct i915_request *rq;
	unsigned long index;
4171
	unsigned long flags;
4172 4173 4174 4175 4176

	/* Reset called during driver load? GuC not yet initialised! */
	if (unlikely(!guc_submission_initialized(guc)))
		return;

4177
	xa_lock_irqsave(&guc->context_lookup, flags);
4178
	xa_for_each(&guc->context_lookup, index, ce) {
4179
		if (!kref_get_unless_zero(&ce->ref))
4180 4181
			continue;

4182 4183 4184 4185 4186
		xa_unlock(&guc->context_lookup);

		if (!intel_context_is_pinned(ce))
			goto next;

4187 4188
		if (intel_engine_is_virtual(ce->engine)) {
			if (!(ce->engine->mask & engine->mask))
4189
				goto next;
4190 4191
		} else {
			if (ce->engine != engine)
4192
				goto next;
4193 4194
		}

4195
		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4196 4197 4198 4199 4200 4201
			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
				continue;

			intel_engine_set_hung_context(engine, ce);

			/* Can only cope with one hang at a time... */
4202 4203 4204
			intel_context_put(ce);
			xa_lock(&guc->context_lookup);
			goto done;
4205
		}
4206 4207 4208
next:
		intel_context_put(ce);
		xa_lock(&guc->context_lookup);
4209
	}
4210 4211
done:
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
}

void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
				    struct i915_request *hung_rq,
				    struct drm_printer *m)
{
	struct intel_guc *guc = &engine->gt->uc.guc;
	struct intel_context *ce;
	unsigned long index;
	unsigned long flags;

	/* Reset called during driver load? GuC not yet initialised! */
	if (unlikely(!guc_submission_initialized(guc)))
		return;

4227
	xa_lock_irqsave(&guc->context_lookup, flags);
4228
	xa_for_each(&guc->context_lookup, index, ce) {
4229
		if (!kref_get_unless_zero(&ce->ref))
4230 4231
			continue;

4232 4233 4234 4235 4236
		xa_unlock(&guc->context_lookup);

		if (!intel_context_is_pinned(ce))
			goto next;

4237 4238
		if (intel_engine_is_virtual(ce->engine)) {
			if (!(ce->engine->mask & engine->mask))
4239
				goto next;
4240 4241
		} else {
			if (ce->engine != engine)
4242
				goto next;
4243 4244
		}

4245 4246
		spin_lock(&ce->guc_state.lock);
		intel_engine_dump_active_requests(&ce->guc_state.requests,
4247
						  hung_rq, m);
4248
		spin_unlock(&ce->guc_state.lock);
4249 4250 4251 4252

next:
		intel_context_put(ce);
		xa_lock(&guc->context_lookup);
4253
	}
4254
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4255 4256
}

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
void intel_guc_submission_print_info(struct intel_guc *guc,
				     struct drm_printer *p)
{
	struct i915_sched_engine *sched_engine = guc->sched_engine;
	struct rb_node *rb;
	unsigned long flags;

	if (!sched_engine)
		return;

	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
		   atomic_read(&guc->outstanding_submission_g2h));
	drm_printf(p, "GuC tasklet count: %u\n\n",
		   atomic_read(&sched_engine->tasklet.count));

	spin_lock_irqsave(&sched_engine->lock, flags);
	drm_printf(p, "Requests in GuC submit tasklet:\n");
	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *pl = to_priolist(rb);
		struct i915_request *rq;

		priolist_for_each_request(rq, pl)
			drm_printf(p, "guc_id=%u, seqno=%llu\n",
4280
				   rq->context->guc_id.id,
4281 4282 4283 4284 4285 4286
				   rq->fence.seqno);
	}
	spin_unlock_irqrestore(&sched_engine->lock, flags);
	drm_printf(p, "\n");
}

4287 4288 4289 4290 4291
static inline void guc_log_context_priority(struct drm_printer *p,
					    struct intel_context *ce)
{
	int i;

4292
	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4293 4294 4295 4296
	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4297
			   i, ce->guc_state.prio_count[i]);
4298 4299 4300 4301
	}
	drm_printf(p, "\n");
}

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
static inline void guc_log_context(struct drm_printer *p,
				   struct intel_context *ce)
{
	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
		   ce->ring->head,
		   ce->lrc_reg_state[CTX_RING_HEAD]);
	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
		   ce->ring->tail,
		   ce->lrc_reg_state[CTX_RING_TAIL]);
	drm_printf(p, "\t\tContext Pin Count: %u\n",
		   atomic_read(&ce->pin_count));
	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
		   atomic_read(&ce->guc_id.ref));
	drm_printf(p, "\t\tSchedule State: 0x%x\n\n",
		   ce->guc_state.sched_state);
}

4321 4322 4323 4324 4325
void intel_guc_submission_print_context_info(struct intel_guc *guc,
					     struct drm_printer *p)
{
	struct intel_context *ce;
	unsigned long index;
4326
	unsigned long flags;
4327

4328
	xa_lock_irqsave(&guc->context_lookup, flags);
4329
	xa_for_each(&guc->context_lookup, index, ce) {
4330
		GEM_BUG_ON(intel_context_is_child(ce));
4331

4332
		guc_log_context(p, ce);
4333
		guc_log_context_priority(p, ce);
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347

		if (intel_context_is_parent(ce)) {
			struct guc_process_desc *desc = __get_process_desc(ce);
			struct intel_context *child;

			drm_printf(p, "\t\tNumber children: %u\n",
				   ce->parallel.number_children);
			drm_printf(p, "\t\tWQI Head: %u\n",
				   READ_ONCE(desc->head));
			drm_printf(p, "\t\tWQI Tail: %u\n",
				   READ_ONCE(desc->tail));
			drm_printf(p, "\t\tWQI Status: %u\n\n",
				   READ_ONCE(desc->wq_status));

4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
			if (ce->engine->emit_bb_start ==
			    emit_bb_start_parent_no_preempt_mid_batch) {
				u8 i;

				drm_printf(p, "\t\tChildren Go: %u\n\n",
					   get_children_go_value(ce));
				for (i = 0; i < ce->parallel.number_children; ++i)
					drm_printf(p, "\t\tChildren Join: %u\n",
						   get_children_join_value(ce, i));
			}

4359 4360 4361
			for_each_child(ce, child)
				guc_log_context(p, child);
		}
4362
	}
4363
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4364
}
4365

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
static inline u32 get_children_go_addr(struct intel_context *ce)
{
	GEM_BUG_ON(!intel_context_is_parent(ce));

	return i915_ggtt_offset(ce->state) +
		__get_parent_scratch_offset(ce) +
		offsetof(struct parent_scratch, go.semaphore);
}

static inline u32 get_children_join_addr(struct intel_context *ce,
					 u8 child_index)
{
	GEM_BUG_ON(!intel_context_is_parent(ce));

	return i915_ggtt_offset(ce->state) +
		__get_parent_scratch_offset(ce) +
		offsetof(struct parent_scratch, join[child_index].semaphore);
}

#define PARENT_GO_BB			1
#define PARENT_GO_FINI_BREADCRUMB	0
#define CHILD_GO_BB			1
#define CHILD_GO_FINI_BREADCRUMB	0
static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
						     u64 offset, u32 len,
						     const unsigned int flags)
{
	struct intel_context *ce = rq->context;
	u32 *cs;
	u8 i;

	GEM_BUG_ON(!intel_context_is_parent(ce));

	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Wait on children */
	for (i = 0; i < ce->parallel.number_children; ++i) {
		*cs++ = (MI_SEMAPHORE_WAIT |
			 MI_SEMAPHORE_GLOBAL_GTT |
			 MI_SEMAPHORE_POLL |
			 MI_SEMAPHORE_SAD_EQ_SDD);
		*cs++ = PARENT_GO_BB;
		*cs++ = get_children_join_addr(ce, i);
		*cs++ = 0;
	}

	/* Turn off preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;

	/* Tell children go */
	cs = gen8_emit_ggtt_write(cs,
				  CHILD_GO_BB,
				  get_children_go_addr(ce),
				  0);

	/* Jump to batch */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	return 0;
}

static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
						    u64 offset, u32 len,
						    const unsigned int flags)
{
	struct intel_context *ce = rq->context;
	struct intel_context *parent = intel_context_to_parent(ce);
	u32 *cs;

	GEM_BUG_ON(!intel_context_is_child(ce));

	cs = intel_ring_begin(rq, 12);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Signal parent */
	cs = gen8_emit_ggtt_write(cs,
				  PARENT_GO_BB,
				  get_children_join_addr(parent,
							 ce->parallel.child_index),
				  0);

	/* Wait on parent for go */
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_EQ_SDD);
	*cs++ = CHILD_GO_BB;
	*cs++ = get_children_go_addr(parent);
	*cs++ = 0;

	/* Turn off preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* Jump to batch */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static u32 *
4481 4482
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						   u32 *cs)
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
{
	struct intel_context *ce = rq->context;
	u8 i;

	GEM_BUG_ON(!intel_context_is_parent(ce));

	/* Wait on children */
	for (i = 0; i < ce->parallel.number_children; ++i) {
		*cs++ = (MI_SEMAPHORE_WAIT |
			 MI_SEMAPHORE_GLOBAL_GTT |
			 MI_SEMAPHORE_POLL |
			 MI_SEMAPHORE_SAD_EQ_SDD);
		*cs++ = PARENT_GO_FINI_BREADCRUMB;
		*cs++ = get_children_join_addr(ce, i);
		*cs++ = 0;
	}

	/* Turn on preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*cs++ = MI_NOOP;

	/* Tell children go */
	cs = gen8_emit_ggtt_write(cs,
				  CHILD_GO_FINI_BREADCRUMB,
				  get_children_go_addr(ce),
				  0);

4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
	return cs;
}

/*
 * If this true, a submission of multi-lrc requests had an error and the
 * requests need to be skipped. The front end (execuf IOCTL) should've called
 * i915_request_skip which squashes the BB but we still need to emit the fini
 * breadrcrumbs seqno write. At this point we don't know how many of the
 * requests in the multi-lrc submission were generated so we can't do the
 * handshake between the parent and children (e.g. if 4 requests should be
 * generated but 2nd hit an error only 1 would be seen by the GuC backend).
 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
 * has occurred on any of the requests in submission / relationship.
 */
static inline bool skip_handshake(struct i915_request *rq)
{
	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
}

4529
#define NON_SKIP_LEN	6
4530 4531 4532 4533 4534
static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						 u32 *cs)
{
	struct intel_context *ce = rq->context;
4535 4536
	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4537 4538 4539 4540 4541 4542

	GEM_BUG_ON(!intel_context_is_parent(ce));

	if (unlikely(skip_handshake(rq))) {
		/*
		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
4543
		 * the NON_SKIP_LEN comes from the length of the emits below.
4544 4545
		 */
		memset(cs, 0, sizeof(u32) *
4546 4547
		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4548 4549 4550 4551
	} else {
		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
	}

4552
	/* Emit fini breadcrumb */
4553
	before_fini_breadcrumb_user_interrupt_cs = cs;
4554 4555 4556 4557 4558 4559 4560 4561 4562
	cs = gen8_emit_ggtt_write(cs,
				  rq->fence.seqno,
				  i915_request_active_timeline(rq)->hwsp_offset,
				  0);

	/* User interrupt */
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

4563 4564 4565 4566 4567 4568
	/* Ensure our math for skip + emit is correct */
	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
		   cs);
	GEM_BUG_ON(start_fini_breadcrumb_cs +
		   ce->engine->emit_fini_breadcrumb_dw != cs);

4569 4570 4571 4572 4573 4574
	rq->tail = intel_ring_offset(rq, cs);

	return cs;
}

static u32 *
4575 4576
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						  u32 *cs)
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
{
	struct intel_context *ce = rq->context;
	struct intel_context *parent = intel_context_to_parent(ce);

	GEM_BUG_ON(!intel_context_is_child(ce));

	/* Turn on preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*cs++ = MI_NOOP;

	/* Signal parent */
	cs = gen8_emit_ggtt_write(cs,
				  PARENT_GO_FINI_BREADCRUMB,
				  get_children_join_addr(parent,
							 ce->parallel.child_index),
				  0);

	/* Wait parent on for go */
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_EQ_SDD);
	*cs++ = CHILD_GO_FINI_BREADCRUMB;
	*cs++ = get_children_go_addr(parent);
	*cs++ = 0;

4603 4604 4605 4606 4607 4608 4609 4610
	return cs;
}

static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						u32 *cs)
{
	struct intel_context *ce = rq->context;
4611 4612
	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4613 4614 4615 4616 4617 4618

	GEM_BUG_ON(!intel_context_is_child(ce));

	if (unlikely(skip_handshake(rq))) {
		/*
		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
4619
		 * the NON_SKIP_LEN comes from the length of the emits below.
4620 4621
		 */
		memset(cs, 0, sizeof(u32) *
4622 4623
		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4624 4625 4626 4627
	} else {
		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
	}

4628
	/* Emit fini breadcrumb */
4629
	before_fini_breadcrumb_user_interrupt_cs = cs;
4630 4631 4632 4633 4634 4635 4636 4637 4638
	cs = gen8_emit_ggtt_write(cs,
				  rq->fence.seqno,
				  i915_request_active_timeline(rq)->hwsp_offset,
				  0);

	/* User interrupt */
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

4639 4640 4641 4642 4643 4644
	/* Ensure our math for skip + emit is correct */
	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
		   cs);
	GEM_BUG_ON(start_fini_breadcrumb_cs +
		   ce->engine->emit_fini_breadcrumb_dw != cs);

4645 4646 4647 4648 4649
	rq->tail = intel_ring_offset(rq, cs);

	return cs;
}

4650 4651
#undef NON_SKIP_LEN

4652
static struct intel_context *
4653 4654
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
		   unsigned long flags)
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
{
	struct guc_virtual_engine *ve;
	struct intel_guc *guc;
	unsigned int n;
	int err;

	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

	guc = &siblings[0]->gt->uc.guc;

	ve->base.i915 = siblings[0]->i915;
	ve->base.gt = siblings[0]->gt;
	ve->base.uncore = siblings[0]->uncore;
	ve->base.id = -1;

	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.saturated = ALL_ENGINES;

	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);

	ve->base.cops = &virtual_guc_context_ops;
	ve->base.request_alloc = guc_request_alloc;
4683
	ve->base.bump_serial = virtual_guc_bump_serial;
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702

	ve->base.submit_request = guc_submit_request;

	ve->base.flags = I915_ENGINE_IS_VIRTUAL;

	intel_context_init(&ve->context, &ve->base);

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		ve->base.mask |= sibling->mask;
4703
		ve->base.logical_mask |= sibling->logical_mask;
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716

		if (n != 0 && ve->base.class != sibling->class) {
			DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
				  sibling->class, ve->base.class);
			err = -EINVAL;
			goto err_put;
		} else if (n == 0) {
			ve->base.class = sibling->class;
			ve->base.uabi_class = sibling->uabi_class;
			snprintf(ve->base.name, sizeof(ve->base.name),
				 "v%dx%d", ve->base.class, count);
			ve->base.context_size = sibling->context_size;

4717 4718 4719 4720
			ve->base.add_active_request =
				sibling->add_active_request;
			ve->base.remove_active_request =
				sibling->remove_active_request;
4721 4722 4723 4724 4725 4726 4727 4728
			ve->base.emit_bb_start = sibling->emit_bb_start;
			ve->base.emit_flush = sibling->emit_flush;
			ve->base.emit_init_breadcrumb =
				sibling->emit_init_breadcrumb;
			ve->base.emit_fini_breadcrumb =
				sibling->emit_fini_breadcrumb;
			ve->base.emit_fini_breadcrumb_dw =
				sibling->emit_fini_breadcrumb_dw;
4729 4730
			ve->base.breadcrumbs =
				intel_breadcrumbs_get(sibling->breadcrumbs);
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758

			ve->base.flags |= sibling->flags;

			ve->base.props.timeslice_duration_ms =
				sibling->props.timeslice_duration_ms;
			ve->base.props.preempt_timeout_ms =
				sibling->props.preempt_timeout_ms;
		}
	}

	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
{
	struct intel_engine_cs *engine;
	intel_engine_mask_t tmp, mask = ve->mask;

	for_each_engine_masked(engine, ve->gt, mask, tmp)
		if (READ_ONCE(engine->props.heartbeat_interval_ms))
			return true;

	return false;
}
4759 4760 4761

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_guc.c"
4762
#include "selftest_guc_multi_lrc.c"
4763
#endif