intel_guc_submission.c 126.8 KB
Newer Older
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2014 Intel Corporation
 */

6
#include <linux/circ_buf.h>
7

8
#include "gem/i915_gem_context.h"
9 10
#include "gt/gen8_engine_cs.h"
#include "gt/intel_breadcrumbs.h"
11 12
#include "gt/intel_context.h"
#include "gt/intel_engine_pm.h"
13
#include "gt/intel_engine_heartbeat.h"
14
#include "gt/intel_gpu_commands.h"
15
#include "gt/intel_gt.h"
16
#include "gt/intel_gt_clock_utils.h"
17
#include "gt/intel_gt_irq.h"
18
#include "gt/intel_gt_pm.h"
19
#include "gt/intel_gt_requests.h"
20
#include "gt/intel_lrc.h"
21
#include "gt/intel_lrc_reg.h"
22
#include "gt/intel_mocs.h"
23 24
#include "gt/intel_ring.h"

25
#include "intel_guc_ads.h"
26
#include "intel_guc_submission.h"
27

28
#include "i915_drv.h"
29
#include "i915_trace.h"
30

31
/**
A
Alex Dai 已提交
32
 * DOC: GuC-based command submission
33 34 35 36 37 38 39 40 41
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
 *
M
Matthew Brost 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
 * Command Transport buffers (CTBs):
 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
 * - G2H) are a message interface between the i915 and GuC.
 *
 * Context registration:
 * Before a context can be submitted it must be registered with the GuC via a
 * H2G. A unique guc_id is associated with each context. The context is either
 * registered at request creation time (normal operation) or at submission time
 * (abnormal operation, e.g. after a reset).
 *
 * Context submission:
 * The i915 updates the LRC tail value in memory. The i915 must enable the
 * scheduling of the context within the GuC for the GuC to actually consider it.
 * Therefore, the first time a disabled context is submitted we use a schedule
 * enable H2G, while follow up submissions are done via the context submit H2G,
 * which informs the GuC that a previously enabled context has new work
 * available.
 *
 * Context unpin:
 * To unpin a context a H2G is used to disable scheduling. When the
 * corresponding G2H returns indicating the scheduling disable operation has
 * completed it is safe to unpin the context. While a disable is in flight it
 * isn't safe to resubmit the context so a fence is used to stall all future
 * requests of that context until the G2H is returned.
 *
 * Context deregistration:
 * Before a context can be destroyed or if we steal its guc_id we must
 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
 * safe to submit anything to this guc_id until the deregister completes so a
 * fence is used to stall all requests associated with this guc_id until the
 * corresponding G2H returns indicating the guc_id has been deregistered.
 *
74
 * submission_state.guc_ids:
M
Matthew Brost 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
 * Unique number associated with private GuC context data passed in during
 * context registration / submission / deregistration. 64k available. Simple ida
 * is used for allocation.
 *
 * Stealing guc_ids:
 * If no guc_ids are available they can be stolen from another context at
 * request creation time if that context is unpinned. If a guc_id can't be found
 * we punt this problem to the user as we believe this is near impossible to hit
 * during normal use cases.
 *
 * Locking:
 * In the GuC submission code we have 3 basic spin locks which protect
 * everything. Details about each below.
 *
 * sched_engine->lock
 * This is the submission lock for all contexts that share an i915 schedule
 * engine (sched_engine), thus only one of the contexts which share a
 * sched_engine can be submitting at a time. Currently only one sched_engine is
 * used for all of GuC submission but that could change in the future.
 *
95
 * guc->submission_state.lock
96 97
 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
 * list.
M
Matthew Brost 已提交
98 99 100 101 102 103 104 105 106 107 108
 *
 * ce->guc_state.lock
 * Protects everything under ce->guc_state. Ensures that a context is in the
 * correct state before issuing a H2G. e.g. We don't issue a schedule disable
 * on a disabled context (bad idea), we don't issue a schedule enable when a
 * schedule disable is in flight, etc... Also protects list of inflight requests
 * on the context and the priority management state. Lock is individual to each
 * context.
 *
 * Lock ordering rules:
 * sched_engine->lock -> ce->guc_state.lock
109
 * guc->submission_state.lock -> ce->guc_state.lock
110
 *
M
Matthew Brost 已提交
111 112 113 114 115 116 117 118 119 120
 * Reset races:
 * When a full GT reset is triggered it is assumed that some G2H responses to
 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
 * fatal as we do certain operations upon receiving a G2H (e.g. destroy
 * contexts, release guc_ids, etc...). When this occurs we can scrub the
 * context state and cleanup appropriately, however this is quite racey.
 * To avoid races, the reset code must disable submission before scrubbing for
 * the missing G2H, while the submission code must check for submission being
 * disabled and skip sending H2Gs and updating context states when it is. Both
 * sides must also make sure to hold the relevant locks.
121 122
 */

123 124 125 126 127 128 129
/* GuC Virtual Engine */
struct guc_virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;
};

static struct intel_context *
130 131 132 133 134 135 136
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
		   unsigned long flags);

static struct intel_context *
guc_create_parallel(struct intel_engine_cs **engines,
		    unsigned int num_siblings,
		    unsigned int width);
137

138 139
#define GUC_REQUEST_SIZE 64 /* bytes */

140 141 142 143 144 145 146 147
/*
 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
 * per the GuC submission interface. A different allocation algorithm is used
 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
 * partition the guc_id space. We believe the number of multi-lrc contexts in
 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
 * multi-lrc.
 */
148 149
#define NUMBER_MULTI_LRC_GUC_ID(guc)	\
	((guc)->submission_state.num_guc_ids / 16)
150

151 152
/*
 * Below is a set of functions which control the GuC scheduling state which
153
 * require a lock.
154 155 156
 */
#define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
#define SCHED_STATE_DESTROYED				BIT(1)
157
#define SCHED_STATE_PENDING_DISABLE			BIT(2)
158
#define SCHED_STATE_BANNED				BIT(3)
159 160 161 162
#define SCHED_STATE_ENABLED				BIT(4)
#define SCHED_STATE_PENDING_ENABLE			BIT(5)
#define SCHED_STATE_REGISTERED				BIT(6)
#define SCHED_STATE_BLOCKED_SHIFT			7
163 164
#define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
#define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
165

166 167
static inline void init_sched_state(struct intel_context *ce)
{
168
	lockdep_assert_held(&ce->guc_state.lock);
169
	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
170 171
}

172 173 174 175 176 177 178
__maybe_unused
static bool sched_state_is_init(struct intel_context *ce)
{
	/*
	 * XXX: Kernel contexts can have SCHED_STATE_NO_LOCK_REGISTERED after
	 * suspend.
	 */
179 180
	return !(ce->guc_state.sched_state &=
		 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED));
181 182
}

183 184 185 186 187 188 189 190 191 192
static inline bool
context_wait_for_deregister_to_register(struct intel_context *ce)
{
	return ce->guc_state.sched_state &
		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline void
set_context_wait_for_deregister_to_register(struct intel_context *ce)
{
193
	lockdep_assert_held(&ce->guc_state.lock);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	ce->guc_state.sched_state |=
		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline void
clr_context_wait_for_deregister_to_register(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &=
		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}

static inline bool
context_destroyed(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
}

static inline void
set_context_destroyed(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static inline bool context_pending_disable(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
}

static inline void set_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
}

static inline void clr_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
static inline bool context_banned(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
}

static inline void set_context_banned(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
}

static inline void clr_context_banned(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static inline bool context_enabled(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
}

static inline void set_context_enabled(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
}

static inline void clr_context_enabled(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
}

static inline bool context_pending_enable(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
}

static inline void set_context_pending_enable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
}

static inline void clr_context_pending_enable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
}

static inline bool context_registered(struct intel_context *ce)
{
	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
}

static inline void set_context_registered(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
}

static inline void clr_context_registered(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static inline u32 context_blocked(struct intel_context *ce)
{
	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
		SCHED_STATE_BLOCKED_SHIFT;
}

static inline void incr_context_blocked(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;

	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
}

static inline void decr_context_blocked(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */

	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static inline bool context_has_committed_requests(struct intel_context *ce)
{
	return !!ce->guc_state.number_committed_requests;
}

static inline void incr_context_committed_requests(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	++ce->guc_state.number_committed_requests;
	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
}

static inline void decr_context_committed_requests(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
	--ce->guc_state.number_committed_requests;
	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
}

347 348 349 350 351 352
static struct intel_context *
request_to_scheduling_context(struct i915_request *rq)
{
	return intel_context_to_parent(rq->context);
}

353 354
static inline bool context_guc_id_invalid(struct intel_context *ce)
{
355
	return ce->guc_id.id == GUC_INVALID_LRC_ID;
356 357 358 359
}

static inline void set_context_guc_id_invalid(struct intel_context *ce)
{
360
	ce->guc_id.id = GUC_INVALID_LRC_ID;
361 362 363 364 365 366 367
}

static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
{
	return &ce->engine->gt->uc.guc;
}

368 369 370 371 372
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

373 374
/*
 * When using multi-lrc submission a scratch memory area is reserved in the
375 376 377
 * parent's context state for the process descriptor, work queue, and handshake
 * between the parent + children contexts to insert safe preemption points
 * between each of the BBs. Currently the scratch area is sized to a page.
378 379 380
 *
 * The layout of this scratch area is below:
 * 0						guc_process_desc
381 382 383 384
 * + sizeof(struct guc_process_desc)		child go
 * + CACHELINE_BYTES				child join[0]
 * ...
 * + CACHELINE_BYTES				child join[n - 1]
385 386 387 388 389 390 391
 * ...						unused
 * PARENT_SCRATCH_SIZE / 2			work queue start
 * ...						work queue
 * PARENT_SCRATCH_SIZE - 1			work queue end
 */
#define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
#define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

struct sync_semaphore {
	u32 semaphore;
	u8 unused[CACHELINE_BYTES - sizeof(u32)];
};

struct parent_scratch {
	struct guc_process_desc pdesc;

	struct sync_semaphore go;
	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];

	u8 unused[WQ_OFFSET - sizeof(struct guc_process_desc) -
		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];

	u32 wq[WQ_SIZE / sizeof(u32)];
};

static u32 __get_parent_scratch_offset(struct intel_context *ce)
411 412 413 414 415 416 417 418
{
	GEM_BUG_ON(!ce->parallel.guc.parent_page);

	return ce->parallel.guc.parent_page * PAGE_SIZE;
}

static u32 __get_wq_offset(struct intel_context *ce)
{
419 420 421
	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);

	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
422 423
}

424 425
static struct parent_scratch *
__get_parent_scratch(struct intel_context *ce)
426
{
427 428 429
	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);

430 431 432 433 434
	/*
	 * Need to subtract LRC_STATE_OFFSET here as the
	 * parallel.guc.parent_page is the offset into ce->state while
	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
	 */
435
	return (struct parent_scratch *)
436
		(ce->lrc_reg_state +
437
		 ((__get_parent_scratch_offset(ce) -
438 439 440
		   LRC_STATE_OFFSET) / sizeof(u32)));
}

441 442 443 444 445 446 447 448
static struct guc_process_desc *
__get_process_desc(struct intel_context *ce)
{
	struct parent_scratch *ps = __get_parent_scratch(ce);

	return &ps->pdesc;
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
static u32 *get_wq_pointer(struct guc_process_desc *desc,
			   struct intel_context *ce,
			   u32 wqi_size)
{
	/*
	 * Check for space in work queue. Caching a value of head pointer in
	 * intel_context structure in order reduce the number accesses to shared
	 * GPU memory which may be across a PCIe bus.
	 */
#define AVAILABLE_SPACE	\
	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
	if (wqi_size > AVAILABLE_SPACE) {
		ce->parallel.guc.wqi_head = READ_ONCE(desc->head);

		if (wqi_size > AVAILABLE_SPACE)
			return NULL;
	}
#undef AVAILABLE_SPACE

468
	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
469 470
}

471
static struct guc_lrc_desc *__get_lrc_desc(struct intel_guc *guc, u32 index)
472
{
473
	struct guc_lrc_desc *base = guc->lrc_desc_pool_vaddr;
474

475
	GEM_BUG_ON(index >= GUC_MAX_LRC_DESCRIPTORS);
476

477
	return &base[index];
478 479
}

480 481 482 483 484 485 486 487 488
static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
{
	struct intel_context *ce = xa_load(&guc->context_lookup, id);

	GEM_BUG_ON(id >= GUC_MAX_LRC_DESCRIPTORS);

	return ce;
}

489
static int guc_lrc_desc_pool_create(struct intel_guc *guc)
490
{
491 492
	u32 size;
	int ret;
493

494 495 496 497 498 499
	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc) *
			  GUC_MAX_LRC_DESCRIPTORS);
	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool,
					     (void **)&guc->lrc_desc_pool_vaddr);
	if (ret)
		return ret;
500

501
	return 0;
502 503
}

504
static void guc_lrc_desc_pool_destroy(struct intel_guc *guc)
505
{
506
	guc->lrc_desc_pool_vaddr = NULL;
507
	i915_vma_unpin_and_release(&guc->lrc_desc_pool, I915_VMA_RELEASE_MAP);
508 509
}

510 511 512 513 514
static inline bool guc_submission_initialized(struct intel_guc *guc)
{
	return !!guc->lrc_desc_pool_vaddr;
}

515 516
static inline void reset_lrc_desc(struct intel_guc *guc, u32 id)
{
517 518 519
	if (likely(guc_submission_initialized(guc))) {
		struct guc_lrc_desc *desc = __get_lrc_desc(guc, id);
		unsigned long flags;
520

521 522 523 524 525 526 527 528 529 530
		memset(desc, 0, sizeof(*desc));

		/*
		 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
		 * the lower level functions directly.
		 */
		xa_lock_irqsave(&guc->context_lookup, flags);
		__xa_erase(&guc->context_lookup, id);
		xa_unlock_irqrestore(&guc->context_lookup, flags);
	}
531 532 533 534 535 536 537 538 539 540
}

static inline bool lrc_desc_registered(struct intel_guc *guc, u32 id)
{
	return __get_context(guc, id);
}

static inline void set_lrc_desc_registered(struct intel_guc *guc, u32 id,
					   struct intel_context *ce)
{
541 542 543 544 545 546 547 548 549
	unsigned long flags;

	/*
	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
	 * lower level functions directly.
	 */
	xa_lock_irqsave(&guc->context_lookup, flags);
	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
	xa_unlock_irqrestore(&guc->context_lookup, flags);
550 551
}

552 553 554 555 556 557
static void decr_outstanding_submission_g2h(struct intel_guc *guc)
{
	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
		wake_up_all(&guc->ct.wq);
}

558 559 560 561 562 563
static int guc_submission_send_busy_loop(struct intel_guc *guc,
					 const u32 *action,
					 u32 len,
					 u32 g2h_len_dw,
					 bool loop)
{
564 565 566 567 568 569
	/*
	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
	 * so we don't handle the case where we don't get a reply because we
	 * aborted the send due to the channel being busy.
	 */
	GEM_BUG_ON(g2h_len_dw && !loop);
570

571
	if (g2h_len_dw)
572 573
		atomic_inc(&guc->outstanding_submission_g2h);

574
	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
575 576
}

577 578 579 580
int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
				   atomic_t *wait_var,
				   bool interruptible,
				   long timeout)
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
{
	const int state = interruptible ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	DEFINE_WAIT(wait);

	might_sleep();
	GEM_BUG_ON(timeout < 0);

	if (!atomic_read(wait_var))
		return 0;

	if (!timeout)
		return -ETIME;

	for (;;) {
		prepare_to_wait(&guc->ct.wq, &wait, state);

		if (!atomic_read(wait_var))
			break;

		if (signal_pending_state(state, current)) {
			timeout = -EINTR;
			break;
		}

		if (!timeout) {
			timeout = -ETIME;
			break;
		}

		timeout = io_schedule_timeout(timeout);
	}
	finish_wait(&guc->ct.wq, &wait);

	return (timeout < 0) ? timeout : 0;
}

int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
{
	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
		return 0;

623 624 625
	return intel_guc_wait_for_pending_msg(guc,
					      &guc->outstanding_submission_g2h,
					      true, timeout);
626 627
}

628 629
static int guc_lrc_desc_pin(struct intel_context *ce, bool loop);

630
static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
631
{
632
	int err = 0;
633
	struct intel_context *ce = request_to_scheduling_context(rq);
634 635
	u32 action[3];
	int len = 0;
636
	u32 g2h_len_dw = 0;
637
	bool enabled;
638

639 640
	lockdep_assert_held(&rq->engine->sched_engine->lock);

641 642 643 644 645 646 647
	/*
	 * Corner case where requests were sitting in the priority list or a
	 * request resubmitted after the context was banned.
	 */
	if (unlikely(intel_context_is_banned(ce))) {
		i915_request_put(i915_request_mark_eio(rq));
		intel_engine_signal_breadcrumbs(ce->engine);
648
		return 0;
649 650
	}

651
	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
652 653
	GEM_BUG_ON(context_guc_id_invalid(ce));

654 655
	spin_lock(&ce->guc_state.lock);

656 657
	/*
	 * The request / context will be run on the hardware when scheduling
658 659
	 * gets enabled in the unblock. For multi-lrc we still submit the
	 * context to move the LRC tails.
660
	 */
661
	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
662 663
		goto out;

664
	enabled = context_enabled(ce) || context_blocked(ce);
665

666 667
	if (!enabled) {
		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
668
		action[len++] = ce->guc_id.id;
669
		action[len++] = GUC_CONTEXT_ENABLE;
670 671
		set_context_pending_enable(ce);
		intel_context_get(ce);
672
		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
673 674
	} else {
		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
675
		action[len++] = ce->guc_id.id;
676
	}
677

678
	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
679
	if (!enabled && !err) {
680
		trace_intel_context_sched_enable(ce);
681
		atomic_inc(&guc->outstanding_submission_g2h);
682
		set_context_enabled(ce);
683 684 685 686 687 688 689 690 691 692 693 694

		/*
		 * Without multi-lrc KMD does the submission step (moving the
		 * lrc tail) so enabling scheduling is sufficient to submit the
		 * context. This isn't the case in multi-lrc submission as the
		 * GuC needs to move the tails, hence the need for another H2G
		 * to submit a multi-lrc context after enabling scheduling.
		 */
		if (intel_context_is_parent(ce)) {
			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
			err = intel_guc_send_nb(guc, action, len - 1, 0);
		}
695 696 697 698
	} else if (!enabled) {
		clr_context_pending_enable(ce);
		intel_context_put(ce);
	}
699 700
	if (likely(!err))
		trace_i915_request_guc_submit(rq);
701

702
out:
703
	spin_unlock(&ce->guc_state.lock);
704
	return err;
705 706
}

707 708 709 710 711 712 713 714 715 716 717 718
static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
{
	int ret = __guc_add_request(guc, rq);

	if (unlikely(ret == -EBUSY)) {
		guc->stalled_request = rq;
		guc->submission_stall_reason = STALL_ADD_REQUEST;
	}

	return ret;
}

719 720 721 722 723 724
static inline void guc_set_lrc_tail(struct i915_request *rq)
{
	rq->context->lrc_reg_state[CTX_RING_TAIL] =
		intel_ring_set_tail(rq->ring, rq->tail);
}

725
static inline int rq_prio(const struct i915_request *rq)
726
{
727
	return rq->sched.attr.priority;
728 729
}

730 731
static bool is_multi_lrc_rq(struct i915_request *rq)
{
732
	return intel_context_is_parallel(rq->context);
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
}

static bool can_merge_rq(struct i915_request *rq,
			 struct i915_request *last)
{
	return request_to_scheduling_context(rq) ==
		request_to_scheduling_context(last);
}

static u32 wq_space_until_wrap(struct intel_context *ce)
{
	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
}

static void write_wqi(struct guc_process_desc *desc,
		      struct intel_context *ce,
		      u32 wqi_size)
{
	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));

	/*
	 * Ensure WQI are visible before updating tail
	 */
	intel_guc_write_barrier(ce_to_guc(ce));

	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
		(WQ_SIZE - 1);
	WRITE_ONCE(desc->tail, ce->parallel.guc.wqi_tail);
}

static int guc_wq_noop_append(struct intel_context *ce)
{
	struct guc_process_desc *desc = __get_process_desc(ce);
	u32 *wqi = get_wq_pointer(desc, ce, wq_space_until_wrap(ce));
	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;

	if (!wqi)
		return -EBUSY;

	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));

	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
		FIELD_PREP(WQ_LEN_MASK, len_dw);
	ce->parallel.guc.wqi_tail = 0;

	return 0;
}

static int __guc_wq_item_append(struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);
	struct intel_context *child;
	struct guc_process_desc *desc = __get_process_desc(ce);
	unsigned int wqi_size = (ce->parallel.number_children + 4) *
		sizeof(u32);
	u32 *wqi;
	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
	int ret;

	/* Ensure context is in correct state updating work queue */
	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
	GEM_BUG_ON(context_guc_id_invalid(ce));
	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
	GEM_BUG_ON(!lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id));

	/* Insert NOOP if this work queue item will wrap the tail pointer. */
	if (wqi_size > wq_space_until_wrap(ce)) {
		ret = guc_wq_noop_append(ce);
		if (ret)
			return ret;
	}

	wqi = get_wq_pointer(desc, ce, wqi_size);
	if (!wqi)
		return -EBUSY;

	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));

	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
		FIELD_PREP(WQ_LEN_MASK, len_dw);
	*wqi++ = ce->lrc.lrca;
	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
	*wqi++ = 0;	/* fence_id */
	for_each_child(ce, child)
		*wqi++ = child->ring->tail / sizeof(u64);

	write_wqi(desc, ce, wqi_size);

	return 0;
}

static int guc_wq_item_append(struct intel_guc *guc,
			      struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);
	int ret = 0;

	if (likely(!intel_context_is_banned(ce))) {
		ret = __guc_wq_item_append(rq);

		if (unlikely(ret == -EBUSY)) {
			guc->stalled_request = rq;
			guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
		}
	}

	return ret;
}

static bool multi_lrc_submit(struct i915_request *rq)
{
	struct intel_context *ce = request_to_scheduling_context(rq);

	intel_ring_set_tail(rq->ring, rq->tail);

	/*
	 * We expect the front end (execbuf IOCTL) to set this flag on the last
	 * request generated from a multi-BB submission. This indicates to the
	 * backend (GuC interface) that we should submit this context thus
	 * submitting all the requests generated in parallel.
	 */
	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
		intel_context_is_banned(ce);
}

859
static int guc_dequeue_one_context(struct intel_guc *guc)
860
{
861 862
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	struct i915_request *last = NULL;
863
	bool submit = false;
864
	struct rb_node *rb;
865
	int ret;
866

867
	lockdep_assert_held(&sched_engine->lock);
868

869 870 871
	if (guc->stalled_request) {
		submit = true;
		last = guc->stalled_request;
872 873 874 875 876 877 878 879 880 881 882

		switch (guc->submission_stall_reason) {
		case STALL_REGISTER_CONTEXT:
			goto register_context;
		case STALL_MOVE_LRC_TAIL:
			goto move_lrc_tail;
		case STALL_ADD_REQUEST:
			goto add_request;
		default:
			MISSING_CASE(guc->submission_stall_reason);
		}
883 884
	}

885
	while ((rb = rb_first_cached(&sched_engine->queue))) {
886
		struct i915_priolist *p = to_priolist(rb);
887
		struct i915_request *rq, *rn;
888

889
		priolist_for_each_request_consume(rq, rn, p) {
890 891
			if (last && !can_merge_rq(rq, last))
				goto register_context;
892

893
			list_del_init(&rq->sched.link);
894

895
			__i915_request_submit(rq);
896 897

			trace_i915_request_in(rq, 0);
898
			last = rq;
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

			if (is_multi_lrc_rq(rq)) {
				/*
				 * We need to coalesce all multi-lrc requests in
				 * a relationship into a single H2G. We are
				 * guaranteed that all of these requests will be
				 * submitted sequentially.
				 */
				if (multi_lrc_submit(rq)) {
					submit = true;
					goto register_context;
				}
			} else {
				submit = true;
			}
914 915
		}

916
		rb_erase_cached(&p->node, &sched_engine->queue);
917
		i915_priolist_free(p);
918
	}
919 920

register_context:
921
	if (submit) {
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
		struct intel_context *ce = request_to_scheduling_context(last);

		if (unlikely(!lrc_desc_registered(guc, ce->guc_id.id) &&
			     !intel_context_is_banned(ce))) {
			ret = guc_lrc_desc_pin(ce, false);
			if (unlikely(ret == -EPIPE)) {
				goto deadlk;
			} else if (ret == -EBUSY) {
				guc->stalled_request = last;
				guc->submission_stall_reason =
					STALL_REGISTER_CONTEXT;
				goto schedule_tasklet;
			} else if (ret != 0) {
				GEM_WARN_ON(ret);	/* Unexpected */
				goto deadlk;
			}
		}

move_lrc_tail:
		if (is_multi_lrc_rq(last)) {
			ret = guc_wq_item_append(guc, last);
			if (ret == -EBUSY) {
				goto schedule_tasklet;
			} else if (ret != 0) {
				GEM_WARN_ON(ret);	/* Unexpected */
				goto deadlk;
			}
		} else {
			guc_set_lrc_tail(last);
		}

add_request:
954
		ret = guc_add_request(guc, last);
955 956 957 958 959 960
		if (unlikely(ret == -EPIPE)) {
			goto deadlk;
		} else if (ret == -EBUSY) {
			goto schedule_tasklet;
		} else if (ret != 0) {
			GEM_WARN_ON(ret);	/* Unexpected */
961
			goto deadlk;
962
		}
963
	}
964 965

	guc->stalled_request = NULL;
966
	guc->submission_stall_reason = STALL_NONE;
967
	return submit;
968 969 970 971 972

deadlk:
	sched_engine->tasklet.callback = NULL;
	tasklet_disable_nosync(&sched_engine->tasklet);
	return false;
973 974 975 976

schedule_tasklet:
	tasklet_schedule(&sched_engine->tasklet);
	return false;
977 978
}

979
static void guc_submission_tasklet(struct tasklet_struct *t)
980
{
981 982
	struct i915_sched_engine *sched_engine =
		from_tasklet(sched_engine, t, tasklet);
983
	unsigned long flags;
984
	bool loop;
985

986
	spin_lock_irqsave(&sched_engine->lock, flags);
987

988 989 990
	do {
		loop = guc_dequeue_one_context(sched_engine->private_data);
	} while (loop);
991

992
	i915_sched_engine_reset_on_empty(sched_engine);
993

994
	spin_unlock_irqrestore(&sched_engine->lock, flags);
995 996
}

997 998
static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
999
	if (iir & GT_RENDER_USER_INTERRUPT)
1000 1001 1002
		intel_engine_signal_breadcrumbs(engine);
}

1003 1004 1005
static void __guc_context_destroy(struct intel_context *ce);
static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
static void guc_signal_context_fence(struct intel_context *ce);
1006
static void guc_cancel_context_requests(struct intel_context *ce);
1007
static void guc_blocked_fence_complete(struct intel_context *ce);
1008 1009 1010 1011 1012

static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
{
	struct intel_context *ce;
	unsigned long index, flags;
1013
	bool pending_disable, pending_enable, deregister, destroyed, banned;
1014

1015
	xa_lock_irqsave(&guc->context_lookup, flags);
1016
	xa_for_each(&guc->context_lookup, index, ce) {
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		/*
		 * Corner case where the ref count on the object is zero but and
		 * deregister G2H was lost. In this case we don't touch the ref
		 * count and finish the destroy of the context.
		 */
		bool do_put = kref_get_unless_zero(&ce->ref);

		xa_unlock(&guc->context_lookup);

		spin_lock(&ce->guc_state.lock);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

		/*
		 * Once we are at this point submission_disabled() is guaranteed
		 * to be visible to all callers who set the below flags (see above
		 * flush and flushes in reset_prepare). If submission_disabled()
		 * is set, the caller shouldn't set these flags.
		 */

		destroyed = context_destroyed(ce);
		pending_enable = context_pending_enable(ce);
		pending_disable = context_pending_disable(ce);
		deregister = context_wait_for_deregister_to_register(ce);
1039
		banned = context_banned(ce);
1040 1041
		init_sched_state(ce);

1042 1043
		spin_unlock(&ce->guc_state.lock);

1044
		if (pending_enable || destroyed || deregister) {
1045
			decr_outstanding_submission_g2h(guc);
1046 1047 1048
			if (deregister)
				guc_signal_context_fence(ce);
			if (destroyed) {
1049
				intel_gt_pm_put_async(guc_to_gt(guc));
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
				release_guc_id(guc, ce);
				__guc_context_destroy(ce);
			}
			if (pending_enable || deregister)
				intel_context_put(ce);
		}

		/* Not mutualy exclusive with above if statement. */
		if (pending_disable) {
			guc_signal_context_fence(ce);
1060 1061 1062 1063
			if (banned) {
				guc_cancel_context_requests(ce);
				intel_engine_signal_breadcrumbs(ce->engine);
			}
1064
			intel_context_sched_disable_unpin(ce);
1065
			decr_outstanding_submission_g2h(guc);
1066 1067

			spin_lock(&ce->guc_state.lock);
1068
			guc_blocked_fence_complete(ce);
1069
			spin_unlock(&ce->guc_state.lock);
1070

1071 1072
			intel_context_put(ce);
		}
1073 1074 1075 1076

		if (do_put)
			intel_context_put(ce);
		xa_lock(&guc->context_lookup);
1077
	}
1078
	xa_unlock_irqrestore(&guc->context_lookup, flags);
1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/*
 * GuC stores busyness stats for each engine at context in/out boundaries. A
 * context 'in' logs execution start time, 'out' adds in -> out delta to total.
 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
 * GuC.
 *
 * __i915_pmu_event_read samples engine busyness. When sampling, if context id
 * is valid (!= ~0) and start is non-zero, the engine is considered to be
 * active. For an active engine total busyness = total + (now - start), where
 * 'now' is the time at which the busyness is sampled. For inactive engine,
 * total busyness = total.
 *
 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
 *
 * The start and total values provided by GuC are 32 bits and wrap around in a
 * few minutes. Since perf pmu provides busyness as 64 bit monotonically
 * increasing ns values, there is a need for this implementation to account for
 * overflows and extend the GuC provided values to 64 bits before returning
 * busyness to the user. In order to do that, a worker runs periodically at
 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
 * 27 seconds for a gt clock frequency of 19.2 MHz).
 */

#define WRAP_TIME_CLKS U32_MAX
#define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)

static void
__extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
{
	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);

	if (new_start == lower_32_bits(*prev_start))
		return;

	if (new_start < gt_stamp_last &&
	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
		gt_stamp_hi++;

	if (new_start > gt_stamp_last &&
	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
		gt_stamp_hi--;

	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
}

static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
{
	struct guc_engine_usage_record *rec = intel_guc_engine_usage(engine);
	struct intel_engine_guc_stats *stats = &engine->stats.guc;
	struct intel_guc *guc = &engine->gt->uc.guc;
	u32 last_switch = rec->last_switch_in_stamp;
	u32 ctx_id = rec->current_context_index;
	u32 total = rec->total_runtime;

	lockdep_assert_held(&guc->timestamp.lock);

	stats->running = ctx_id != ~0U && last_switch;
	if (stats->running)
		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);

	/*
	 * Instead of adjusting the total for overflow, just add the
	 * difference from previous sample stats->total_gt_clks
	 */
	if (total && total != ~0U) {
		stats->total_gt_clks += (u32)(total - stats->prev_total);
		stats->prev_total = total;
	}
}

static void guc_update_pm_timestamp(struct intel_guc *guc,
				    struct intel_engine_cs *engine,
				    ktime_t *now)
{
	u32 gt_stamp_now, gt_stamp_hi;

	lockdep_assert_held(&guc->timestamp.lock);

	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
	gt_stamp_now = intel_uncore_read(engine->uncore,
					 RING_TIMESTAMP(engine->mmio_base));
	*now = ktime_get();

	if (gt_stamp_now < lower_32_bits(guc->timestamp.gt_stamp))
		gt_stamp_hi++;

	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_now;
}

/*
 * Unlike the execlist mode of submission total and active times are in terms of
 * gt clocks. The *now parameter is retained to return the cpu time at which the
 * busyness was sampled.
 */
static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
{
	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
	struct intel_gt *gt = engine->gt;
	struct intel_guc *guc = &gt->uc.guc;
	u64 total, gt_stamp_saved;
	unsigned long flags;
	u32 reset_count;
1185
	bool in_reset;
1186 1187 1188 1189

	spin_lock_irqsave(&guc->timestamp.lock, flags);

	/*
1190 1191 1192 1193 1194 1195
	 * If a reset happened, we risk reading partially updated engine
	 * busyness from GuC, so we just use the driver stored copy of busyness.
	 * Synchronize with gt reset using reset_count and the
	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
	 * usable by checking the flag afterwards.
1196 1197
	 */
	reset_count = i915_reset_count(gpu_error);
1198
	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1199 1200 1201 1202 1203 1204 1205 1206 1207

	*now = ktime_get();

	/*
	 * The active busyness depends on start_gt_clk and gt_stamp.
	 * gt_stamp is updated by i915 only when gt is awake and the
	 * start_gt_clk is derived from GuC state. To get a consistent
	 * view of activity, we query the GuC state only if gt is awake.
	 */
1208
	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1209 1210
		stats_saved = *stats;
		gt_stamp_saved = guc->timestamp.gt_stamp;
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		guc_update_engine_gt_clks(engine);
		guc_update_pm_timestamp(guc, engine, now);
		intel_gt_pm_put_async(gt);
		if (i915_reset_count(gpu_error) != reset_count) {
			*stats = stats_saved;
			guc->timestamp.gt_stamp = gt_stamp_saved;
		}
	}

	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
	if (stats->running) {
		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;

		total += intel_gt_clock_interval_to_ns(gt, clk);
	}

	spin_unlock_irqrestore(&guc->timestamp.lock, flags);

	return ns_to_ktime(total);
}

static void __reset_guc_busyness_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned long flags;
	ktime_t unused;

	cancel_delayed_work_sync(&guc->timestamp.work);

	spin_lock_irqsave(&guc->timestamp.lock, flags);

	for_each_engine(engine, gt, id) {
		guc_update_pm_timestamp(guc, engine, &unused);
		guc_update_engine_gt_clks(engine);
		engine->stats.guc.prev_total = 0;
	}

	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
}

static void __update_guc_busyness_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
1258
	unsigned long flags;
1259 1260
	ktime_t unused;

1261
	spin_lock_irqsave(&guc->timestamp.lock, flags);
1262 1263 1264 1265
	for_each_engine(engine, gt, id) {
		guc_update_pm_timestamp(guc, engine, &unused);
		guc_update_engine_gt_clks(engine);
	}
1266
	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
}

static void guc_timestamp_ping(struct work_struct *wrk)
{
	struct intel_guc *guc = container_of(wrk, typeof(*guc),
					     timestamp.work.work);
	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
	struct intel_gt *gt = guc_to_gt(guc);
	intel_wakeref_t wakeref;
	int srcu, ret;

	/*
	 * Synchronize with gt reset to make sure the worker does not
	 * corrupt the engine/guc stats.
	 */
	ret = intel_gt_reset_trylock(gt, &srcu);
	if (ret)
		return;

	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
		__update_guc_busyness_stats(guc);

	intel_gt_reset_unlock(gt, srcu);

	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);
}

static int guc_action_enable_usage_stats(struct intel_guc *guc)
{
	u32 offset = intel_guc_engine_usage_offset(guc);
	u32 action[] = {
		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
		offset,
		0,
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

static void guc_init_engine_stats(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	intel_wakeref_t wakeref;

	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);

	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
		int ret = guc_action_enable_usage_stats(guc);

		if (ret)
			drm_err(&gt->i915->drm,
				"Failed to enable usage stats: %d!\n", ret);
	}
}

void intel_guc_busyness_park(struct intel_gt *gt)
{
	struct intel_guc *guc = &gt->uc.guc;

	if (!guc_submission_initialized(guc))
		return;

	cancel_delayed_work(&guc->timestamp.work);
	__update_guc_busyness_stats(guc);
}

void intel_guc_busyness_unpark(struct intel_gt *gt)
{
	struct intel_guc *guc = &gt->uc.guc;

	if (!guc_submission_initialized(guc))
		return;

	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
			 guc->timestamp.ping_delay);
}

1346 1347 1348 1349 1350 1351
static inline bool
submission_disabled(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;

	return unlikely(!sched_engine ||
1352 1353
			!__tasklet_is_enabled(&sched_engine->tasklet) ||
			intel_gt_is_wedged(guc_to_gt(guc)));
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
}

static void disable_submission(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;

	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
		GEM_BUG_ON(!guc->ct.enabled);
		__tasklet_disable_sync_once(&sched_engine->tasklet);
		sched_engine->tasklet.callback = NULL;
	}
}

static void enable_submission(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&guc->sched_engine->lock, flags);
	sched_engine->tasklet.callback = guc_submission_tasklet;
	wmb();	/* Make sure callback visible */
	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
	    __tasklet_enable(&sched_engine->tasklet)) {
		GEM_BUG_ON(!guc->ct.enabled);

		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&sched_engine->tasklet);
	}
	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
}

static void guc_flush_submissions(struct intel_guc *guc)
{
	struct i915_sched_engine * const sched_engine = guc->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&sched_engine->lock, flags);
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

1394 1395
static void guc_flush_destroyed_contexts(struct intel_guc *guc);

1396
void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1397
{
1398 1399 1400 1401 1402
	if (unlikely(!guc_submission_initialized(guc))) {
		/* Reset called during driver load? GuC not yet initialised! */
		return;
	}

1403
	intel_gt_park_heartbeats(guc_to_gt(guc));
1404 1405
	disable_submission(guc);
	guc->interrupts.disable(guc);
1406
	__reset_guc_busyness_stats(guc);
1407 1408 1409 1410 1411 1412

	/* Flush IRQ handler */
	spin_lock_irq(&guc_to_gt(guc)->irq_lock);
	spin_unlock_irq(&guc_to_gt(guc)->irq_lock);

	guc_flush_submissions(guc);
1413
	guc_flush_destroyed_contexts(guc);
1414
	flush_work(&guc->ct.requests.worker);
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	scrub_guc_desc_for_outstanding_g2h(guc);
}

static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
{
	struct intel_engine_cs *engine;
	intel_engine_mask_t tmp, mask = ve->mask;
	unsigned int num_siblings = 0;

	for_each_engine_masked(engine, ve->gt, mask, tmp)
		if (num_siblings++ == sibling)
			return engine;

	return NULL;
}

static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;

	if (intel_engine_is_virtual(engine))
		engine = guc_virtual_get_sibling(engine, 0);

	return engine;
1442 1443
}

1444
static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1445
{
1446 1447
	struct intel_engine_cs *engine = __context_to_physical_engine(ce);

1448 1449 1450
	if (intel_context_is_banned(ce))
		return;

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	GEM_BUG_ON(!intel_context_is_pinned(ce));

	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub)
		lrc_init_regs(ce, engine, true);

	/* Rerun the request; its payload has been neutered (if guilty). */
	lrc_update_regs(ce, engine, head);
}

1468
static void guc_reset_nop(struct intel_engine_cs *engine)
1469
{
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
}

static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
{
}

static void
__unwind_incomplete_requests(struct intel_context *ce)
{
	struct i915_request *rq, *rn;
	struct list_head *pl;
	int prio = I915_PRIORITY_INVALID;
	struct i915_sched_engine * const sched_engine =
		ce->engine->sched_engine;
	unsigned long flags;

	spin_lock_irqsave(&sched_engine->lock, flags);
1487
	spin_lock(&ce->guc_state.lock);
1488
	list_for_each_entry_safe_reverse(rq, rn,
1489
					 &ce->guc_state.requests,
1490
					 sched.link) {
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		if (i915_request_completed(rq))
			continue;

		list_del_init(&rq->sched.link);
		__i915_request_unsubmit(rq);

		/* Push the request back into the queue for later resubmission. */
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != prio) {
			prio = rq_prio(rq);
			pl = i915_sched_lookup_priolist(sched_engine, prio);
		}
		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));

1505
		list_add(&rq->sched.link, pl);
1506 1507
		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	}
1508
	spin_unlock(&ce->guc_state.lock);
1509 1510 1511 1512 1513
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

static void __guc_reset_context(struct intel_context *ce, bool stalled)
{
1514
	bool local_stalled;
1515
	struct i915_request *rq;
1516
	unsigned long flags;
1517
	u32 head;
1518 1519 1520 1521
	int i, number_children = ce->parallel.number_children;
	struct intel_context *parent = ce;

	GEM_BUG_ON(intel_context_is_child(ce));
1522

1523 1524
	intel_context_get(ce);

1525
	/*
1526 1527 1528
	 * GuC will implicitly mark the context as non-schedulable when it sends
	 * the reset notification. Make sure our state reflects this change. The
	 * context will be marked enabled on resubmission.
1529
	 */
1530
	spin_lock_irqsave(&ce->guc_state.lock, flags);
1531
	clr_context_enabled(ce);
1532
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	/*
	 * For each context in the relationship find the hanging request
	 * resetting each context / request as needed
	 */
	for (i = 0; i < number_children + 1; ++i) {
		if (!intel_context_is_pinned(ce))
			goto next_context;

		local_stalled = false;
		rq = intel_context_find_active_request(ce);
		if (!rq) {
			head = ce->ring->tail;
			goto out_replay;
		}
1548

1549 1550
		if (i915_request_started(rq))
			local_stalled = true;
1551

1552 1553
		GEM_BUG_ON(i915_active_is_idle(&ce->active));
		head = intel_ring_wrap(ce->ring, rq->head);
1554

1555
		__i915_request_reset(rq, local_stalled && stalled);
1556
out_replay:
1557 1558 1559 1560 1561 1562 1563 1564
		guc_reset_state(ce, head, local_stalled && stalled);
next_context:
		if (i != number_children)
			ce = list_next_entry(ce, parallel.child_link);
	}

	__unwind_incomplete_requests(parent);
	intel_context_put(parent);
1565 1566 1567 1568 1569 1570
}

void intel_guc_submission_reset(struct intel_guc *guc, bool stalled)
{
	struct intel_context *ce;
	unsigned long index;
1571
	unsigned long flags;
1572 1573 1574 1575 1576 1577

	if (unlikely(!guc_submission_initialized(guc))) {
		/* Reset called during driver load? GuC not yet initialised! */
		return;
	}

1578 1579 1580 1581 1582 1583 1584
	xa_lock_irqsave(&guc->context_lookup, flags);
	xa_for_each(&guc->context_lookup, index, ce) {
		if (!kref_get_unless_zero(&ce->ref))
			continue;

		xa_unlock(&guc->context_lookup);

1585 1586
		if (intel_context_is_pinned(ce) &&
		    !intel_context_is_child(ce))
1587 1588
			__guc_reset_context(ce, stalled);

1589 1590 1591 1592 1593 1594
		intel_context_put(ce);

		xa_lock(&guc->context_lookup);
	}
	xa_unlock_irqrestore(&guc->context_lookup, flags);

1595 1596
	/* GuC is blown away, drop all references to contexts */
	xa_destroy(&guc->context_lookup);
1597 1598
}

1599 1600 1601 1602 1603 1604 1605 1606
static void guc_cancel_context_requests(struct intel_context *ce)
{
	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
	struct i915_request *rq;
	unsigned long flags;

	/* Mark all executing requests as skipped. */
	spin_lock_irqsave(&sched_engine->lock, flags);
1607 1608
	spin_lock(&ce->guc_state.lock);
	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1609
		i915_request_put(i915_request_mark_eio(rq));
1610
	spin_unlock(&ce->guc_state.lock);
1611 1612 1613 1614 1615
	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

static void
guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1616 1617 1618 1619 1620
{
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

1621
	/* Can be called during boot if GuC fails to load */
1622
	if (!sched_engine)
1623 1624
		return;

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
1639
	spin_lock_irqsave(&sched_engine->lock, flags);
1640 1641

	/* Flush the queued requests to the timeline list (for retiring). */
1642
	while ((rb = rb_first_cached(&sched_engine->queue))) {
1643 1644
		struct i915_priolist *p = to_priolist(rb);

1645
		priolist_for_each_request_consume(rq, rn, p) {
1646
			list_del_init(&rq->sched.link);
1647

1648
			__i915_request_submit(rq);
1649 1650

			i915_request_put(i915_request_mark_eio(rq));
1651 1652
		}

1653
		rb_erase_cached(&p->node, &sched_engine->queue);
1654 1655 1656 1657 1658
		i915_priolist_free(p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

1659 1660
	sched_engine->queue_priority_hint = INT_MIN;
	sched_engine->queue = RB_ROOT_CACHED;
1661

1662
	spin_unlock_irqrestore(&sched_engine->lock, flags);
1663 1664
}

1665
void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1666
{
1667 1668
	struct intel_context *ce;
	unsigned long index;
1669 1670 1671 1672 1673 1674 1675 1676
	unsigned long flags;

	xa_lock_irqsave(&guc->context_lookup, flags);
	xa_for_each(&guc->context_lookup, index, ce) {
		if (!kref_get_unless_zero(&ce->ref))
			continue;

		xa_unlock(&guc->context_lookup);
1677

1678 1679
		if (intel_context_is_pinned(ce) &&
		    !intel_context_is_child(ce))
1680 1681
			guc_cancel_context_requests(ce);

1682 1683 1684 1685 1686 1687
		intel_context_put(ce);

		xa_lock(&guc->context_lookup);
	}
	xa_unlock_irqrestore(&guc->context_lookup, flags);

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	guc_cancel_sched_engine_requests(guc->sched_engine);

	/* GuC is blown away, drop all references to contexts */
	xa_destroy(&guc->context_lookup);
}

void intel_guc_submission_reset_finish(struct intel_guc *guc)
{
	/* Reset called during driver load or during wedge? */
	if (unlikely(!guc_submission_initialized(guc) ||
1698
		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1699 1700
		return;
	}
1701

1702 1703 1704 1705 1706 1707 1708 1709 1710
	/*
	 * Technically possible for either of these values to be non-zero here,
	 * but very unlikely + harmless. Regardless let's add a warn so we can
	 * see in CI if this happens frequently / a precursor to taking down the
	 * machine.
	 */
	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
	atomic_set(&guc->outstanding_submission_g2h, 0);

1711
	intel_guc_global_policies_update(guc);
1712
	enable_submission(guc);
1713
	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1714 1715
}

1716
static void destroyed_worker_func(struct work_struct *w);
1717
static void reset_fail_worker_func(struct work_struct *w);
1718

1719
/*
1720 1721
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
1722
 */
1723
int intel_guc_submission_init(struct intel_guc *guc)
1724
{
1725
	struct intel_gt *gt = guc_to_gt(guc);
1726
	int ret;
1727

1728
	if (guc->lrc_desc_pool)
1729
		return 0;
1730

1731
	ret = guc_lrc_desc_pool_create(guc);
1732 1733
	if (ret)
		return ret;
1734 1735 1736 1737
	/*
	 * Keep static analysers happy, let them know that we allocated the
	 * vma after testing that it didn't exist earlier.
	 */
1738
	GEM_BUG_ON(!guc->lrc_desc_pool);
1739

1740 1741
	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);

1742 1743 1744
	spin_lock_init(&guc->submission_state.lock);
	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
	ida_init(&guc->submission_state.guc_ids);
1745 1746 1747
	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
	INIT_WORK(&guc->submission_state.destroyed_worker,
		  destroyed_worker_func);
1748 1749
	INIT_WORK(&guc->submission_state.reset_fail_worker,
		  reset_fail_worker_func);
1750

1751
	guc->submission_state.guc_ids_bitmap =
1752
		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1753 1754 1755
	if (!guc->submission_state.guc_ids_bitmap)
		return -ENOMEM;

1756 1757 1758 1759
	spin_lock_init(&guc->timestamp.lock);
	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;

1760
	return 0;
1761 1762
}

1763
void intel_guc_submission_fini(struct intel_guc *guc)
1764
{
1765 1766 1767
	if (!guc->lrc_desc_pool)
		return;

1768
	guc_flush_destroyed_contexts(guc);
1769 1770
	guc_lrc_desc_pool_destroy(guc);
	i915_sched_engine_put(guc->sched_engine);
1771
	bitmap_free(guc->submission_state.guc_ids_bitmap);
1772 1773
}

1774 1775 1776
static inline void queue_request(struct i915_sched_engine *sched_engine,
				 struct i915_request *rq,
				 int prio)
1777
{
1778 1779 1780 1781
	GEM_BUG_ON(!list_empty(&rq->sched.link));
	list_add_tail(&rq->sched.link,
		      i915_sched_lookup_priolist(sched_engine, prio));
	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1782
	tasklet_hi_schedule(&sched_engine->tasklet);
1783 1784 1785 1786 1787
}

static int guc_bypass_tasklet_submit(struct intel_guc *guc,
				     struct i915_request *rq)
{
1788
	int ret = 0;
1789 1790 1791 1792 1793

	__i915_request_submit(rq);

	trace_i915_request_in(rq, 0);

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (is_multi_lrc_rq(rq)) {
		if (multi_lrc_submit(rq)) {
			ret = guc_wq_item_append(guc, rq);
			if (!ret)
				ret = guc_add_request(guc, rq);
		}
	} else {
		guc_set_lrc_tail(rq);
		ret = guc_add_request(guc, rq);
	}
1804

1805 1806 1807
	if (unlikely(ret == -EPIPE))
		disable_submission(guc);

1808 1809 1810
	return ret;
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
{
	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
	struct intel_context *ce = request_to_scheduling_context(rq);

	return submission_disabled(guc) || guc->stalled_request ||
		!i915_sched_engine_is_empty(sched_engine) ||
		!lrc_desc_registered(guc, ce->guc_id.id);
}

1821 1822 1823 1824 1825 1826 1827 1828 1829
static void guc_submit_request(struct i915_request *rq)
{
	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
	struct intel_guc *guc = &rq->engine->gt->uc.guc;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&sched_engine->lock, flags);

1830
	if (need_tasklet(guc, rq))
1831 1832 1833 1834 1835 1836 1837
		queue_request(sched_engine, rq, rq_prio(rq));
	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
		tasklet_hi_schedule(&sched_engine->tasklet);

	spin_unlock_irqrestore(&sched_engine->lock, flags);
}

1838
static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
1839
{
1840 1841 1842 1843 1844 1845
	int ret;

	GEM_BUG_ON(intel_context_is_child(ce));

	if (intel_context_is_parent(ce))
		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
1846
					      NUMBER_MULTI_LRC_GUC_ID(guc),
1847 1848 1849 1850
					      order_base_2(ce->parallel.number_children
							   + 1));
	else
		ret = ida_simple_get(&guc->submission_state.guc_ids,
1851 1852
				     NUMBER_MULTI_LRC_GUC_ID(guc),
				     guc->submission_state.num_guc_ids,
1853 1854 1855 1856 1857 1858 1859
				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
				     __GFP_NOWARN);
	if (unlikely(ret < 0))
		return ret;

	ce->guc_id.id = ret;
	return 0;
1860 1861 1862 1863
}

static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
1864 1865
	GEM_BUG_ON(intel_context_is_child(ce));

1866
	if (!context_guc_id_invalid(ce)) {
1867 1868 1869 1870 1871 1872 1873 1874
		if (intel_context_is_parent(ce))
			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
					      ce->guc_id.id,
					      order_base_2(ce->parallel.number_children
							   + 1));
		else
			ida_simple_remove(&guc->submission_state.guc_ids,
					  ce->guc_id.id);
1875
		reset_lrc_desc(guc, ce->guc_id.id);
1876 1877
		set_context_guc_id_invalid(ce);
	}
1878 1879
	if (!list_empty(&ce->guc_id.link))
		list_del_init(&ce->guc_id.link);
1880 1881 1882 1883 1884 1885
}

static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	unsigned long flags;

1886
	spin_lock_irqsave(&guc->submission_state.lock, flags);
1887
	__release_guc_id(guc, ce);
1888
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
1889 1890
}

1891
static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
1892
{
1893
	struct intel_context *cn;
1894

1895
	lockdep_assert_held(&guc->submission_state.lock);
1896 1897
	GEM_BUG_ON(intel_context_is_child(ce));
	GEM_BUG_ON(intel_context_is_parent(ce));
1898

1899
	if (!list_empty(&guc->submission_state.guc_id_list)) {
1900
		cn = list_first_entry(&guc->submission_state.guc_id_list,
1901
				      struct intel_context,
1902
				      guc_id.link);
1903

1904 1905 1906 1907
		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
		GEM_BUG_ON(context_guc_id_invalid(cn));
		GEM_BUG_ON(intel_context_is_child(cn));
		GEM_BUG_ON(intel_context_is_parent(cn));
1908

1909
		list_del_init(&cn->guc_id.link);
1910
		ce->guc_id.id = cn->guc_id.id;
1911

1912
		spin_lock(&cn->guc_state.lock);
1913
		clr_context_registered(cn);
1914
		spin_unlock(&cn->guc_state.lock);
1915

1916 1917
		set_context_guc_id_invalid(cn);

1918 1919 1920 1921
#ifdef CONFIG_DRM_I915_SELFTEST
		guc->number_guc_id_stolen++;
#endif

1922
		return 0;
1923 1924 1925 1926 1927
	} else {
		return -EAGAIN;
	}
}

1928
static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
1929 1930 1931
{
	int ret;

1932
	lockdep_assert_held(&guc->submission_state.lock);
1933
	GEM_BUG_ON(intel_context_is_child(ce));
1934

1935
	ret = new_guc_id(guc, ce);
1936
	if (unlikely(ret < 0)) {
1937 1938 1939 1940
		if (intel_context_is_parent(ce))
			return -ENOSPC;

		ret = steal_guc_id(guc, ce);
1941 1942 1943 1944
		if (ret < 0)
			return ret;
	}

1945 1946 1947 1948 1949 1950 1951 1952
	if (intel_context_is_parent(ce)) {
		struct intel_context *child;
		int i = 1;

		for_each_child(ce, child)
			child->guc_id.id = ce->guc_id.id + i++;
	}

1953 1954 1955 1956 1957 1958 1959 1960 1961
	return 0;
}

#define PIN_GUC_ID_TRIES	4
static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	int ret = 0;
	unsigned long flags, tries = PIN_GUC_ID_TRIES;

1962
	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
1963 1964

try_again:
1965
	spin_lock_irqsave(&guc->submission_state.lock, flags);
1966

1967 1968
	might_lock(&ce->guc_state.lock);

1969
	if (context_guc_id_invalid(ce)) {
1970
		ret = assign_guc_id(guc, ce);
1971 1972 1973 1974
		if (ret)
			goto out_unlock;
		ret = 1;	/* Indidcates newly assigned guc_id */
	}
1975 1976 1977
	if (!list_empty(&ce->guc_id.link))
		list_del_init(&ce->guc_id.link);
	atomic_inc(&ce->guc_id.ref);
1978 1979

out_unlock:
1980
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
1981 1982

	/*
1983
	 * -EAGAIN indicates no guc_id are available, let's retire any
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	 * outstanding requests to see if that frees up a guc_id. If the first
	 * retire didn't help, insert a sleep with the timeslice duration before
	 * attempting to retire more requests. Double the sleep period each
	 * subsequent pass before finally giving up. The sleep period has max of
	 * 100ms and minimum of 1ms.
	 */
	if (ret == -EAGAIN && --tries) {
		if (PIN_GUC_ID_TRIES - tries > 1) {
			unsigned int timeslice_shifted =
				ce->engine->props.timeslice_duration_ms <<
				(PIN_GUC_ID_TRIES - tries - 2);
			unsigned int max = min_t(unsigned int, 100,
						 timeslice_shifted);

			msleep(max_t(unsigned int, max, 1));
		}
		intel_gt_retire_requests(guc_to_gt(guc));
		goto try_again;
	}

	return ret;
}

static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
	unsigned long flags;

2011
	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2012
	GEM_BUG_ON(intel_context_is_child(ce));
2013

2014 2015
	if (unlikely(context_guc_id_invalid(ce) ||
		     intel_context_is_parent(ce)))
2016 2017
		return;

2018
	spin_lock_irqsave(&guc->submission_state.lock, flags);
2019 2020
	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
	    !atomic_read(&ce->guc_id.ref))
2021 2022 2023
		list_add_tail(&ce->guc_id.link,
			      &guc->submission_state.guc_id_list);
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2024 2025
}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
static int __guc_action_register_multi_lrc(struct intel_guc *guc,
					   struct intel_context *ce,
					   u32 guc_id,
					   u32 offset,
					   bool loop)
{
	struct intel_context *child;
	u32 action[4 + MAX_ENGINE_INSTANCE];
	int len = 0;

	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);

	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
	action[len++] = guc_id;
	action[len++] = ce->parallel.number_children + 1;
	action[len++] = offset;
	for_each_child(ce, child) {
		offset += sizeof(struct guc_lrc_desc);
		action[len++] = offset;
	}

	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
}

2050 2051
static int __guc_action_register_context(struct intel_guc *guc,
					 u32 guc_id,
2052 2053
					 u32 offset,
					 bool loop)
2054 2055 2056 2057 2058 2059 2060
{
	u32 action[] = {
		INTEL_GUC_ACTION_REGISTER_CONTEXT,
		guc_id,
		offset,
	};

2061
	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2062
					     0, loop);
2063 2064
}

2065
static int register_context(struct intel_context *ce, bool loop)
2066 2067 2068
{
	struct intel_guc *guc = ce_to_guc(ce);
	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool) +
2069
		ce->guc_id.id * sizeof(struct guc_lrc_desc);
2070
	int ret;
2071

2072
	GEM_BUG_ON(intel_context_is_child(ce));
2073 2074
	trace_intel_context_register(ce);

2075 2076 2077 2078 2079 2080
	if (intel_context_is_parent(ce))
		ret = __guc_action_register_multi_lrc(guc, ce, ce->guc_id.id,
						      offset, loop);
	else
		ret = __guc_action_register_context(guc, ce->guc_id.id, offset,
						    loop);
2081 2082 2083 2084
	if (likely(!ret)) {
		unsigned long flags;

		spin_lock_irqsave(&ce->guc_state.lock, flags);
2085
		set_context_registered(ce);
2086 2087
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	}
2088 2089

	return ret;
2090 2091 2092
}

static int __guc_action_deregister_context(struct intel_guc *guc,
2093
					   u32 guc_id)
2094 2095 2096 2097 2098 2099
{
	u32 action[] = {
		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
		guc_id,
	};

2100 2101
	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2102
					     true);
2103 2104
}

2105
static int deregister_context(struct intel_context *ce, u32 guc_id)
2106 2107 2108
{
	struct intel_guc *guc = ce_to_guc(ce);

2109
	GEM_BUG_ON(intel_context_is_child(ce));
2110 2111
	trace_intel_context_deregister(ce);

2112
	return __guc_action_deregister_context(guc, guc_id);
2113 2114
}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
static inline void clear_children_join_go_memory(struct intel_context *ce)
{
	struct parent_scratch *ps = __get_parent_scratch(ce);
	int i;

	ps->go.semaphore = 0;
	for (i = 0; i < ce->parallel.number_children + 1; ++i)
		ps->join[i].semaphore = 0;
}

static inline u32 get_children_go_value(struct intel_context *ce)
{
	return __get_parent_scratch(ce)->go.semaphore;
}

static inline u32 get_children_join_value(struct intel_context *ce,
					  u8 child_index)
{
	return __get_parent_scratch(ce)->join[child_index].semaphore;
}

2136 2137 2138 2139 2140
static void guc_context_policy_init(struct intel_engine_cs *engine,
				    struct guc_lrc_desc *desc)
{
	desc->policy_flags = 0;

2141 2142 2143
	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE;

2144 2145 2146
	/* NB: For both of these, zero means disabled. */
	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2147 2148
}

2149
static int guc_lrc_desc_pin(struct intel_context *ce, bool loop)
2150 2151 2152 2153
{
	struct intel_engine_cs *engine = ce->engine;
	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
	struct intel_guc *guc = &engine->gt->uc.guc;
2154
	u32 desc_idx = ce->guc_id.id;
2155 2156 2157
	struct guc_lrc_desc *desc;
	bool context_registered;
	intel_wakeref_t wakeref;
2158
	struct intel_context *child;
2159 2160 2161
	int ret = 0;

	GEM_BUG_ON(!engine->mask);
2162
	GEM_BUG_ON(!sched_state_is_init(ce));
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

	/*
	 * Ensure LRC + CT vmas are is same region as write barrier is done
	 * based on CT vma region.
	 */
	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
		   i915_gem_object_is_lmem(ce->ring->vma->obj));

	context_registered = lrc_desc_registered(guc, desc_idx);

	reset_lrc_desc(guc, desc_idx);
	set_lrc_desc_registered(guc, desc_idx, ce);

	desc = __get_lrc_desc(guc, desc_idx);
	desc->engine_class = engine_class_to_guc_class(engine->class);
2178
	desc->engine_submit_mask = engine->logical_mask;
2179
	desc->hw_context_desc = ce->lrc.lrca;
2180
	desc->priority = ce->guc_state.prio;
2181 2182 2183
	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
	guc_context_policy_init(engine, desc);

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	/*
	 * If context is a parent, we need to register a process descriptor
	 * describing a work queue and register all child contexts.
	 */
	if (intel_context_is_parent(ce)) {
		struct guc_process_desc *pdesc;

		ce->parallel.guc.wqi_tail = 0;
		ce->parallel.guc.wqi_head = 0;

		desc->process_desc = i915_ggtt_offset(ce->state) +
2195
			__get_parent_scratch_offset(ce);
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
		desc->wq_addr = i915_ggtt_offset(ce->state) +
			__get_wq_offset(ce);
		desc->wq_size = WQ_SIZE;

		pdesc = __get_process_desc(ce);
		memset(pdesc, 0, sizeof(*(pdesc)));
		pdesc->stage_id = ce->guc_id.id;
		pdesc->wq_base_addr = desc->wq_addr;
		pdesc->wq_size_bytes = desc->wq_size;
		pdesc->wq_status = WQ_STATUS_ACTIVE;

		for_each_child(ce, child) {
			desc = __get_lrc_desc(guc, child->guc_id.id);

			desc->engine_class =
				engine_class_to_guc_class(engine->class);
			desc->hw_context_desc = child->lrc.lrca;
			desc->priority = ce->guc_state.prio;
			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
			guc_context_policy_init(engine, desc);
		}
2217 2218

		clear_children_join_go_memory(ce);
2219 2220
	}

2221 2222 2223 2224 2225 2226 2227 2228 2229
	/*
	 * The context_lookup xarray is used to determine if the hardware
	 * context is currently registered. There are two cases in which it
	 * could be registered either the guc_id has been stolen from another
	 * context or the lrc descriptor address of this context has changed. In
	 * either case the context needs to be deregistered with the GuC before
	 * registering this context.
	 */
	if (context_registered) {
2230 2231 2232
		bool disabled;
		unsigned long flags;

2233
		trace_intel_context_steal_guc_id(ce);
2234 2235 2236 2237 2238 2239
		GEM_BUG_ON(!loop);

		/* Seal race with Reset */
		spin_lock_irqsave(&ce->guc_state.lock, flags);
		disabled = submission_disabled(guc);
		if (likely(!disabled)) {
2240 2241
			set_context_wait_for_deregister_to_register(ce);
			intel_context_get(ce);
2242 2243 2244 2245 2246
		}
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
		if (unlikely(disabled)) {
			reset_lrc_desc(guc, desc_idx);
			return 0;	/* Will get registered later */
2247
		}
2248 2249 2250 2251 2252 2253

		/*
		 * If stealing the guc_id, this ce has the same guc_id as the
		 * context whose guc_id was stolen.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref)
2254
			ret = deregister_context(ce, ce->guc_id.id);
2255
		if (unlikely(ret == -ENODEV))
2256
			ret = 0;	/* Will get registered later */
2257 2258
	} else {
		with_intel_runtime_pm(runtime_pm, wakeref)
2259
			ret = register_context(ce, loop);
2260 2261 2262
		if (unlikely(ret == -EBUSY)) {
			reset_lrc_desc(guc, desc_idx);
		} else if (unlikely(ret == -ENODEV)) {
2263 2264
			reset_lrc_desc(guc, desc_idx);
			ret = 0;	/* Will get registered later */
2265
		}
2266 2267 2268
	}

	return ret;
2269 2270
}

2271 2272 2273 2274
static int __guc_context_pre_pin(struct intel_context *ce,
				 struct intel_engine_cs *engine,
				 struct i915_gem_ww_ctx *ww,
				 void **vaddr)
2275
{
2276
	return lrc_pre_pin(ce, engine, ww, vaddr);
2277 2278
}

2279 2280 2281
static int __guc_context_pin(struct intel_context *ce,
			     struct intel_engine_cs *engine,
			     void *vaddr)
2282
{
2283 2284 2285 2286 2287 2288 2289 2290 2291
	if (i915_ggtt_offset(ce->state) !=
	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);

	/*
	 * GuC context gets pinned in guc_request_alloc. See that function for
	 * explaination of why.
	 */

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	return lrc_pin(ce, engine, vaddr);
}

static int guc_context_pre_pin(struct intel_context *ce,
			       struct i915_gem_ww_ctx *ww,
			       void **vaddr)
{
	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
}

static int guc_context_pin(struct intel_context *ce, void *vaddr)
{
2304 2305 2306 2307 2308 2309
	int ret = __guc_context_pin(ce, ce->engine, vaddr);

	if (likely(!ret && !intel_context_is_barrier(ce)))
		intel_engine_pm_get(ce->engine);

	return ret;
2310 2311
}

2312 2313 2314 2315 2316 2317
static void guc_context_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);
2318 2319 2320

	if (likely(!intel_context_is_barrier(ce)))
		intel_engine_pm_put_async(ce->engine);
2321 2322 2323 2324 2325 2326 2327
}

static void guc_context_post_unpin(struct intel_context *ce)
{
	lrc_post_unpin(ce);
}

2328 2329 2330 2331 2332
static void __guc_context_sched_enable(struct intel_guc *guc,
				       struct intel_context *ce)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2333
		ce->guc_id.id,
2334 2335 2336 2337 2338 2339 2340 2341 2342
		GUC_CONTEXT_ENABLE
	};

	trace_intel_context_sched_enable(ce);

	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
}

2343 2344 2345 2346 2347 2348
static void __guc_context_sched_disable(struct intel_guc *guc,
					struct intel_context *ce,
					u16 guc_id)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2349
		guc_id,	/* ce->guc_id.id not stable */
2350 2351 2352 2353 2354
		GUC_CONTEXT_DISABLE
	};

	GEM_BUG_ON(guc_id == GUC_INVALID_LRC_ID);

2355
	GEM_BUG_ON(intel_context_is_child(ce));
2356
	trace_intel_context_sched_disable(ce);
2357

2358 2359
	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2360 2361
}

2362 2363 2364 2365
static void guc_blocked_fence_complete(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

2366 2367
	if (!i915_sw_fence_done(&ce->guc_state.blocked))
		i915_sw_fence_complete(&ce->guc_state.blocked);
2368 2369 2370 2371 2372
}

static void guc_blocked_fence_reinit(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);
2373
	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2374 2375 2376 2377 2378 2379

	/*
	 * This fence is always complete unless a pending schedule disable is
	 * outstanding. We arm the fence here and complete it when we receive
	 * the pending schedule disable complete message.
	 */
2380 2381 2382 2383
	i915_sw_fence_fini(&ce->guc_state.blocked);
	i915_sw_fence_reinit(&ce->guc_state.blocked);
	i915_sw_fence_await(&ce->guc_state.blocked);
	i915_sw_fence_commit(&ce->guc_state.blocked);
2384 2385
}

2386 2387 2388 2389 2390 2391
static u16 prep_context_pending_disable(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	set_context_pending_disable(ce);
	clr_context_enabled(ce);
2392
	guc_blocked_fence_reinit(ce);
2393
	intel_context_get(ce);
2394

2395
	return ce->guc_id.id;
2396 2397
}

2398 2399 2400 2401 2402 2403 2404 2405 2406
static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
	intel_wakeref_t wakeref;
	u16 guc_id;
	bool enabled;

2407 2408
	GEM_BUG_ON(intel_context_is_child(ce));

2409 2410 2411 2412 2413 2414 2415 2416 2417
	spin_lock_irqsave(&ce->guc_state.lock, flags);

	incr_context_blocked(ce);

	enabled = context_enabled(ce);
	if (unlikely(!enabled || submission_disabled(guc))) {
		if (enabled)
			clr_context_enabled(ce);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2418
		return &ce->guc_state.blocked;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	}

	/*
	 * We add +2 here as the schedule disable complete CTB handler calls
	 * intel_context_sched_disable_unpin (-2 to pin_count).
	 */
	atomic_add(2, &ce->pin_count);

	guc_id = prep_context_pending_disable(ce);

	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	with_intel_runtime_pm(runtime_pm, wakeref)
		__guc_context_sched_disable(guc, ce, guc_id);

2434
	return &ce->guc_state.blocked;
2435 2436
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
#define SCHED_STATE_MULTI_BLOCKED_MASK \
	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
#define SCHED_STATE_NO_UNBLOCK \
	(SCHED_STATE_MULTI_BLOCKED_MASK | \
	 SCHED_STATE_PENDING_DISABLE | \
	 SCHED_STATE_BANNED)

static bool context_cant_unblock(struct intel_context *ce)
{
	lockdep_assert_held(&ce->guc_state.lock);

	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
		context_guc_id_invalid(ce) ||
2450
		!lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id) ||
2451 2452 2453
		!intel_context_is_pinned(ce);
}

2454 2455 2456 2457 2458 2459 2460 2461 2462
static void guc_context_unblock(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
	intel_wakeref_t wakeref;
	bool enable;

	GEM_BUG_ON(context_enabled(ce));
2463
	GEM_BUG_ON(intel_context_is_child(ce));
2464 2465 2466 2467

	spin_lock_irqsave(&ce->guc_state.lock, flags);

	if (unlikely(submission_disabled(guc) ||
2468
		     context_cant_unblock(ce))) {
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
		enable = false;
	} else {
		enable = true;
		set_context_pending_enable(ce);
		set_context_enabled(ce);
		intel_context_get(ce);
	}

	decr_context_blocked(ce);

	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	if (enable) {
		with_intel_runtime_pm(runtime_pm, wakeref)
			__guc_context_sched_enable(guc, ce);
	}
}

static void guc_context_cancel_request(struct intel_context *ce,
				       struct i915_request *rq)
{
2490 2491 2492
	struct intel_context *block_context =
		request_to_scheduling_context(rq);

2493
	if (i915_sw_fence_signaled(&rq->submit)) {
2494
		struct i915_sw_fence *fence;
2495

2496
		intel_context_get(ce);
2497
		fence = guc_context_block(block_context);
2498 2499 2500 2501 2502 2503
		i915_sw_fence_wait(fence);
		if (!i915_request_completed(rq)) {
			__i915_request_skip(rq);
			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
					true);
		}
2504

2505
		guc_context_unblock(block_context);
2506
		intel_context_put(ce);
2507 2508 2509
	}
}

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
						 u16 guc_id,
						 u32 preemption_timeout)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SET_CONTEXT_PREEMPTION_TIMEOUT,
		guc_id,
		preemption_timeout
	};

	intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
}

static void guc_context_ban(struct intel_context *ce, struct i915_request *rq)
{
	struct intel_guc *guc = ce_to_guc(ce);
	struct intel_runtime_pm *runtime_pm =
		&ce->engine->gt->i915->runtime_pm;
	intel_wakeref_t wakeref;
	unsigned long flags;

2531 2532
	GEM_BUG_ON(intel_context_is_child(ce));

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	guc_flush_submissions(guc);

	spin_lock_irqsave(&ce->guc_state.lock, flags);
	set_context_banned(ce);

	if (submission_disabled(guc) ||
	    (!context_enabled(ce) && !context_pending_disable(ce))) {
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);

		guc_cancel_context_requests(ce);
		intel_engine_signal_breadcrumbs(ce->engine);
	} else if (!context_pending_disable(ce)) {
		u16 guc_id;

		/*
		 * We add +2 here as the schedule disable complete CTB handler
		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
		 */
		atomic_add(2, &ce->pin_count);

		guc_id = prep_context_pending_disable(ce);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);

		/*
		 * In addition to disabling scheduling, set the preemption
		 * timeout to the minimum value (1 us) so the banned context
		 * gets kicked off the HW ASAP.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref) {
			__guc_context_set_preemption_timeout(guc, guc_id, 1);
			__guc_context_sched_disable(guc, ce, guc_id);
		}
	} else {
		if (!context_guc_id_invalid(ce))
			with_intel_runtime_pm(runtime_pm, wakeref)
				__guc_context_set_preemption_timeout(guc,
2569
								     ce->guc_id.id,
2570 2571 2572 2573 2574
								     1);
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	}
}

2575 2576 2577 2578
static void guc_context_sched_disable(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
2579
	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
2580
	intel_wakeref_t wakeref;
2581
	u16 guc_id;
2582

2583 2584
	GEM_BUG_ON(intel_context_is_child(ce));

2585
	spin_lock_irqsave(&ce->guc_state.lock, flags);
2586 2587

	/*
2588 2589 2590 2591 2592
	 * We have to check if the context has been disabled by another thread,
	 * check if submssion has been disabled to seal a race with reset and
	 * finally check if any more requests have been committed to the
	 * context ensursing that a request doesn't slip through the
	 * 'context_pending_disable' fence.
2593
	 */
2594 2595
	if (unlikely(!context_enabled(ce) || submission_disabled(guc) ||
		     context_has_committed_requests(ce))) {
2596
		clr_context_enabled(ce);
2597 2598 2599
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
		goto unpin;
	}
2600
	guc_id = prep_context_pending_disable(ce);
2601

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

	with_intel_runtime_pm(runtime_pm, wakeref)
		__guc_context_sched_disable(guc, ce, guc_id);

	return;
unpin:
	intel_context_sched_disable_unpin(ce);
}

2612 2613 2614
static inline void guc_lrc_desc_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);
2615 2616 2617
	struct intel_gt *gt = guc_to_gt(guc);
	unsigned long flags;
	bool disabled;
2618

2619
	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
2620 2621
	GEM_BUG_ON(!lrc_desc_registered(guc, ce->guc_id.id));
	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
2622
	GEM_BUG_ON(context_enabled(ce));
2623

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	/* Seal race with Reset */
	spin_lock_irqsave(&ce->guc_state.lock, flags);
	disabled = submission_disabled(guc);
	if (likely(!disabled)) {
		__intel_gt_pm_get(gt);
		set_context_destroyed(ce);
		clr_context_registered(ce);
	}
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
	if (unlikely(disabled)) {
2634
		release_guc_id(guc, ce);
2635 2636 2637 2638
		__guc_context_destroy(ce);
		return;
	}

2639
	deregister_context(ce, ce->guc_id.id);
2640 2641
}

2642 2643
static void __guc_context_destroy(struct intel_context *ce)
{
2644 2645 2646 2647
	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
2648
	GEM_BUG_ON(ce->guc_state.number_committed_requests);
2649

2650 2651 2652 2653 2654 2655 2656
	lrc_fini(ce);
	intel_context_fini(ce);

	if (intel_engine_is_virtual(ce->engine)) {
		struct guc_virtual_engine *ve =
			container_of(ce, typeof(*ve), context);

2657 2658 2659
		if (ve->base.breadcrumbs)
			intel_breadcrumbs_put(ve->base.breadcrumbs);

2660 2661 2662 2663 2664 2665
		kfree(ve);
	} else {
		intel_context_free(ce);
	}
}

2666 2667
static void guc_flush_destroyed_contexts(struct intel_guc *guc)
{
2668
	struct intel_context *ce;
2669 2670 2671 2672 2673
	unsigned long flags;

	GEM_BUG_ON(!submission_disabled(guc) &&
		   guc_submission_initialized(guc));

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
		spin_lock_irqsave(&guc->submission_state.lock, flags);
		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
					      struct intel_context,
					      destroyed_link);
		if (ce)
			list_del_init(&ce->destroyed_link);
		spin_unlock_irqrestore(&guc->submission_state.lock, flags);

		if (!ce)
			break;

		release_guc_id(guc, ce);
2687 2688 2689 2690 2691 2692
		__guc_context_destroy(ce);
	}
}

static void deregister_destroyed_contexts(struct intel_guc *guc)
{
2693
	struct intel_context *ce;
2694 2695
	unsigned long flags;

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
		spin_lock_irqsave(&guc->submission_state.lock, flags);
		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
					      struct intel_context,
					      destroyed_link);
		if (ce)
			list_del_init(&ce->destroyed_link);
		spin_unlock_irqrestore(&guc->submission_state.lock, flags);

		if (!ce)
			break;

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
		guc_lrc_desc_unpin(ce);
	}
}

static void destroyed_worker_func(struct work_struct *w)
{
	struct intel_guc *guc = container_of(w, struct intel_guc,
					     submission_state.destroyed_worker);
	struct intel_gt *gt = guc_to_gt(guc);
	int tmp;

	with_intel_gt_pm(gt, tmp)
		deregister_destroyed_contexts(guc);
}

2723 2724 2725 2726 2727
static void guc_context_destroy(struct kref *kref)
{
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
	struct intel_guc *guc = ce_to_guc(ce);
	unsigned long flags;
2728
	bool destroy;
2729 2730 2731 2732

	/*
	 * If the guc_id is invalid this context has been stolen and we can free
	 * it immediately. Also can be freed immediately if the context is not
2733
	 * registered with the GuC or the GuC is in the middle of a reset.
2734
	 */
2735
	spin_lock_irqsave(&guc->submission_state.lock, flags);
2736 2737 2738 2739 2740 2741 2742 2743 2744
	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
		!lrc_desc_registered(guc, ce->guc_id.id);
	if (likely(!destroy)) {
		if (!list_empty(&ce->guc_id.link))
			list_del_init(&ce->guc_id.link);
		list_add_tail(&ce->destroyed_link,
			      &guc->submission_state.destroyed_contexts);
	} else {
		__release_guc_id(guc, ce);
2745
	}
2746
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2747
	if (unlikely(destroy)) {
2748 2749 2750 2751
		__guc_context_destroy(ce);
		return;
	}

2752
	/*
2753 2754 2755
	 * We use a worker to issue the H2G to deregister the context as we can
	 * take the GT PM for the first time which isn't allowed from an atomic
	 * context.
2756
	 */
2757
	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
2758 2759 2760 2761 2762 2763 2764
}

static int guc_context_alloc(struct intel_context *ce)
{
	return lrc_alloc(ce, ce->engine);
}

2765 2766 2767 2768 2769 2770
static void guc_context_set_prio(struct intel_guc *guc,
				 struct intel_context *ce,
				 u8 prio)
{
	u32 action[] = {
		INTEL_GUC_ACTION_SET_CONTEXT_PRIORITY,
2771
		ce->guc_id.id,
2772 2773 2774 2775 2776
		prio,
	};

	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
		   prio > GUC_CLIENT_PRIORITY_NORMAL);
2777
	lockdep_assert_held(&ce->guc_state.lock);
2778

2779
	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
2780
	    !context_registered(ce)) {
2781
		ce->guc_state.prio = prio;
2782
		return;
2783
	}
2784 2785 2786

	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);

2787
	ce->guc_state.prio = prio;
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	trace_intel_context_set_prio(ce);
}

static inline u8 map_i915_prio_to_guc_prio(int prio)
{
	if (prio == I915_PRIORITY_NORMAL)
		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
	else if (prio < I915_PRIORITY_NORMAL)
		return GUC_CLIENT_PRIORITY_NORMAL;
	else if (prio < I915_PRIORITY_DISPLAY)
		return GUC_CLIENT_PRIORITY_HIGH;
	else
		return GUC_CLIENT_PRIORITY_KMD_HIGH;
}

static inline void add_context_inflight_prio(struct intel_context *ce,
					     u8 guc_prio)
{
2806 2807
	lockdep_assert_held(&ce->guc_state.lock);
	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
2808

2809
	++ce->guc_state.prio_count[guc_prio];
2810 2811

	/* Overflow protection */
2812
	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
2813 2814 2815 2816 2817
}

static inline void sub_context_inflight_prio(struct intel_context *ce,
					     u8 guc_prio)
{
2818 2819
	lockdep_assert_held(&ce->guc_state.lock);
	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
2820 2821

	/* Underflow protection */
2822
	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
2823

2824
	--ce->guc_state.prio_count[guc_prio];
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
}

static inline void update_context_prio(struct intel_context *ce)
{
	struct intel_guc *guc = &ce->engine->gt->uc.guc;
	int i;

	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);

2835
	lockdep_assert_held(&ce->guc_state.lock);
2836

2837 2838
	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
		if (ce->guc_state.prio_count[i]) {
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
			guc_context_set_prio(guc, ce, i);
			break;
		}
	}
}

static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
{
	/* Lower value is higher priority */
	return new_guc_prio < old_guc_prio;
}

2851 2852
static void add_to_context(struct i915_request *rq)
{
2853
	struct intel_context *ce = request_to_scheduling_context(rq);
2854 2855
	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));

2856
	GEM_BUG_ON(intel_context_is_child(ce));
2857
	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
2858

2859 2860
	spin_lock(&ce->guc_state.lock);
	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871

	if (rq->guc_prio == GUC_PRIO_INIT) {
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
		sub_context_inflight_prio(ce, rq->guc_prio);
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
	}
	update_context_prio(ce);

2872
	spin_unlock(&ce->guc_state.lock);
2873 2874
}

2875 2876
static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
{
2877
	lockdep_assert_held(&ce->guc_state.lock);
2878 2879 2880 2881 2882 2883 2884 2885 2886

	if (rq->guc_prio != GUC_PRIO_INIT &&
	    rq->guc_prio != GUC_PRIO_FINI) {
		sub_context_inflight_prio(ce, rq->guc_prio);
		update_context_prio(ce);
	}
	rq->guc_prio = GUC_PRIO_FINI;
}

2887 2888
static void remove_from_context(struct i915_request *rq)
{
2889 2890 2891
	struct intel_context *ce = request_to_scheduling_context(rq);

	GEM_BUG_ON(intel_context_is_child(ce));
2892

2893
	spin_lock_irq(&ce->guc_state.lock);
2894 2895 2896 2897 2898 2899 2900

	list_del_init(&rq->sched.link);
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);

	/* Prevent further __await_execution() registering a cb, then flush */
	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);

2901 2902
	guc_prio_fini(rq, ce);

2903
	decr_context_committed_requests(ce);
2904

2905 2906
	spin_unlock_irq(&ce->guc_state.lock);

2907
	atomic_dec(&ce->guc_id.ref);
2908 2909 2910
	i915_request_notify_execute_cb_imm(rq);
}

2911 2912 2913 2914 2915
static const struct intel_context_ops guc_context_ops = {
	.alloc = guc_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_context_pin,
2916 2917
	.unpin = guc_context_unpin,
	.post_unpin = guc_context_post_unpin,
2918

2919 2920
	.ban = guc_context_ban,

2921 2922
	.cancel_request = guc_context_cancel_request,

2923 2924 2925
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

2926 2927
	.sched_disable = guc_context_sched_disable,

2928
	.reset = lrc_reset,
2929
	.destroy = guc_context_destroy,
2930 2931

	.create_virtual = guc_create_virtual,
2932
	.create_parallel = guc_create_parallel,
2933 2934
};

2935 2936 2937 2938 2939 2940 2941 2942
static void submit_work_cb(struct irq_work *wrk)
{
	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);

	might_lock(&rq->engine->sched_engine->lock);
	i915_sw_fence_complete(&rq->submit);
}

2943 2944
static void __guc_signal_context_fence(struct intel_context *ce)
{
2945
	struct i915_request *rq, *rn;
2946 2947 2948

	lockdep_assert_held(&ce->guc_state.lock);

2949 2950 2951
	if (!list_empty(&ce->guc_state.fences))
		trace_intel_context_fence_release(ce);

2952 2953 2954 2955 2956 2957 2958 2959 2960
	/*
	 * Use an IRQ to ensure locking order of sched_engine->lock ->
	 * ce->guc_state.lock is preserved.
	 */
	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
				 guc_fence_link) {
		list_del(&rq->guc_fence_link);
		irq_work_queue(&rq->submit_work);
	}
2961 2962 2963 2964 2965 2966 2967 2968

	INIT_LIST_HEAD(&ce->guc_state.fences);
}

static void guc_signal_context_fence(struct intel_context *ce)
{
	unsigned long flags;

2969 2970
	GEM_BUG_ON(intel_context_is_child(ce));

2971 2972 2973 2974 2975 2976
	spin_lock_irqsave(&ce->guc_state.lock, flags);
	clr_context_wait_for_deregister_to_register(ce);
	__guc_signal_context_fence(ce);
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
}

2977 2978
static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
{
2979
	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
2980
		!lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id)) &&
2981
		!submission_disabled(ce_to_guc(ce));
2982 2983
}

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
static void guc_context_init(struct intel_context *ce)
{
	const struct i915_gem_context *ctx;
	int prio = I915_CONTEXT_DEFAULT_PRIORITY;

	rcu_read_lock();
	ctx = rcu_dereference(ce->gem_context);
	if (ctx)
		prio = ctx->sched.priority;
	rcu_read_unlock();

2995
	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
2996 2997 2998
	set_bit(CONTEXT_GUC_INIT, &ce->flags);
}

2999
static int guc_request_alloc(struct i915_request *rq)
3000
{
3001
	struct intel_context *ce = request_to_scheduling_context(rq);
3002
	struct intel_guc *guc = ce_to_guc(ce);
3003
	unsigned long flags;
3004 3005
	int ret;

3006
	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3007 3008 3009 3010 3011 3012

	/*
	 * Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
3013
	rq->reserved_space += GUC_REQUEST_SIZE;
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

	/*
	 * Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	/* Unconditionally invalidate GPU caches and TLBs. */
3024
	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3025 3026 3027
	if (ret)
		return ret;

3028
	rq->reserved_space -= GUC_REQUEST_SIZE;
3029

3030 3031 3032
	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
		guc_context_init(ce);

3033 3034 3035
	/*
	 * Call pin_guc_id here rather than in the pinning step as with
	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3036 3037
	 * guc_id and creating horrible race conditions. This is especially bad
	 * when guc_id are being stolen due to over subscription. By the time
3038 3039
	 * this function is reached, it is guaranteed that the guc_id will be
	 * persistent until the generated request is retired. Thus, sealing these
3040
	 * race conditions. It is still safe to fail here if guc_id are
3041 3042 3043 3044 3045 3046 3047 3048 3049
	 * exhausted and return -EAGAIN to the user indicating that they can try
	 * again in the future.
	 *
	 * There is no need for a lock here as the timeline mutex ensures at
	 * most one context can be executing this code path at once. The
	 * guc_id_ref is incremented once for every request in flight and
	 * decremented on each retire. When it is zero, a lock around the
	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
	 */
3050
	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3051
		goto out;
3052

3053 3054 3055 3056
	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
	if (unlikely(ret < 0))
		return ret;
	if (context_needs_register(ce, !!ret)) {
3057
		ret = guc_lrc_desc_pin(ce, true);
3058
		if (unlikely(ret)) {	/* unwind */
3059 3060 3061 3062
			if (ret == -EPIPE) {
				disable_submission(guc);
				goto out;	/* GPU will be reset */
			}
3063
			atomic_dec(&ce->guc_id.ref);
3064 3065 3066 3067
			unpin_guc_id(guc, ce);
			return ret;
		}
	}
3068

3069
	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3070

3071 3072 3073
out:
	/*
	 * We block all requests on this context if a G2H is pending for a
3074 3075 3076 3077
	 * schedule disable or context deregistration as the GuC will fail a
	 * schedule enable or context registration if either G2H is pending
	 * respectfully. Once a G2H returns, the fence is released that is
	 * blocking these requests (see guc_signal_context_fence).
3078 3079
	 */
	spin_lock_irqsave(&ce->guc_state.lock, flags);
3080 3081
	if (context_wait_for_deregister_to_register(ce) ||
	    context_pending_disable(ce)) {
3082
		init_irq_work(&rq->submit_work, submit_work_cb);
3083 3084 3085 3086
		i915_sw_fence_await(&rq->submit);

		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
	}
3087
	incr_context_committed_requests(ce);
3088 3089
	spin_unlock_irqrestore(&ce->guc_state.lock, flags);

3090
	return 0;
3091 3092
}

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
static int guc_virtual_context_pre_pin(struct intel_context *ce,
				       struct i915_gem_ww_ctx *ww,
				       void **vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	return __guc_context_pre_pin(ce, engine, ww, vaddr);
}

static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3105 3106 3107 3108 3109 3110
	int ret = __guc_context_pin(ce, engine, vaddr);
	intel_engine_mask_t tmp, mask = ce->engine->mask;

	if (likely(!ret))
		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
			intel_engine_pm_get(engine);
3111

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	return ret;
}

static void guc_virtual_context_unpin(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;
	struct intel_guc *guc = ce_to_guc(ce);

	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_put_async(engine);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
}

static void guc_virtual_context_enter(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_get(engine);

	intel_timeline_enter(ce->timeline);
}

static void guc_virtual_context_exit(struct intel_context *ce)
{
	intel_engine_mask_t tmp, mask = ce->engine->mask;
	struct intel_engine_cs *engine;

	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
		intel_engine_pm_put(engine);

	intel_timeline_exit(ce->timeline);
}

static int guc_virtual_context_alloc(struct intel_context *ce)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	return lrc_alloc(ce, engine);
}

static const struct intel_context_ops virtual_guc_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_virtual_context_pre_pin,
	.pin = guc_virtual_context_pin,
3165
	.unpin = guc_virtual_context_unpin,
3166 3167
	.post_unpin = guc_context_post_unpin,

3168 3169
	.ban = guc_context_ban,

3170 3171
	.cancel_request = guc_context_cancel_request,

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.sched_disable = guc_context_sched_disable,

	.destroy = guc_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
	struct intel_guc *guc = ce_to_guc(ce);
	int ret;

	GEM_BUG_ON(!intel_context_is_parent(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	ret = pin_guc_id(guc, ce);
	if (unlikely(ret < 0))
		return ret;

	return __guc_context_pin(ce, engine, vaddr);
}

static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
{
	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);

	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	__intel_context_pin(ce->parallel.parent);
	return __guc_context_pin(ce, engine, vaddr);
}

static void guc_parent_context_unpin(struct intel_context *ce)
{
	struct intel_guc *guc = ce_to_guc(ce);

	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));
	GEM_BUG_ON(!intel_context_is_parent(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	unpin_guc_id(guc, ce);
	lrc_unpin(ce);
}

static void guc_child_context_unpin(struct intel_context *ce)
{
	GEM_BUG_ON(context_enabled(ce));
	GEM_BUG_ON(intel_context_is_barrier(ce));
	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	lrc_unpin(ce);
}

static void guc_child_context_post_unpin(struct intel_context *ce)
{
	GEM_BUG_ON(!intel_context_is_child(ce));
	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));

	lrc_post_unpin(ce);
	intel_context_unpin(ce->parallel.parent);
}

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
static void guc_child_context_destroy(struct kref *kref)
{
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

	__guc_context_destroy(ce);
}

static const struct intel_context_ops virtual_parent_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_parent_context_pin,
	.unpin = guc_parent_context_unpin,
	.post_unpin = guc_context_post_unpin,

	.ban = guc_context_ban,

	.cancel_request = guc_context_cancel_request,

	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.sched_disable = guc_context_sched_disable,

	.destroy = guc_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

static const struct intel_context_ops virtual_child_context_ops = {
	.alloc = guc_virtual_context_alloc,

	.pre_pin = guc_context_pre_pin,
	.pin = guc_child_context_pin,
	.unpin = guc_child_context_unpin,
	.post_unpin = guc_child_context_post_unpin,

	.cancel_request = guc_context_cancel_request,

	.enter = guc_virtual_context_enter,
	.exit = guc_virtual_context_exit,

	.destroy = guc_child_context_destroy,

	.get_sibling = guc_virtual_get_sibling,
};

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
/*
 * The below override of the breadcrumbs is enabled when the user configures a
 * context for parallel submission (multi-lrc, parent-child).
 *
 * The overridden breadcrumbs implements an algorithm which allows the GuC to
 * safely preempt all the hw contexts configured for parallel submission
 * between each BB. The contract between the i915 and GuC is if the parent
 * context can be preempted, all the children can be preempted, and the GuC will
 * always try to preempt the parent before the children. A handshake between the
 * parent / children breadcrumbs ensures the i915 holds up its end of the deal
 * creating a window to preempt between each set of BBs.
 */
static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
						     u64 offset, u32 len,
						     const unsigned int flags);
static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
						    u64 offset, u32 len,
						    const unsigned int flags);
static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						 u32 *cs);
static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						u32 *cs);

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
static struct intel_context *
guc_create_parallel(struct intel_engine_cs **engines,
		    unsigned int num_siblings,
		    unsigned int width)
{
	struct intel_engine_cs **siblings = NULL;
	struct intel_context *parent = NULL, *ce, *err;
	int i, j;

	siblings = kmalloc_array(num_siblings,
				 sizeof(*siblings),
				 GFP_KERNEL);
	if (!siblings)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < width; ++i) {
		for (j = 0; j < num_siblings; ++j)
			siblings[j] = engines[i * num_siblings + j];

		ce = intel_engine_create_virtual(siblings, num_siblings,
						 FORCE_VIRTUAL);
3335 3336
		if (IS_ERR(ce)) {
			err = ERR_CAST(ce);
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
			goto unwind;
		}

		if (i == 0) {
			parent = ce;
			parent->ops = &virtual_parent_context_ops;
		} else {
			ce->ops = &virtual_child_context_ops;
			intel_context_bind_parent_child(parent, ce);
		}
	}

M
Matthew Brost 已提交
3349 3350
	parent->parallel.fence_context = dma_fence_context_alloc(1);

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	parent->engine->emit_bb_start =
		emit_bb_start_parent_no_preempt_mid_batch;
	parent->engine->emit_fini_breadcrumb =
		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
	parent->engine->emit_fini_breadcrumb_dw =
		12 + 4 * parent->parallel.number_children;
	for_each_child(parent, ce) {
		ce->engine->emit_bb_start =
			emit_bb_start_child_no_preempt_mid_batch;
		ce->engine->emit_fini_breadcrumb =
			emit_fini_breadcrumb_child_no_preempt_mid_batch;
		ce->engine->emit_fini_breadcrumb_dw = 16;
	}

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
	kfree(siblings);
	return parent;

unwind:
	if (parent)
		intel_context_put(parent);
	kfree(siblings);
	return err;
}

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *sibling;
	intel_engine_mask_t tmp, mask = b->engine_mask;
	bool result = false;

	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
		result |= intel_engine_irq_enable(sibling);

	return result;
}

static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *sibling;
	intel_engine_mask_t tmp, mask = b->engine_mask;

	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
		intel_engine_irq_disable(sibling);
}

static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
{
	int i;

	/*
	 * In GuC submission mode we do not know which physical engine a request
	 * will be scheduled on, this creates a problem because the breadcrumb
	 * interrupt is per physical engine. To work around this we attach
	 * requests and direct all breadcrumb interrupts to the first instance
	 * of an engine per class. In addition all breadcrumb interrupts are
	 * enabled / disabled across an engine class in unison.
	 */
	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
		struct intel_engine_cs *sibling =
			engine->gt->engine_class[engine->class][i];

		if (sibling) {
			if (engine->breadcrumbs != sibling->breadcrumbs) {
				intel_breadcrumbs_put(engine->breadcrumbs);
				engine->breadcrumbs =
					intel_breadcrumbs_get(sibling->breadcrumbs);
			}
			break;
		}
	}

	if (engine->breadcrumbs) {
		engine->breadcrumbs->engine_mask |= engine->mask;
		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
	}
}

3431 3432 3433
static void guc_bump_inflight_request_prio(struct i915_request *rq,
					   int prio)
{
3434
	struct intel_context *ce = request_to_scheduling_context(rq);
3435 3436 3437 3438 3439 3440 3441 3442 3443
	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);

	/* Short circuit function */
	if (prio < I915_PRIORITY_NORMAL ||
	    rq->guc_prio == GUC_PRIO_FINI ||
	    (rq->guc_prio != GUC_PRIO_INIT &&
	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
		return;

3444
	spin_lock(&ce->guc_state.lock);
3445 3446 3447 3448 3449 3450 3451
	if (rq->guc_prio != GUC_PRIO_FINI) {
		if (rq->guc_prio != GUC_PRIO_INIT)
			sub_context_inflight_prio(ce, rq->guc_prio);
		rq->guc_prio = new_guc_prio;
		add_context_inflight_prio(ce, rq->guc_prio);
		update_context_prio(ce);
	}
3452
	spin_unlock(&ce->guc_state.lock);
3453 3454 3455 3456
}

static void guc_retire_inflight_request_prio(struct i915_request *rq)
{
3457
	struct intel_context *ce = request_to_scheduling_context(rq);
3458

3459
	spin_lock(&ce->guc_state.lock);
3460
	guc_prio_fini(rq, ce);
3461
	spin_unlock(&ce->guc_state.lock);
3462 3463
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
static void sanitize_hwsp(struct intel_engine_cs *engine)
{
	struct intel_timeline *tl;

	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
		intel_timeline_reset_seqno(tl);
}

static void guc_sanitize(struct intel_engine_cs *engine)
{
	/*
	 * Poison residual state on resume, in case the suspend didn't!
	 *
	 * We have to assume that across suspend/resume (or other loss
	 * of control) that the contents of our pinned buffers has been
	 * lost, replaced by garbage. Since this doesn't always happen,
	 * let's poison such state so that we more quickly spot when
	 * we falsely assume it has been preserved.
	 */
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);

	/*
	 * The kernel_context HWSP is stored in the status_page. As above,
	 * that may be lost on resume/initialisation, and so we need to
	 * reset the value in the HWSP.
	 */
	sanitize_hwsp(engine);

	/* And scrub the dirty cachelines for the HWSP */
	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
3495 3496

	intel_engine_reset_pinned_contexts(engine);
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
}

static void setup_hwsp(struct intel_engine_cs *engine)
{
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */

	ENGINE_WRITE_FW(engine,
			RING_HWS_PGA,
			i915_ggtt_offset(engine->status_page.vma));
}

static void start_engine(struct intel_engine_cs *engine)
{
	ENGINE_WRITE_FW(engine,
			RING_MODE_GEN7,
			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));

	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
	ENGINE_POSTING_READ(engine, RING_MI_MODE);
}

static int guc_resume(struct intel_engine_cs *engine)
{
	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);

	intel_mocs_init_engine(engine);

	intel_breadcrumbs_reset(engine->breadcrumbs);

	setup_hwsp(engine);
	start_engine(engine);

	return 0;
}

3532 3533 3534 3535 3536
static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
{
	return !sched_engine->tasklet.callback;
}

3537 3538
static void guc_set_default_submission(struct intel_engine_cs *engine)
{
3539
	engine->submit_request = guc_submit_request;
3540 3541
}

3542 3543 3544 3545 3546
static inline void guc_kernel_context_pin(struct intel_guc *guc,
					  struct intel_context *ce)
{
	if (context_guc_id_invalid(ce))
		pin_guc_id(guc, ce);
3547
	guc_lrc_desc_pin(ce, true);
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
}

static inline void guc_init_lrc_mapping(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	/* make sure all descriptors are clean... */
	xa_destroy(&guc->context_lookup);

	/*
	 * Some contexts might have been pinned before we enabled GuC
	 * submission, so we need to add them to the GuC bookeeping.
	 * Also, after a reset the of the GuC we want to make sure that the
	 * information shared with GuC is properly reset. The kernel LRCs are
	 * not attached to the gem_context, so they need to be added separately.
	 *
	 * Note: we purposefully do not check the return of guc_lrc_desc_pin,
	 * because that function can only fail if a reset is just starting. This
	 * is at the end of reset so presumably another reset isn't happening
	 * and even it did this code would be run again.
	 */

3572 3573 3574 3575 3576 3577 3578
	for_each_engine(engine, gt, id) {
		struct intel_context *ce;

		list_for_each_entry(ce, &engine->pinned_contexts_list,
				    pinned_contexts_link)
			guc_kernel_context_pin(guc, ce);
	}
3579 3580
}

3581
static void guc_release(struct intel_engine_cs *engine)
3582
{
3583
	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3584

3585 3586 3587 3588
	intel_engine_cleanup_common(engine);
	lrc_fini_wa_ctx(engine);
}

3589 3590 3591 3592 3593 3594 3595 3596 3597
static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
{
	struct intel_engine_cs *e;
	intel_engine_mask_t tmp, mask = engine->mask;

	for_each_engine_masked(e, engine->gt, mask, tmp)
		e->serial++;
}

3598 3599 3600 3601 3602 3603 3604 3605
static void guc_default_vfuncs(struct intel_engine_cs *engine)
{
	/* Default vfuncs which can be overridden by each engine. */

	engine->resume = guc_resume;

	engine->cops = &guc_context_ops;
	engine->request_alloc = guc_request_alloc;
3606 3607
	engine->add_active_request = add_to_context;
	engine->remove_active_request = remove_from_context;
3608

3609
	engine->sched_engine->schedule = i915_schedule;
3610

3611 3612 3613 3614
	engine->reset.prepare = guc_reset_nop;
	engine->reset.rewind = guc_rewind_nop;
	engine->reset.cancel = guc_reset_nop;
	engine->reset.finish = guc_reset_nop;
3615

3616 3617 3618
	engine->emit_flush = gen8_emit_flush_xcs;
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3619
	if (GRAPHICS_VER(engine->i915) >= 12) {
3620 3621 3622 3623
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
		engine->emit_flush = gen12_emit_flush_xcs;
	}
	engine->set_default_submission = guc_set_default_submission;
3624
	engine->busyness = guc_engine_busyness;
3625

3626
	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3627
	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3628
	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638

	/*
	 * TODO: GuC supports timeslicing and semaphores as well, but they're
	 * handled by the firmware so some minor tweaks are required before
	 * enabling.
	 *
	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
	 */

	engine->emit_bb_start = gen8_emit_bb_start;
3639
}
3640

3641 3642
static void rcs_submission_override(struct intel_engine_cs *engine)
{
3643
	switch (GRAPHICS_VER(engine->i915)) {
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
	case 12:
		engine->emit_flush = gen12_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
		break;
	case 11:
		engine->emit_flush = gen11_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
		break;
	default:
		engine->emit_flush = gen8_emit_flush_rcs;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
		break;
3656
	}
3657 3658
}

3659 3660 3661
static inline void guc_default_irqs(struct intel_engine_cs *engine)
{
	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
3662
	intel_engine_set_irq_handler(engine, cs_irq_handler);
3663 3664
}

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
static void guc_sched_engine_destroy(struct kref *kref)
{
	struct i915_sched_engine *sched_engine =
		container_of(kref, typeof(*sched_engine), ref);
	struct intel_guc *guc = sched_engine->private_data;

	guc->sched_engine = NULL;
	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
	kfree(sched_engine);
}

3676 3677 3678
int intel_guc_submission_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
3679
	struct intel_guc *guc = &engine->gt->uc.guc;
3680 3681 3682 3683 3684

	/*
	 * The setup relies on several assumptions (e.g. irqs always enabled)
	 * that are only valid on gen11+
	 */
3685
	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
3686

3687 3688 3689 3690 3691 3692
	if (!guc->sched_engine) {
		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
		if (!guc->sched_engine)
			return -ENOMEM;

		guc->sched_engine->schedule = i915_schedule;
3693
		guc->sched_engine->disabled = guc_sched_engine_disabled;
3694
		guc->sched_engine->private_data = guc;
3695
		guc->sched_engine->destroy = guc_sched_engine_destroy;
3696 3697 3698 3699
		guc->sched_engine->bump_inflight_request_prio =
			guc_bump_inflight_request_prio;
		guc->sched_engine->retire_inflight_request_prio =
			guc_retire_inflight_request_prio;
3700 3701 3702 3703 3704
		tasklet_setup(&guc->sched_engine->tasklet,
			      guc_submission_tasklet);
	}
	i915_sched_engine_put(engine->sched_engine);
	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
3705 3706 3707

	guc_default_vfuncs(engine);
	guc_default_irqs(engine);
3708
	guc_init_breadcrumbs(engine);
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723

	if (engine->class == RENDER_CLASS)
		rcs_submission_override(engine);

	lrc_init_wa_ctx(engine);

	/* Finally, take ownership and responsibility for cleanup! */
	engine->sanitize = guc_sanitize;
	engine->release = guc_release;

	return 0;
}

void intel_guc_submission_enable(struct intel_guc *guc)
{
3724
	guc_init_lrc_mapping(guc);
3725
	guc_init_engine_stats(guc);
3726 3727
}

3728
void intel_guc_submission_disable(struct intel_guc *guc)
3729
{
3730
	/* Note: By the time we're here, GuC may have already been reset */
3731
}
3732

3733 3734 3735 3736 3737 3738 3739
static bool __guc_submission_supported(struct intel_guc *guc)
{
	/* GuC submission is unavailable for pre-Gen11 */
	return intel_guc_is_supported(guc) &&
	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
}

3740
static bool __guc_submission_selected(struct intel_guc *guc)
3741
{
3742 3743
	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;

3744
	if (!intel_guc_submission_is_supported(guc))
3745 3746
		return false;

3747
	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
3748 3749 3750 3751
}

void intel_guc_submission_init_early(struct intel_guc *guc)
{
3752
	guc->submission_state.num_guc_ids = GUC_MAX_LRC_DESCRIPTORS;
3753
	guc->submission_supported = __guc_submission_supported(guc);
3754
	guc->submission_selected = __guc_submission_selected(guc);
3755
}
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774

static inline struct intel_context *
g2h_context_lookup(struct intel_guc *guc, u32 desc_idx)
{
	struct intel_context *ce;

	if (unlikely(desc_idx >= GUC_MAX_LRC_DESCRIPTORS)) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Invalid desc_idx %u", desc_idx);
		return NULL;
	}

	ce = __get_context(guc, desc_idx);
	if (unlikely(!ce)) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Context is NULL, desc_idx %u", desc_idx);
		return NULL;
	}

3775 3776 3777 3778 3779 3780
	if (unlikely(intel_context_is_child(ce))) {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Context is child, desc_idx %u", desc_idx);
		return NULL;
	}

3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	return ce;
}

int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
					  const u32 *msg,
					  u32 len)
{
	struct intel_context *ce;
	u32 desc_idx = msg[0];

	if (unlikely(len < 1)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	ce = g2h_context_lookup(guc, desc_idx);
	if (unlikely(!ce))
		return -EPROTO;

3800 3801
	trace_intel_context_deregister_done(ce);

3802 3803 3804 3805 3806 3807 3808
#ifdef CONFIG_DRM_I915_SELFTEST
	if (unlikely(ce->drop_deregister)) {
		ce->drop_deregister = false;
		return 0;
	}
#endif

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	if (context_wait_for_deregister_to_register(ce)) {
		struct intel_runtime_pm *runtime_pm =
			&ce->engine->gt->i915->runtime_pm;
		intel_wakeref_t wakeref;

		/*
		 * Previous owner of this guc_id has been deregistered, now safe
		 * register this context.
		 */
		with_intel_runtime_pm(runtime_pm, wakeref)
3819
			register_context(ce, true);
3820
		guc_signal_context_fence(ce);
3821 3822 3823
		intel_context_put(ce);
	} else if (context_destroyed(ce)) {
		/* Context has been destroyed */
3824
		intel_gt_pm_put_async(guc_to_gt(guc));
3825
		release_guc_id(guc, ce);
3826
		__guc_context_destroy(ce);
3827 3828
	}

3829 3830
	decr_outstanding_submission_g2h(guc);

3831 3832
	return 0;
}
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854

int intel_guc_sched_done_process_msg(struct intel_guc *guc,
				     const u32 *msg,
				     u32 len)
{
	struct intel_context *ce;
	unsigned long flags;
	u32 desc_idx = msg[0];

	if (unlikely(len < 2)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	ce = g2h_context_lookup(guc, desc_idx);
	if (unlikely(!ce))
		return -EPROTO;

	if (unlikely(context_destroyed(ce) ||
		     (!context_pending_enable(ce) &&
		     !context_pending_disable(ce)))) {
		drm_err(&guc_to_gt(guc)->i915->drm,
3855
			"Bad context sched_state 0x%x, desc_idx %u",
3856 3857 3858 3859
			ce->guc_state.sched_state, desc_idx);
		return -EPROTO;
	}

3860 3861
	trace_intel_context_sched_done(ce);

3862
	if (context_pending_enable(ce)) {
3863 3864 3865 3866 3867 3868 3869
#ifdef CONFIG_DRM_I915_SELFTEST
		if (unlikely(ce->drop_schedule_enable)) {
			ce->drop_schedule_enable = false;
			return 0;
		}
#endif

3870
		spin_lock_irqsave(&ce->guc_state.lock, flags);
3871
		clr_context_pending_enable(ce);
3872
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3873
	} else if (context_pending_disable(ce)) {
3874 3875
		bool banned;

3876 3877 3878 3879 3880 3881 3882
#ifdef CONFIG_DRM_I915_SELFTEST
		if (unlikely(ce->drop_schedule_disable)) {
			ce->drop_schedule_disable = false;
			return 0;
		}
#endif

3883 3884 3885 3886 3887 3888 3889
		/*
		 * Unpin must be done before __guc_signal_context_fence,
		 * otherwise a race exists between the requests getting
		 * submitted + retired before this unpin completes resulting in
		 * the pin_count going to zero and the context still being
		 * enabled.
		 */
3890 3891 3892
		intel_context_sched_disable_unpin(ce);

		spin_lock_irqsave(&ce->guc_state.lock, flags);
3893 3894
		banned = context_banned(ce);
		clr_context_banned(ce);
3895
		clr_context_pending_disable(ce);
3896
		__guc_signal_context_fence(ce);
3897
		guc_blocked_fence_complete(ce);
3898
		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3899 3900 3901 3902 3903

		if (banned) {
			guc_cancel_context_requests(ce);
			intel_engine_signal_breadcrumbs(ce->engine);
		}
3904 3905
	}

3906
	decr_outstanding_submission_g2h(guc);
3907 3908 3909 3910
	intel_context_put(ce);

	return 0;
}
3911

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
static void capture_error_state(struct intel_guc *guc,
				struct intel_context *ce)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct drm_i915_private *i915 = gt->i915;
	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
	intel_wakeref_t wakeref;

	intel_engine_set_hung_context(engine, ce);
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
		i915_capture_error_state(gt, engine->mask);
	atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
}

3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
static void guc_context_replay(struct intel_context *ce)
{
	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;

	__guc_reset_context(ce, true);
	tasklet_hi_schedule(&sched_engine->tasklet);
}

static void guc_handle_context_reset(struct intel_guc *guc,
				     struct intel_context *ce)
{
	trace_intel_context_reset(ce);
3938

3939
	if (likely(!intel_context_is_banned(ce))) {
3940 3941
		capture_error_state(guc, ce);
		guc_context_replay(ce);
3942 3943 3944 3945 3946
	} else {
		drm_err(&guc_to_gt(guc)->i915->drm,
			"Invalid GuC engine reset notificaion for 0x%04X on %s: banned = %d, blocked = %d",
			ce->guc_id.id, ce->engine->name, intel_context_is_banned(ce),
			context_blocked(ce));
3947
	}
3948 3949 3950 3951 3952 3953
}

int intel_guc_context_reset_process_msg(struct intel_guc *guc,
					const u32 *msg, u32 len)
{
	struct intel_context *ce;
3954
	unsigned long flags;
3955 3956 3957 3958 3959 3960 3961 3962
	int desc_idx;

	if (unlikely(len != 1)) {
		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	desc_idx = msg[0];
3963 3964 3965 3966 3967 3968 3969 3970

	/*
	 * The context lookup uses the xarray but lookups only require an RCU lock
	 * not the full spinlock. So take the lock explicitly and keep it until the
	 * context has been reference count locked to ensure it can't be destroyed
	 * asynchronously until the reset is done.
	 */
	xa_lock_irqsave(&guc->context_lookup, flags);
3971
	ce = g2h_context_lookup(guc, desc_idx);
3972 3973 3974 3975
	if (ce)
		intel_context_get(ce);
	xa_unlock_irqrestore(&guc->context_lookup, flags);

3976 3977 3978 3979
	if (unlikely(!ce))
		return -EPROTO;

	guc_handle_context_reset(guc, ce);
3980
	intel_context_put(ce);
3981 3982 3983 3984

	return 0;
}

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
int intel_guc_error_capture_process_msg(struct intel_guc *guc,
					const u32 *msg, u32 len)
{
	int status;

	if (unlikely(len != 1)) {
		drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
		return -EPROTO;
	}

	status = msg[0];
	drm_info(&guc_to_gt(guc)->i915->drm, "Got error capture: status = %d", status);

	/* FIXME: Do something with the capture */

	return 0;
}

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
static struct intel_engine_cs *
guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
{
	struct intel_gt *gt = guc_to_gt(guc);
	u8 engine_class = guc_class_to_engine_class(guc_class);

	/* Class index is checked in class converter */
	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);

	return gt->engine_class[engine_class][instance];
}

4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
static void reset_fail_worker_func(struct work_struct *w)
{
	struct intel_guc *guc = container_of(w, struct intel_guc,
					     submission_state.reset_fail_worker);
	struct intel_gt *gt = guc_to_gt(guc);
	intel_engine_mask_t reset_fail_mask;
	unsigned long flags;

	spin_lock_irqsave(&guc->submission_state.lock, flags);
	reset_fail_mask = guc->submission_state.reset_fail_mask;
	guc->submission_state.reset_fail_mask = 0;
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);

	if (likely(reset_fail_mask))
		intel_gt_handle_error(gt, reset_fail_mask,
				      I915_ERROR_CAPTURE,
				      "GuC failed to reset engine mask=0x%x\n",
				      reset_fail_mask);
}

4035 4036 4037 4038
int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
					 const u32 *msg, u32 len)
{
	struct intel_engine_cs *engine;
4039
	struct intel_gt *gt = guc_to_gt(guc);
4040 4041
	u8 guc_class, instance;
	u32 reason;
4042
	unsigned long flags;
4043 4044

	if (unlikely(len != 3)) {
4045
		drm_err(&gt->i915->drm, "Invalid length %u", len);
4046 4047 4048 4049 4050 4051 4052 4053 4054
		return -EPROTO;
	}

	guc_class = msg[0];
	instance = msg[1];
	reason = msg[2];

	engine = guc_lookup_engine(guc, guc_class, instance);
	if (unlikely(!engine)) {
4055
		drm_err(&gt->i915->drm,
4056 4057 4058 4059
			"Invalid engine %d:%d", guc_class, instance);
		return -EPROTO;
	}

4060 4061 4062 4063 4064 4065 4066
	/*
	 * This is an unexpected failure of a hardware feature. So, log a real
	 * error message not just the informational that comes with the reset.
	 */
	drm_err(&gt->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X",
		guc_class, instance, engine->name, reason);

4067 4068 4069 4070 4071 4072 4073 4074 4075
	spin_lock_irqsave(&guc->submission_state.lock, flags);
	guc->submission_state.reset_fail_mask |= engine->mask;
	spin_unlock_irqrestore(&guc->submission_state.lock, flags);

	/*
	 * A GT reset flushes this worker queue (G2H handler) so we must use
	 * another worker to trigger a GT reset.
	 */
	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4076 4077 4078 4079

	return 0;
}

4080 4081 4082 4083 4084 4085
void intel_guc_find_hung_context(struct intel_engine_cs *engine)
{
	struct intel_guc *guc = &engine->gt->uc.guc;
	struct intel_context *ce;
	struct i915_request *rq;
	unsigned long index;
4086
	unsigned long flags;
4087 4088 4089 4090 4091

	/* Reset called during driver load? GuC not yet initialised! */
	if (unlikely(!guc_submission_initialized(guc)))
		return;

4092
	xa_lock_irqsave(&guc->context_lookup, flags);
4093
	xa_for_each(&guc->context_lookup, index, ce) {
4094
		if (!kref_get_unless_zero(&ce->ref))
4095 4096
			continue;

4097 4098 4099 4100 4101
		xa_unlock(&guc->context_lookup);

		if (!intel_context_is_pinned(ce))
			goto next;

4102 4103
		if (intel_engine_is_virtual(ce->engine)) {
			if (!(ce->engine->mask & engine->mask))
4104
				goto next;
4105 4106
		} else {
			if (ce->engine != engine)
4107
				goto next;
4108 4109
		}

4110
		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4111 4112 4113 4114 4115 4116
			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
				continue;

			intel_engine_set_hung_context(engine, ce);

			/* Can only cope with one hang at a time... */
4117 4118 4119
			intel_context_put(ce);
			xa_lock(&guc->context_lookup);
			goto done;
4120
		}
4121 4122 4123
next:
		intel_context_put(ce);
		xa_lock(&guc->context_lookup);
4124
	}
4125 4126
done:
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
}

void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
				    struct i915_request *hung_rq,
				    struct drm_printer *m)
{
	struct intel_guc *guc = &engine->gt->uc.guc;
	struct intel_context *ce;
	unsigned long index;
	unsigned long flags;

	/* Reset called during driver load? GuC not yet initialised! */
	if (unlikely(!guc_submission_initialized(guc)))
		return;

4142
	xa_lock_irqsave(&guc->context_lookup, flags);
4143
	xa_for_each(&guc->context_lookup, index, ce) {
4144
		if (!kref_get_unless_zero(&ce->ref))
4145 4146
			continue;

4147 4148 4149 4150 4151
		xa_unlock(&guc->context_lookup);

		if (!intel_context_is_pinned(ce))
			goto next;

4152 4153
		if (intel_engine_is_virtual(ce->engine)) {
			if (!(ce->engine->mask & engine->mask))
4154
				goto next;
4155 4156
		} else {
			if (ce->engine != engine)
4157
				goto next;
4158 4159
		}

4160 4161
		spin_lock(&ce->guc_state.lock);
		intel_engine_dump_active_requests(&ce->guc_state.requests,
4162
						  hung_rq, m);
4163
		spin_unlock(&ce->guc_state.lock);
4164 4165 4166 4167

next:
		intel_context_put(ce);
		xa_lock(&guc->context_lookup);
4168
	}
4169
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4170 4171
}

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
void intel_guc_submission_print_info(struct intel_guc *guc,
				     struct drm_printer *p)
{
	struct i915_sched_engine *sched_engine = guc->sched_engine;
	struct rb_node *rb;
	unsigned long flags;

	if (!sched_engine)
		return;

	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
		   atomic_read(&guc->outstanding_submission_g2h));
	drm_printf(p, "GuC tasklet count: %u\n\n",
		   atomic_read(&sched_engine->tasklet.count));

	spin_lock_irqsave(&sched_engine->lock, flags);
	drm_printf(p, "Requests in GuC submit tasklet:\n");
	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *pl = to_priolist(rb);
		struct i915_request *rq;

		priolist_for_each_request(rq, pl)
			drm_printf(p, "guc_id=%u, seqno=%llu\n",
4195
				   rq->context->guc_id.id,
4196 4197 4198 4199 4200 4201
				   rq->fence.seqno);
	}
	spin_unlock_irqrestore(&sched_engine->lock, flags);
	drm_printf(p, "\n");
}

4202 4203 4204 4205 4206
static inline void guc_log_context_priority(struct drm_printer *p,
					    struct intel_context *ce)
{
	int i;

4207
	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4208 4209 4210 4211
	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4212
			   i, ce->guc_state.prio_count[i]);
4213 4214 4215 4216
	}
	drm_printf(p, "\n");
}

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
static inline void guc_log_context(struct drm_printer *p,
				   struct intel_context *ce)
{
	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
		   ce->ring->head,
		   ce->lrc_reg_state[CTX_RING_HEAD]);
	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
		   ce->ring->tail,
		   ce->lrc_reg_state[CTX_RING_TAIL]);
	drm_printf(p, "\t\tContext Pin Count: %u\n",
		   atomic_read(&ce->pin_count));
	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
		   atomic_read(&ce->guc_id.ref));
	drm_printf(p, "\t\tSchedule State: 0x%x\n\n",
		   ce->guc_state.sched_state);
}

4236 4237 4238 4239 4240
void intel_guc_submission_print_context_info(struct intel_guc *guc,
					     struct drm_printer *p)
{
	struct intel_context *ce;
	unsigned long index;
4241
	unsigned long flags;
4242

4243
	xa_lock_irqsave(&guc->context_lookup, flags);
4244
	xa_for_each(&guc->context_lookup, index, ce) {
4245
		GEM_BUG_ON(intel_context_is_child(ce));
4246

4247
		guc_log_context(p, ce);
4248
		guc_log_context_priority(p, ce);
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

		if (intel_context_is_parent(ce)) {
			struct guc_process_desc *desc = __get_process_desc(ce);
			struct intel_context *child;

			drm_printf(p, "\t\tNumber children: %u\n",
				   ce->parallel.number_children);
			drm_printf(p, "\t\tWQI Head: %u\n",
				   READ_ONCE(desc->head));
			drm_printf(p, "\t\tWQI Tail: %u\n",
				   READ_ONCE(desc->tail));
			drm_printf(p, "\t\tWQI Status: %u\n\n",
				   READ_ONCE(desc->wq_status));

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
			if (ce->engine->emit_bb_start ==
			    emit_bb_start_parent_no_preempt_mid_batch) {
				u8 i;

				drm_printf(p, "\t\tChildren Go: %u\n\n",
					   get_children_go_value(ce));
				for (i = 0; i < ce->parallel.number_children; ++i)
					drm_printf(p, "\t\tChildren Join: %u\n",
						   get_children_join_value(ce, i));
			}

4274 4275 4276
			for_each_child(ce, child)
				guc_log_context(p, child);
		}
4277
	}
4278
	xa_unlock_irqrestore(&guc->context_lookup, flags);
4279
}
4280

4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
static inline u32 get_children_go_addr(struct intel_context *ce)
{
	GEM_BUG_ON(!intel_context_is_parent(ce));

	return i915_ggtt_offset(ce->state) +
		__get_parent_scratch_offset(ce) +
		offsetof(struct parent_scratch, go.semaphore);
}

static inline u32 get_children_join_addr(struct intel_context *ce,
					 u8 child_index)
{
	GEM_BUG_ON(!intel_context_is_parent(ce));

	return i915_ggtt_offset(ce->state) +
		__get_parent_scratch_offset(ce) +
		offsetof(struct parent_scratch, join[child_index].semaphore);
}

#define PARENT_GO_BB			1
#define PARENT_GO_FINI_BREADCRUMB	0
#define CHILD_GO_BB			1
#define CHILD_GO_FINI_BREADCRUMB	0
static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
						     u64 offset, u32 len,
						     const unsigned int flags)
{
	struct intel_context *ce = rq->context;
	u32 *cs;
	u8 i;

	GEM_BUG_ON(!intel_context_is_parent(ce));

	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Wait on children */
	for (i = 0; i < ce->parallel.number_children; ++i) {
		*cs++ = (MI_SEMAPHORE_WAIT |
			 MI_SEMAPHORE_GLOBAL_GTT |
			 MI_SEMAPHORE_POLL |
			 MI_SEMAPHORE_SAD_EQ_SDD);
		*cs++ = PARENT_GO_BB;
		*cs++ = get_children_join_addr(ce, i);
		*cs++ = 0;
	}

	/* Turn off preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;

	/* Tell children go */
	cs = gen8_emit_ggtt_write(cs,
				  CHILD_GO_BB,
				  get_children_go_addr(ce),
				  0);

	/* Jump to batch */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	return 0;
}

static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
						    u64 offset, u32 len,
						    const unsigned int flags)
{
	struct intel_context *ce = rq->context;
	struct intel_context *parent = intel_context_to_parent(ce);
	u32 *cs;

	GEM_BUG_ON(!intel_context_is_child(ce));

	cs = intel_ring_begin(rq, 12);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Signal parent */
	cs = gen8_emit_ggtt_write(cs,
				  PARENT_GO_BB,
				  get_children_join_addr(parent,
							 ce->parallel.child_index),
				  0);

	/* Wait on parent for go */
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_EQ_SDD);
	*cs++ = CHILD_GO_BB;
	*cs++ = get_children_go_addr(parent);
	*cs++ = 0;

	/* Turn off preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* Jump to batch */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static u32 *
4396 4397
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						   u32 *cs)
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
{
	struct intel_context *ce = rq->context;
	u8 i;

	GEM_BUG_ON(!intel_context_is_parent(ce));

	/* Wait on children */
	for (i = 0; i < ce->parallel.number_children; ++i) {
		*cs++ = (MI_SEMAPHORE_WAIT |
			 MI_SEMAPHORE_GLOBAL_GTT |
			 MI_SEMAPHORE_POLL |
			 MI_SEMAPHORE_SAD_EQ_SDD);
		*cs++ = PARENT_GO_FINI_BREADCRUMB;
		*cs++ = get_children_join_addr(ce, i);
		*cs++ = 0;
	}

	/* Turn on preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*cs++ = MI_NOOP;

	/* Tell children go */
	cs = gen8_emit_ggtt_write(cs,
				  CHILD_GO_FINI_BREADCRUMB,
				  get_children_go_addr(ce),
				  0);

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
	return cs;
}

/*
 * If this true, a submission of multi-lrc requests had an error and the
 * requests need to be skipped. The front end (execuf IOCTL) should've called
 * i915_request_skip which squashes the BB but we still need to emit the fini
 * breadrcrumbs seqno write. At this point we don't know how many of the
 * requests in the multi-lrc submission were generated so we can't do the
 * handshake between the parent and children (e.g. if 4 requests should be
 * generated but 2nd hit an error only 1 would be seen by the GuC backend).
 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
 * has occurred on any of the requests in submission / relationship.
 */
static inline bool skip_handshake(struct i915_request *rq)
{
	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
}

4444
#define NON_SKIP_LEN	6
4445 4446 4447 4448 4449
static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
						 u32 *cs)
{
	struct intel_context *ce = rq->context;
4450 4451
	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4452 4453 4454 4455 4456 4457

	GEM_BUG_ON(!intel_context_is_parent(ce));

	if (unlikely(skip_handshake(rq))) {
		/*
		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
4458
		 * the NON_SKIP_LEN comes from the length of the emits below.
4459 4460
		 */
		memset(cs, 0, sizeof(u32) *
4461 4462
		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4463 4464 4465 4466
	} else {
		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
	}

4467
	/* Emit fini breadcrumb */
4468
	before_fini_breadcrumb_user_interrupt_cs = cs;
4469 4470 4471 4472 4473 4474 4475 4476 4477
	cs = gen8_emit_ggtt_write(cs,
				  rq->fence.seqno,
				  i915_request_active_timeline(rq)->hwsp_offset,
				  0);

	/* User interrupt */
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

4478 4479 4480 4481 4482 4483
	/* Ensure our math for skip + emit is correct */
	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
		   cs);
	GEM_BUG_ON(start_fini_breadcrumb_cs +
		   ce->engine->emit_fini_breadcrumb_dw != cs);

4484 4485 4486 4487 4488 4489
	rq->tail = intel_ring_offset(rq, cs);

	return cs;
}

static u32 *
4490 4491
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						  u32 *cs)
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
{
	struct intel_context *ce = rq->context;
	struct intel_context *parent = intel_context_to_parent(ce);

	GEM_BUG_ON(!intel_context_is_child(ce));

	/* Turn on preemption */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*cs++ = MI_NOOP;

	/* Signal parent */
	cs = gen8_emit_ggtt_write(cs,
				  PARENT_GO_FINI_BREADCRUMB,
				  get_children_join_addr(parent,
							 ce->parallel.child_index),
				  0);

	/* Wait parent on for go */
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_EQ_SDD);
	*cs++ = CHILD_GO_FINI_BREADCRUMB;
	*cs++ = get_children_go_addr(parent);
	*cs++ = 0;

4518 4519 4520 4521 4522 4523 4524 4525
	return cs;
}

static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
						u32 *cs)
{
	struct intel_context *ce = rq->context;
4526 4527
	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4528 4529 4530 4531 4532 4533

	GEM_BUG_ON(!intel_context_is_child(ce));

	if (unlikely(skip_handshake(rq))) {
		/*
		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
4534
		 * the NON_SKIP_LEN comes from the length of the emits below.
4535 4536
		 */
		memset(cs, 0, sizeof(u32) *
4537 4538
		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4539 4540 4541 4542
	} else {
		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
	}

4543
	/* Emit fini breadcrumb */
4544
	before_fini_breadcrumb_user_interrupt_cs = cs;
4545 4546 4547 4548 4549 4550 4551 4552 4553
	cs = gen8_emit_ggtt_write(cs,
				  rq->fence.seqno,
				  i915_request_active_timeline(rq)->hwsp_offset,
				  0);

	/* User interrupt */
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

4554 4555 4556 4557 4558 4559
	/* Ensure our math for skip + emit is correct */
	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
		   cs);
	GEM_BUG_ON(start_fini_breadcrumb_cs +
		   ce->engine->emit_fini_breadcrumb_dw != cs);

4560 4561 4562 4563 4564
	rq->tail = intel_ring_offset(rq, cs);

	return cs;
}

4565 4566
#undef NON_SKIP_LEN

4567
static struct intel_context *
4568 4569
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
		   unsigned long flags)
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
{
	struct guc_virtual_engine *ve;
	struct intel_guc *guc;
	unsigned int n;
	int err;

	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

	guc = &siblings[0]->gt->uc.guc;

	ve->base.i915 = siblings[0]->i915;
	ve->base.gt = siblings[0]->gt;
	ve->base.uncore = siblings[0]->uncore;
	ve->base.id = -1;

	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.saturated = ALL_ENGINES;

	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);

	ve->base.cops = &virtual_guc_context_ops;
	ve->base.request_alloc = guc_request_alloc;
4598
	ve->base.bump_serial = virtual_guc_bump_serial;
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617

	ve->base.submit_request = guc_submit_request;

	ve->base.flags = I915_ENGINE_IS_VIRTUAL;

	intel_context_init(&ve->context, &ve->base);

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		ve->base.mask |= sibling->mask;
4618
		ve->base.logical_mask |= sibling->logical_mask;
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631

		if (n != 0 && ve->base.class != sibling->class) {
			DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
				  sibling->class, ve->base.class);
			err = -EINVAL;
			goto err_put;
		} else if (n == 0) {
			ve->base.class = sibling->class;
			ve->base.uabi_class = sibling->uabi_class;
			snprintf(ve->base.name, sizeof(ve->base.name),
				 "v%dx%d", ve->base.class, count);
			ve->base.context_size = sibling->context_size;

4632 4633 4634 4635
			ve->base.add_active_request =
				sibling->add_active_request;
			ve->base.remove_active_request =
				sibling->remove_active_request;
4636 4637 4638 4639 4640 4641 4642 4643
			ve->base.emit_bb_start = sibling->emit_bb_start;
			ve->base.emit_flush = sibling->emit_flush;
			ve->base.emit_init_breadcrumb =
				sibling->emit_init_breadcrumb;
			ve->base.emit_fini_breadcrumb =
				sibling->emit_fini_breadcrumb;
			ve->base.emit_fini_breadcrumb_dw =
				sibling->emit_fini_breadcrumb_dw;
4644 4645
			ve->base.breadcrumbs =
				intel_breadcrumbs_get(sibling->breadcrumbs);
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673

			ve->base.flags |= sibling->flags;

			ve->base.props.timeslice_duration_ms =
				sibling->props.timeslice_duration_ms;
			ve->base.props.preempt_timeout_ms =
				sibling->props.preempt_timeout_ms;
		}
	}

	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
{
	struct intel_engine_cs *engine;
	intel_engine_mask_t tmp, mask = ve->mask;

	for_each_engine_masked(engine, ve->gt, mask, tmp)
		if (READ_ONCE(engine->props.heartbeat_interval_ms))
			return true;

	return false;
}
4674 4675 4676

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_guc.c"
4677
#include "selftest_guc_multi_lrc.c"
4678
#endif