backref.c 52.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

31 32 33 34 35 36 37 38 39 40 41
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
42
	u64 offset = 0;
43 44
	struct extent_inode_elem *e;

45 46 47 48 49
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
50

51 52 53 54 55 56 57 58
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
59 60 61 62 63 64 65

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
66
	e->offset = key->offset + offset;
67 68 69 70 71
	*eie = e;

	return 0;
}

72 73 74 75 76 77 78 79 80 81
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

121 122 123 124 125 126
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
127
	struct btrfs_key key_for_search;
128 129
	int level;
	int count;
130
	struct extent_inode_elem *inode_list;
131 132 133 134
	u64 parent;
	u64 wanted_disk_byte;
};

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
					sizeof(struct __prelim_ref),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
	if (btrfs_prelim_ref_cache)
		kmem_cache_destroy(btrfs_prelim_ref_cache);
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

194
static int __add_prelim_ref(struct list_head *head, u64 root_id,
195
			    struct btrfs_key *key, int level,
196 197
			    u64 parent, u64 wanted_disk_byte, int count,
			    gfp_t gfp_mask)
198 199 200
{
	struct __prelim_ref *ref;

201 202 203
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

204
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205 206 207 208
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
209
	if (key) {
210
		ref->key_for_search = *key;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
234
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
235
	}
236

237
	ref->inode_list = NULL;
238 239 240 241 242 243 244 245 246 247
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
248
			   struct ulist *parents, struct __prelim_ref *ref,
249 250
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
251
{
252 253 254 255
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
256
	struct btrfs_key *key_for_search = &ref->key_for_search;
257
	struct btrfs_file_extent_item *fi;
258
	struct extent_inode_elem *eie = NULL, *old = NULL;
259
	u64 disk_byte;
260 261
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
262

263 264 265
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
266 267
		if (ret < 0)
			return ret;
268
		return 0;
269
	}
270 271

	/*
272 273 274
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
275
	 */
276 277 278 279 280 281
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		if (time_seq == (u64)-1)
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
282

283
	while (!ret && count < total_refs) {
284
		eb = path->nodes[0];
285 286 287 288 289 290 291 292 293 294 295 296 297
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
298
			old = NULL;
299
			count++;
300 301 302 303 304 305 306
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
307 308
			if (ret > 0)
				goto next;
309 310
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
311 312 313 314 315 316
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
317
			}
318
			eie = NULL;
319
		}
320
next:
321 322 323 324
		if (time_seq == (u64)-1)
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
325 326
	}

327 328
	if (ret > 0)
		ret = 0;
329 330
	else if (ret < 0)
		free_inode_elem_list(eie);
331
	return ret;
332 333 334 335 336 337 338
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
339 340 341
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
342
				  const u64 *extent_item_pos, u64 total_refs)
343 344 345 346 347 348 349
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
350
	int index;
351 352 353 354

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
355 356 357

	index = srcu_read_lock(&fs_info->subvol_srcu);

358
	root = btrfs_get_fs_root(fs_info, &root_key, false);
359
	if (IS_ERR(root)) {
360
		srcu_read_unlock(&fs_info->subvol_srcu, index);
361 362 363 364
		ret = PTR_ERR(root);
		goto out;
	}

J
Josef Bacik 已提交
365 366 367 368 369 370
	if (btrfs_test_is_dummy_root(root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
		ret = -ENOENT;
		goto out;
	}

371 372
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
373 374
	else if (time_seq == (u64)-1)
		root_level = btrfs_header_level(root->node);
375 376
	else
		root_level = btrfs_old_root_level(root, time_seq);
377

378 379
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
380
		goto out;
381
	}
382 383

	path->lowest_level = level;
384 385 386 387 388 389
	if (time_seq == (u64)-1)
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
390 391 392 393

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

394 395
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
396 397 398
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
399 400 401 402
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
403
	while (!eb) {
404
		if (WARN_ON(!level)) {
405 406 407 408 409
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
410 411
	}

412
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
413
			      extent_item_pos, total_refs);
414
out:
415 416
	path->lowest_level = 0;
	btrfs_release_path(path);
417 418 419 420 421 422 423
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
424
				   struct btrfs_path *path, u64 time_seq,
425
				   struct list_head *head,
426 427
				   const u64 *extent_item_pos, u64 total_refs,
				   u64 root_objectid)
428 429 430 431 432 433 434 435
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
436
	struct ulist_iterator uiter;
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
452 453 454 455
		if (root_objectid && ref->root_id != root_objectid) {
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
456
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
457 458
					     parents, extent_item_pos,
					     total_refs);
459 460 461 462 463
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
464
			continue;
465 466 467 468
		} else if (err) {
			ret = err;
			goto out;
		}
469 470

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
471 472
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
473
		ref->parent = node ? node->val : 0;
474
		ref->inode_list = node ?
475
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
476 477

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
478
		while ((node = ulist_next(parents, &uiter))) {
479 480
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
481 482
			if (!new_ref) {
				ret = -ENOMEM;
483
				goto out;
484 485 486
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
487 488
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
489 490 491 492
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
493
out:
494 495 496 497
	ulist_free(parents);
	return ret;
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
536
				     0);
537 538 539
		if (IS_ERR(eb)) {
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
540 541 542
			free_extent_buffer(eb);
			return -EIO;
		}
543 544 545 546 547 548 549 550 551 552 553
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

554
/*
555
 * merge backrefs and adjust counts accordingly
556 557
 *
 * mode = 1: merge identical keys, if key is set
558 559 560 561
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
562 563
 * mode = 2: merge identical parents
 */
564
static void __merge_refs(struct list_head *head, int mode)
565 566 567 568 569 570 571 572 573 574 575 576 577
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
578
			struct __prelim_ref *xchg;
579
			struct extent_inode_elem *eie;
580 581 582

			ref2 = list_entry(pos2, struct __prelim_ref, list);

583 584
			if (!ref_for_same_block(ref1, ref2))
				continue;
585
			if (mode == 1) {
586 587 588 589 590
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
591 592 593 594
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
595 596 597 598 599 600 601 602 603 604

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

605
			list_del(&ref2->list);
606
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
607 608 609 610 611 612 613 614 615 616
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
617 618
			      struct list_head *prefs, u64 *total_refs,
			      u64 inum)
619
{
620
	struct btrfs_delayed_ref_node *node;
621
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
622 623
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
624
	int sgn;
625
	int ret = 0;
626 627

	if (extent_op && extent_op->update_key)
628
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
629

630
	spin_lock(&head->lock);
631
	list_for_each_entry(node, &head->ref_list, list) {
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
649
		*total_refs += (node->ref_mod * sgn);
650 651 652 653 654
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
655
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
656
					       ref->level + 1, 0, node->bytenr,
657
					       node->ref_mod * sgn, GFP_ATOMIC);
658 659 660 661 662 663
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
L
Liu Bo 已提交
664
			ret = __add_prelim_ref(prefs, 0, NULL,
665 666
					       ref->level + 1, ref->parent,
					       node->bytenr,
667
					       node->ref_mod * sgn, GFP_ATOMIC);
668 669 670 671 672 673 674 675 676
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
677 678 679 680 681 682 683 684 685 686

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
			if (inum && ref->objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

687 688
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
689
					       node->ref_mod * sgn, GFP_ATOMIC);
690 691 692 693 694 695
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
L
Liu Bo 已提交
696
			ret = __add_prelim_ref(prefs, 0, NULL, 0,
697
					       ref->parent, node->bytenr,
698
					       node->ref_mod * sgn, GFP_ATOMIC);
699 700 701 702 703
			break;
		}
		default:
			WARN_ON(1);
		}
704
		if (ret)
705
			break;
706
	}
707 708
	spin_unlock(&head->lock);
	return ret;
709 710 711 712 713 714 715
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
716
			     int *info_level, struct list_head *prefs,
717
			     u64 *total_refs, u64 inum)
718
{
719
	int ret = 0;
720 721 722
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
723
	struct btrfs_key found_key;
724 725 726 727 728 729 730 731 732 733
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
734
	slot = path->slots[0];
735 736 737 738 739 740

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
741
	*total_refs += btrfs_extent_refs(leaf, ei);
742
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
743 744 745 746

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

747 748
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
749 750 751 752 753 754
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
755 756
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
772
			ret = __add_prelim_ref(prefs, 0, NULL,
773
						*info_level + 1, offset,
774
						bytenr, 1, GFP_NOFS);
775 776 777 778 779 780 781 782
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
783
					       bytenr, count, GFP_NOFS);
784 785 786
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
787 788
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
789
					       bytenr, 1, GFP_NOFS);
790 791 792 793 794 795 796 797 798 799 800 801
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
802 803 804 805 806 807

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

808
			root = btrfs_extent_data_ref_root(leaf, dref);
809
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
810
					       bytenr, count, GFP_NOFS);
811 812 813 814 815
			break;
		}
		default:
			WARN_ON(1);
		}
816 817
		if (ret)
			return ret;
818 819 820 821 822 823 824 825 826 827 828
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
829
			    int info_level, struct list_head *prefs, u64 inum)
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
859
			ret = __add_prelim_ref(prefs, 0, NULL,
860
						info_level + 1, key.offset,
861
						bytenr, 1, GFP_NOFS);
862 863 864 865 866 867 868 869 870
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
871
						bytenr, count, GFP_NOFS);
872 873 874
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
875 876
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
877
					       bytenr, 1, GFP_NOFS);
878 879 880 881 882 883 884 885 886 887 888 889 890
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
891 892 893 894 895 896

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

897 898
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
899
					       bytenr, count, GFP_NOFS);
900 901 902 903 904
			break;
		}
		default:
			WARN_ON(1);
		}
905 906 907
		if (ret)
			return ret;

908 909 910 911 912 913 914 915 916 917 918
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
919 920
 * NOTE: This can return values > 0
 *
921 922 923 924 925
 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
926 927 928 929
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
930
			     u64 time_seq, struct ulist *refs,
931 932
			     struct ulist *roots, const u64 *extent_item_pos,
			     u64 root_objectid, u64 inum)
933 934 935 936
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
937
	struct btrfs_delayed_ref_head *head;
938 939 940 941 942
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;
943
	struct extent_inode_elem *eie = NULL;
944
	u64 total_refs = 0;
945 946 947 948 949 950

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
951 952 953 954
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
955 956 957 958

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
959
	if (!trans) {
960
		path->search_commit_root = 1;
961 962
		path->skip_locking = 1;
	}
963

964 965 966
	if (time_seq == (u64)-1)
		path->skip_locking = 1;

967 968 969 970 971 972
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
973 974
	head = NULL;

975 976 977 978 979
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

980
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
981 982
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
	    time_seq != (u64)-1) {
983
#else
984
	if (trans && time_seq != (u64)-1) {
985
#endif
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
1009
			spin_unlock(&delayed_refs->lock);
1010
			ret = __add_delayed_refs(head, time_seq,
1011 1012
						 &prefs_delayed, &total_refs,
						 inum);
1013
			mutex_unlock(&head->mutex);
1014
			if (ret)
1015
				goto out;
1016 1017
		} else {
			spin_unlock(&delayed_refs->lock);
1018
		}
1019 1020 1021 1022 1023 1024
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1025
		path->slots[0]--;
1026
		leaf = path->nodes[0];
1027
		slot = path->slots[0];
1028 1029
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1030 1031
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1032
			ret = __add_inline_refs(fs_info, path, bytenr,
1033
						&info_level, &prefs,
1034
						&total_refs, inum);
1035 1036
			if (ret)
				goto out;
1037
			ret = __add_keyed_refs(fs_info, path, bytenr,
1038
					       info_level, &prefs, inum);
1039 1040 1041 1042 1043 1044 1045 1046
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

1047 1048 1049 1050
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

1051
	__merge_refs(&prefs, 1);
1052

1053
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1054 1055
				      extent_item_pos, total_refs,
				      root_objectid);
1056 1057 1058
	if (ret)
		goto out;

1059
	__merge_refs(&prefs, 2);
1060 1061 1062

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
1063
		WARN_ON(ref->count < 0);
1064
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1065 1066 1067 1068 1069
			if (root_objectid && ref->root_id != root_objectid) {
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1070 1071
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1072 1073
			if (ret < 0)
				goto out;
1074 1075
		}
		if (ref->count && ref->parent) {
1076 1077
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1078
				struct extent_buffer *eb;
1079

1080
				eb = read_tree_block(fs_info->extent_root,
1081
							   ref->parent, 0);
1082 1083 1084 1085
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1086
					free_extent_buffer(eb);
1087 1088
					ret = -EIO;
					goto out;
1089
				}
1090 1091
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1092 1093
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
1094
				btrfs_tree_read_unlock_blocking(eb);
1095
				free_extent_buffer(eb);
1096 1097 1098
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1099
			}
1100 1101 1102
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1103 1104
			if (ret < 0)
				goto out;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1115
			eie = NULL;
1116
		}
1117
		list_del(&ref->list);
1118
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1119 1120 1121 1122 1123 1124 1125
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
1126
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1127 1128 1129 1130 1131
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
1132
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1133
	}
1134 1135
	if (ret < 0)
		free_inode_elem_list(eie);
1136 1137 1138
	return ret;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1149
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1150
		free_inode_elem_list(eie);
1151 1152 1153 1154 1155 1156
		node->aux = 0;
	}

	ulist_free(blocks);
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1167
				u64 time_seq, struct ulist **leafs,
1168
				const u64 *extent_item_pos)
1169 1170 1171 1172
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1173
	if (!*leafs)
1174 1175
		return -ENOMEM;

1176
	ret = find_parent_nodes(trans, fs_info, bytenr,
1177
				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1178
	if (ret < 0 && ret != -ENOENT) {
1179
		free_leaf_list(*leafs);
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1199 1200 1201
static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				  struct btrfs_fs_info *fs_info, u64 bytenr,
				  u64 time_seq, struct ulist **roots)
1202 1203 1204
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1205
	struct ulist_iterator uiter;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1217
	ULIST_ITER_INIT(&uiter);
1218
	while (1) {
1219
		ret = find_parent_nodes(trans, fs_info, bytenr,
1220
					time_seq, tmp, *roots, NULL, 0, 0);
1221 1222 1223 1224 1225
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1226
		node = ulist_next(tmp, &uiter);
1227 1228 1229
		if (!node)
			break;
		bytenr = node->val;
1230
		cond_resched();
1231 1232 1233 1234 1235 1236
	}

	ulist_free(tmp);
	return 0;
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **roots)
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * @trans: optional trans handle
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1264 1265 1266 1267 1268 1269 1270 1271
int btrfs_check_shared(struct btrfs_trans_handle *trans,
		       struct btrfs_fs_info *fs_info, u64 root_objectid,
		       u64 inum, u64 bytenr)
{
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1272
	struct seq_list elem = SEQ_LIST_INIT(elem);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	int ret = 0;

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

	if (trans)
		btrfs_get_tree_mod_seq(fs_info, &elem);
	else
		down_read(&fs_info->commit_root_sem);
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
					roots, NULL, root_objectid, inum);
		if (ret == BACKREF_FOUND_SHARED) {
1292
			/* this is the only condition under which we return 1 */
1293 1294 1295 1296 1297
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1298
		ret = 0;
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
		cond_resched();
	}
	if (trans)
		btrfs_put_tree_mod_seq(fs_info, &elem);
	else
		up_read(&fs_info->commit_root_sem);
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
1327
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1367
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1396 1397 1398 1399
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1400 1401 1402 1403
{
	int slot;
	u64 next_inum;
	int ret;
1404
	s64 bytes_left = ((s64)size) - 1;
1405 1406
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1407
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1408
	struct btrfs_inode_ref *iref;
1409 1410 1411 1412

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1413
	path->leave_spinning = 1;
1414
	while (1) {
M
Mark Fasheh 已提交
1415
		bytes_left -= name_len;
1416 1417
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1418
					   name_off, name_len);
1419 1420
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1421
			free_extent_buffer(eb);
1422
		}
1423 1424
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1425 1426
		if (ret > 0)
			ret = -ENOENT;
1427 1428
		if (ret)
			break;
M
Mark Fasheh 已提交
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1439
		if (eb != eb_in) {
1440
			atomic_inc(&eb->refs);
1441 1442 1443
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1444 1445
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1446 1447 1448 1449

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1450 1451 1452 1453 1454 1455 1456
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1457
	path->leave_spinning = leave_spinning;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1471 1472
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1473 1474 1475
{
	int ret;
	u64 flags;
1476
	u64 size = 0;
1477 1478 1479 1480 1481
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1482 1483 1484 1485
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1486 1487 1488 1489 1490 1491 1492
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1493 1494 1495 1496 1497
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1498
	}
1499
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1500
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1501
		size = fs_info->extent_root->nodesize;
1502 1503 1504
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1505
	if (found_key->objectid > logical ||
1506
	    found_key->objectid + size <= logical) {
1507
		pr_debug("logical %llu is not within any extent\n", logical);
1508
		return -ENOENT;
J
Jan Schmidt 已提交
1509
	}
1510 1511 1512 1513 1514 1515 1516 1517

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1518 1519
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1520 1521
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1546 1547 1548 1549
				   struct btrfs_key *key,
				   struct btrfs_extent_item *ei, u32 item_size,
				   struct btrfs_extent_inline_ref **out_eiref,
				   int *out_type)
1550 1551 1552 1553 1554 1555 1556 1557 1558
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1569 1570 1571 1572
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1573
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1574 1575 1576 1577
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1578
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1597 1598
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1599 1600 1601 1602 1603 1604 1605 1606 1607
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1608 1609
		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
					      &eiref, &type);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1633 1634 1635 1636 1637 1638 1639

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1640 1641
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1642
				iterate_extent_inodes_t *iterate, void *ctx)
1643
{
1644
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1645 1646
	int ret = 0;

1647
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1648
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1649 1650 1651
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1652
		if (ret) {
1653 1654
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1655 1656
			break;
		}
1657 1658 1659 1660 1661 1662 1663
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1664
 * the given parameters.
1665 1666 1667
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1668
				u64 extent_item_objectid, u64 extent_item_pos,
1669
				int search_commit_root,
1670 1671 1672
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1673
	struct btrfs_trans_handle *trans = NULL;
1674 1675
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1676 1677
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1678
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1679 1680
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1681

J
Jan Schmidt 已提交
1682 1683
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1684

1685
	if (!search_commit_root) {
1686 1687 1688
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1689
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1690 1691
	} else {
		down_read(&fs_info->commit_root_sem);
1692
	}
1693

J
Jan Schmidt 已提交
1694
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1695
				   tree_mod_seq_elem.seq, &refs,
1696
				   &extent_item_pos);
J
Jan Schmidt 已提交
1697 1698
	if (ret)
		goto out;
1699

J
Jan Schmidt 已提交
1700 1701
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1702 1703
		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
					     tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1704 1705
		if (ret)
			break;
J
Jan Schmidt 已提交
1706 1707
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1708
			pr_debug("root %llu references leaf %llu, data list "
1709
				 "%#llx\n", root_node->val, ref_node->val,
1710
				 ref_node->aux);
1711 1712 1713 1714 1715
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1716
		}
1717
		ulist_free(roots);
1718 1719
	}

1720
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1721
out:
1722
	if (!search_commit_root) {
1723
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1724
		btrfs_end_transaction(trans, fs_info->extent_root);
1725 1726
	} else {
		up_read(&fs_info->commit_root_sem);
1727 1728
	}

1729 1730 1731 1732 1733 1734 1735 1736
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1737
	u64 extent_item_pos;
1738
	u64 flags = 0;
1739
	struct btrfs_key found_key;
1740
	int search_commit_root = path->search_commit_root;
1741

1742
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1743
	btrfs_release_path(path);
1744 1745
	if (ret < 0)
		return ret;
1746
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1747
		return -EINVAL;
1748

J
Jan Schmidt 已提交
1749
	extent_item_pos = logical - found_key.objectid;
1750 1751 1752
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1753 1754 1755 1756

	return ret;
}

M
Mark Fasheh 已提交
1757 1758 1759 1760 1761 1762
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1763
{
1764
	int ret = 0;
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1776
	while (!ret) {
1777 1778 1779 1780
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1791 1792 1793 1794 1795 1796
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1797 1798
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1799 1800
		btrfs_release_path(path);

1801
		item = btrfs_item_nr(slot);
1802 1803 1804 1805 1806
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1807
			pr_debug("following ref at offset %u for inode %llu in "
1808 1809
				 "tree %llu\n", cur, found_key.objectid,
				 fs_root->objectid);
M
Mark Fasheh 已提交
1810 1811
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1812
			if (ret)
1813 1814 1815 1816
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1817
		btrfs_tree_read_unlock_blocking(eb);
1818 1819 1820 1821 1822 1823 1824 1825
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1853 1854 1855 1856 1857 1858
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
1859 1860 1861 1862 1863

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

1864 1865
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

1879
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1913 1914 1915 1916
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1917 1918
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1930
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1931 1932
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1933 1934 1935 1936
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1937
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1952
 * from ipath->fspath->val[i].
1953
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1954
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1955 1956 1957 1958 1959 1960 1961
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1962
			     inode_to_path, ipath);
1963 1964 1965 1966 1967 1968 1969 1970
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1971
	data = vmalloc(alloc_bytes);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2020 2021
	if (!ipath)
		return;
2022
	vfree(ipath->fspath);
2023 2024
	kfree(ipath);
}