blk-mq-sched.c 18.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>
10
#include <linux/list_sort.h>
11 12 13 14 15

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
16
#include "blk-mq-debugfs.h"
17 18 19 20
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

D
Damien Le Moal 已提交
21
void blk_mq_sched_assign_ioc(struct request *rq)
22
{
23
	struct request_queue *q = rq->q;
24
	struct io_context *ioc;
25 26
	struct io_cq *icq;

27 28 29 30 31 32 33
	/*
	 * May not have an IO context if it's a passthrough request
	 */
	ioc = current->io_context;
	if (!ioc)
		return;

34
	spin_lock_irq(&q->queue_lock);
35
	icq = ioc_lookup_icq(ioc, q);
36
	spin_unlock_irq(&q->queue_lock);
37 38 39 40 41 42

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
43
	get_io_context(icq->ioc);
44
	rq->elv.icq = icq;
45 46
}

47 48 49 50
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
51
void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
52 53 54 55
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

56
	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
57
}
58
EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
59

60
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
61 62
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
63 64
		return;
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
65

66 67 68 69 70 71 72 73 74
	/*
	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
	 * meantime new request added to hctx->dispatch is missed to check in
	 * blk_mq_run_hw_queue().
	 */
	smp_mb();

75
	blk_mq_run_hw_queue(hctx, true);
76 77
}

78 79
static int sched_rq_cmp(void *priv, const struct list_head *a,
			const struct list_head *b)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return rqa->mq_hctx > rqb->mq_hctx;
}

static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
{
	struct blk_mq_hw_ctx *hctx =
		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
	struct request *rq;
	LIST_HEAD(hctx_list);
	unsigned int count = 0;

	list_for_each_entry(rq, rq_list, queuelist) {
		if (rq->mq_hctx != hctx) {
			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
			goto dispatch;
		}
		count++;
	}
	list_splice_tail_init(rq_list, &hctx_list);

dispatch:
105
	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
106 107
}

108 109
#define BLK_MQ_BUDGET_DELAY	3		/* ms units */

110 111 112 113
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
114 115 116
 *
 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
 * be run again.  This is necessary to avoid starving flushes.
117
 */
118
static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
119 120 121
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
122 123 124
	bool multi_hctxs = false, run_queue = false;
	bool dispatched = false, busy = false;
	unsigned int max_dispatch;
125
	LIST_HEAD(rq_list);
126 127 128 129 130 131
	int count = 0;

	if (hctx->dispatch_busy)
		max_dispatch = 1;
	else
		max_dispatch = hctx->queue->nr_requests;
132 133

	do {
134
		struct request *rq;
135
		int budget_token;
136

137
		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
138
			break;
139

140
		if (!list_empty_careful(&hctx->dispatch)) {
141
			busy = true;
142 143 144
			break;
		}

145 146
		budget_token = blk_mq_get_dispatch_budget(q);
		if (budget_token < 0)
147
			break;
148

149
		rq = e->type->ops.dispatch_request(hctx);
150
		if (!rq) {
151
			blk_mq_put_dispatch_budget(q, budget_token);
152 153 154 155 156 157 158
			/*
			 * We're releasing without dispatching. Holding the
			 * budget could have blocked any "hctx"s with the
			 * same queue and if we didn't dispatch then there's
			 * no guarantee anyone will kick the queue.  Kick it
			 * ourselves.
			 */
159
			run_queue = true;
160 161 162
			break;
		}

163 164
		blk_mq_set_rq_budget_token(rq, budget_token);

165 166 167 168 169
		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
170
		list_add_tail(&rq->queuelist, &rq_list);
171
		count++;
172 173
		if (rq->mq_hctx != hctx)
			multi_hctxs = true;
174 175 176 177 178 179 180 181 182 183

		/*
		 * If we cannot get tag for the request, stop dequeueing
		 * requests from the IO scheduler. We are unlikely to be able
		 * to submit them anyway and it creates false impression for
		 * scheduling heuristics that the device can take more IO.
		 */
		if (!blk_mq_get_driver_tag(rq))
			break;
	} while (count < max_dispatch);
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

	if (!count) {
		if (run_queue)
			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
	} else if (multi_hctxs) {
		/*
		 * Requests from different hctx may be dequeued from some
		 * schedulers, such as bfq and deadline.
		 *
		 * Sort the requests in the list according to their hctx,
		 * dispatch batching requests from same hctx at a time.
		 */
		list_sort(NULL, &rq_list, sched_rq_cmp);
		do {
			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
		} while (!list_empty(&rq_list));
	} else {
		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
	}

	if (busy)
		return -EAGAIN;
	return !!dispatched;
}

static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
{
	int ret;

	do {
		ret = __blk_mq_do_dispatch_sched(hctx);
	} while (ret == 1);
216 217

	return ret;
218 219
}

220 221 222
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
223
	unsigned short idx = ctx->index_hw[hctx->type];
224 225 226 227 228 229 230

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

231 232 233 234
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
235 236
 *
 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
237
 * be run again.  This is necessary to avoid starving flushes.
238
 */
239
static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
240 241 242 243
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
244
	int ret = 0;
245
	struct request *rq;
246 247

	do {
248 249
		int budget_token;

250 251 252 253 254
		if (!list_empty_careful(&hctx->dispatch)) {
			ret = -EAGAIN;
			break;
		}

255 256 257
		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

258 259
		budget_token = blk_mq_get_dispatch_budget(q);
		if (budget_token < 0)
260
			break;
261 262 263

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
264
			blk_mq_put_dispatch_budget(q, budget_token);
265 266 267 268 269 270 271 272
			/*
			 * We're releasing without dispatching. Holding the
			 * budget could have blocked any "hctx"s with the
			 * same queue and if we didn't dispatch then there's
			 * no guarantee anyone will kick the queue.  Kick it
			 * ourselves.
			 */
			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
273 274 275
			break;
		}

276 277
		blk_mq_set_rq_budget_token(rq, budget_token);

278 279 280 281 282 283 284 285 286 287
		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

288
	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
289 290

	WRITE_ONCE(hctx->dispatch_from, ctx);
291
	return ret;
292 293
}

294
static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
295
{
296 297
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
298
	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
299
	int ret = 0;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	LIST_HEAD(rq_list);

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
321 322 323 324
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
325
	 */
326
	if (!list_empty(&rq_list)) {
327
		blk_mq_sched_mark_restart_hctx(hctx);
328
		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
329
			if (has_sched_dispatch)
330
				ret = blk_mq_do_dispatch_sched(hctx);
331
			else
332
				ret = blk_mq_do_dispatch_ctx(hctx);
333
		}
334
	} else if (has_sched_dispatch) {
335
		ret = blk_mq_do_dispatch_sched(hctx);
336 337
	} else if (hctx->dispatch_busy) {
		/* dequeue request one by one from sw queue if queue is busy */
338
		ret = blk_mq_do_dispatch_ctx(hctx);
339
	} else {
340
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
341
		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
342
	}
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

	return ret;
}

void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;

	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
		return;

	hctx->run++;

	/*
	 * A return of -EAGAIN is an indication that hctx->dispatch is not
	 * empty and we must run again in order to avoid starving flushes.
	 */
	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
			blk_mq_run_hw_queue(hctx, true);
	}
365 366
}

367 368
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
		unsigned int nr_segs)
369 370
{
	struct elevator_queue *e = q->elevator;
371 372
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
373
	bool ret = false;
M
Ming Lei 已提交
374
	enum hctx_type type;
375

376
	if (e && e->type->ops.bio_merge)
377
		return e->type->ops.bio_merge(q, bio, nr_segs);
378

379 380
	ctx = blk_mq_get_ctx(q);
	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
M
Ming Lei 已提交
381
	type = hctx->type;
382 383 384 385 386 387 388 389 390 391 392 393 394 395
	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
	    list_empty_careful(&ctx->rq_lists[type]))
		return false;

	/* default per sw-queue merge */
	spin_lock(&ctx->lock);
	/*
	 * Reverse check our software queue for entries that we could
	 * potentially merge with. Currently includes a hand-wavy stop
	 * count of 8, to not spend too much time checking for merges.
	 */
	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
		ctx->rq_merged++;
		ret = true;
396 397
	}

398 399
	spin_unlock(&ctx->lock);

400
	return ret;
401 402 403 404 405 406 407 408
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

409 410
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
411
{
412 413 414 415 416 417 418 419 420 421 422 423
	/*
	 * dispatch flush and passthrough rq directly
	 *
	 * passthrough request has to be added to hctx->dispatch directly.
	 * For some reason, device may be in one situation which can't
	 * handle FS request, so STS_RESOURCE is always returned and the
	 * FS request will be added to hctx->dispatch. However passthrough
	 * request may be required at that time for fixing the problem. If
	 * passthrough request is added to scheduler queue, there isn't any
	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
	 */
	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
424 425 426
		return true;

	return false;
427 428
}

429
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
430
				 bool run_queue, bool async)
431 432 433 434
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
435
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
436

437
	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
438

439
	if (blk_mq_sched_bypass_insert(hctx, rq)) {
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		/*
		 * Firstly normal IO request is inserted to scheduler queue or
		 * sw queue, meantime we add flush request to dispatch queue(
		 * hctx->dispatch) directly and there is at most one in-flight
		 * flush request for each hw queue, so it doesn't matter to add
		 * flush request to tail or front of the dispatch queue.
		 *
		 * Secondly in case of NCQ, flush request belongs to non-NCQ
		 * command, and queueing it will fail when there is any
		 * in-flight normal IO request(NCQ command). When adding flush
		 * rq to the front of hctx->dispatch, it is easier to introduce
		 * extra time to flush rq's latency because of S_SCHED_RESTART
		 * compared with adding to the tail of dispatch queue, then
		 * chance of flush merge is increased, and less flush requests
		 * will be issued to controller. It is observed that ~10% time
		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
		 * drive when adding flush rq to the front of hctx->dispatch.
		 *
		 * Simply queue flush rq to the front of hctx->dispatch so that
		 * intensive flush workloads can benefit in case of NCQ HW.
		 */
		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
462
		blk_mq_request_bypass_insert(rq, at_head, false);
463
		goto run;
464
	}
465

466
	if (e && e->type->ops.insert_requests) {
467 468 469
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
470
		e->type->ops.insert_requests(hctx, &list, at_head);
471 472 473 474 475 476
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

477
run:
478 479 480 481
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

482
void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
483 484 485
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
486
	struct elevator_queue *e;
487 488 489 490 491 492 493 494
	struct request_queue *q = hctx->queue;

	/*
	 * blk_mq_sched_insert_requests() is called from flush plug
	 * context only, and hold one usage counter to prevent queue
	 * from being released.
	 */
	percpu_ref_get(&q->q_usage_counter);
495

496
	e = hctx->queue->elevator;
497 498
	if (e && e->type->ops.insert_requests)
		e->type->ops.insert_requests(hctx, list, false);
499 500 501 502 503 504
	else {
		/*
		 * try to issue requests directly if the hw queue isn't
		 * busy in case of 'none' scheduler, and this way may save
		 * us one extra enqueue & dequeue to sw queue.
		 */
505
		if (!hctx->dispatch_busy && !e && !run_queue_async) {
506
			blk_mq_try_issue_list_directly(hctx, list);
507
			if (list_empty(list))
508
				goto out;
509 510
		}
		blk_mq_insert_requests(hctx, ctx, list);
511
	}
512 513

	blk_mq_run_hw_queue(hctx, run_queue_async);
514 515
 out:
	percpu_ref_put(&q->q_usage_counter);
516 517
}

518 519 520 521 522 523
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
524
		blk_mq_free_rq_map(hctx->sched_tags, set->flags);
525 526 527 528
		hctx->sched_tags = NULL;
	}
}

529 530 531 532 533 534 535 536
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
537
					       set->reserved_tags, set->flags);
538 539 540 541 542 543 544 545 546 547
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

548
/* called in queue's release handler, tagset has gone away */
549
static void blk_mq_sched_tags_teardown(struct request_queue *q)
550 551
{
	struct blk_mq_hw_ctx *hctx;
552 553
	int i;

554 555
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->sched_tags) {
556
			blk_mq_free_rq_map(hctx->sched_tags, hctx->flags);
557 558 559
			hctx->sched_tags = NULL;
		}
	}
560 561
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static int blk_mq_init_sched_shared_sbitmap(struct request_queue *queue)
{
	struct blk_mq_tag_set *set = queue->tag_set;
	int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags);
	struct blk_mq_hw_ctx *hctx;
	int ret, i;

	/*
	 * Set initial depth at max so that we don't need to reallocate for
	 * updating nr_requests.
	 */
	ret = blk_mq_init_bitmaps(&queue->sched_bitmap_tags,
				  &queue->sched_breserved_tags,
				  MAX_SCHED_RQ, set->reserved_tags,
				  set->numa_node, alloc_policy);
	if (ret)
		return ret;

	queue_for_each_hw_ctx(queue, hctx, i) {
		hctx->sched_tags->bitmap_tags =
					&queue->sched_bitmap_tags;
		hctx->sched_tags->breserved_tags =
					&queue->sched_breserved_tags;
	}

	sbitmap_queue_resize(&queue->sched_bitmap_tags,
			     queue->nr_requests - set->reserved_tags);

	return 0;
}

static void blk_mq_exit_sched_shared_sbitmap(struct request_queue *queue)
{
	sbitmap_queue_free(&queue->sched_bitmap_tags);
	sbitmap_queue_free(&queue->sched_breserved_tags);
}

599 600 601
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
602
	struct elevator_queue *eq;
603 604 605 606 607
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
608
		q->nr_requests = q->tag_set->queue_depth;
609 610
		return 0;
	}
611 612

	/*
613 614 615
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
616
	 */
617 618
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
619 620

	queue_for_each_hw_ctx(q, hctx, i) {
621
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
622
		if (ret)
623 624 625 626 627 628 629
			goto err_free_tags;
	}

	if (blk_mq_is_sbitmap_shared(q->tag_set->flags)) {
		ret = blk_mq_init_sched_shared_sbitmap(q);
		if (ret)
			goto err_free_tags;
630 631
	}

632
	ret = e->ops.init_sched(q, e);
633
	if (ret)
634
		goto err_free_sbitmap;
635

636 637 638
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
639 640
		if (e->ops.init_hctx) {
			ret = e->ops.init_hctx(hctx, i);
641 642
			if (ret) {
				eq = q->elevator;
643
				blk_mq_sched_free_requests(q);
644 645 646 647 648
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
649
		blk_mq_debugfs_register_sched_hctx(q, hctx);
650 651
	}

652 653
	return 0;

654 655 656 657
err_free_sbitmap:
	if (blk_mq_is_sbitmap_shared(q->tag_set->flags))
		blk_mq_exit_sched_shared_sbitmap(q);
err_free_tags:
658
	blk_mq_sched_free_requests(q);
659 660
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
661
	return ret;
662
}
663

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/*
 * called in either blk_queue_cleanup or elevator_switch, tagset
 * is required for freeing requests
 */
void blk_mq_sched_free_requests(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->sched_tags)
			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
	}
}

679 680
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
681 682
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
683
	unsigned int flags = 0;
684

685 686
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
687 688
		if (e->type->ops.exit_hctx && hctx->sched_data) {
			e->type->ops.exit_hctx(hctx, i);
689
			hctx->sched_data = NULL;
690
		}
691
		flags = hctx->flags;
692
	}
693
	blk_mq_debugfs_unregister_sched(q);
694 695
	if (e->type->ops.exit_sched)
		e->type->ops.exit_sched(e);
696
	blk_mq_sched_tags_teardown(q);
697
	if (blk_mq_is_sbitmap_shared(flags))
698
		blk_mq_exit_sched_shared_sbitmap(q);
699 700
	q->elevator = NULL;
}