blk-mq-sched.c 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size,
				int (*init)(struct blk_mq_hw_ctx *),
				void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int ret;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node);
		if (!hctx->sched_data) {
			ret = -ENOMEM;
			goto error;
		}

		if (init) {
			ret = init(hctx);
			if (ret) {
				/*
				 * We don't want to give exit() a partially
				 * initialized sched_data. init() must clean up
				 * if it fails.
				 */
				kfree(hctx->sched_data);
				hctx->sched_data = NULL;
				goto error;
			}
		}
	}

	return 0;
error:
	blk_mq_sched_free_hctx_data(q, exit);
	return ret;
}
EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data);

static void __blk_mq_sched_assign_ioc(struct request_queue *q,
71 72 73
				      struct request *rq,
				      struct bio *bio,
				      struct io_context *ioc)
74 75 76 77 78 79 80 81 82 83 84 85 86 87
{
	struct io_cq *icq;

	spin_lock_irq(q->queue_lock);
	icq = ioc_lookup_icq(ioc, q);
	spin_unlock_irq(q->queue_lock);

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}

	rq->elv.icq = icq;
88
	if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
		rq->rq_flags |= RQF_ELVPRIV;
		get_io_context(icq->ioc);
		return;
	}

	rq->elv.icq = NULL;
}

static void blk_mq_sched_assign_ioc(struct request_queue *q,
				    struct request *rq, struct bio *bio)
{
	struct io_context *ioc;

	ioc = rq_ioc(bio);
	if (ioc)
104
		__blk_mq_sched_assign_ioc(q, rq, bio, ioc);
105 106 107 108 109 110 111 112 113 114 115
}

struct request *blk_mq_sched_get_request(struct request_queue *q,
					 struct bio *bio,
					 unsigned int op,
					 struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;

	blk_queue_enter_live(q);
116 117 118 119 120
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
121 122 123 124 125 126 127 128

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
129
		if (!op_is_flush(op) && e->type->ops.mq.get_request) {
130 131 132 133 134 135 136 137 138 139
			rq = e->type->ops.mq.get_request(q, op, data);
			if (rq)
				rq->rq_flags |= RQF_QUEUED;
		} else
			rq = __blk_mq_alloc_request(data, op);
	} else {
		rq = __blk_mq_alloc_request(data, op);
	}

	if (rq) {
140
		if (!op_is_flush(op)) {
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
			rq->elv.icq = NULL;
			if (e && e->type->icq_cache)
				blk_mq_sched_assign_ioc(q, rq, bio);
		}
		data->hctx->queued++;
		return rq;
	}

	blk_queue_exit(q);
	return NULL;
}

void blk_mq_sched_put_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;

	if (rq->rq_flags & RQF_ELVPRIV) {
		blk_mq_sched_put_rq_priv(rq->q, rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}

	if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
		e->type->ops.mq.put_request(rq);
	else
		blk_mq_finish_request(rq);
}

void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
	struct elevator_queue *e = hctx->queue->elevator;
175 176
	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
	bool did_work = false;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	LIST_HEAD(rq_list);

	if (unlikely(blk_mq_hctx_stopped(hctx)))
		return;

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
	 */
204
	if (!list_empty(&rq_list)) {
205
		blk_mq_sched_mark_restart_hctx(hctx);
206 207
		did_work = blk_mq_dispatch_rq_list(hctx, &rq_list);
	} else if (!has_sched_dispatch) {
208 209
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
		blk_mq_dispatch_rq_list(hctx, &rq_list);
210 211 212 213 214 215 216 217
	}

	/*
	 * We want to dispatch from the scheduler if we had no work left
	 * on the dispatch list, OR if we did have work but weren't able
	 * to make progress.
	 */
	if (!did_work && has_sched_dispatch) {
218 219 220 221 222 223 224 225 226
		do {
			struct request *rq;

			rq = e->type->ops.mq.dispatch_request(hctx);
			if (!rq)
				break;
			list_add(&rq->queuelist, &rq_list);
		} while (blk_mq_dispatch_rq_list(hctx, &rq_list));
	}
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
}

void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx,
				   struct list_head *rq_list,
				   struct request *(*get_rq)(struct blk_mq_hw_ctx *))
{
	do {
		struct request *rq;

		rq = get_rq(hctx);
		if (!rq)
			break;

		list_add_tail(&rq->queuelist, rq_list);
	} while (1);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch);

245 246
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
247 248 249
{
	struct request *rq;

250 251
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
252 253
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
254 255 256 257 258 259 260
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
261 262
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
263 264 265 266 267 268 269 270
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
	default:
		return false;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;

	if (e->type->ops.mq.bio_merge) {
		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
		struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

		blk_mq_put_ctx(ctx);
		return e->type->ops.mq.bio_merge(hctx, bio);
	}

	return false;
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

302 303
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
{
	if (rq->tag == -1) {
		rq->rq_flags |= RQF_SORTED;
		return false;
	}

	/*
	 * If we already have a real request tag, send directly to
	 * the dispatch list.
	 */
	spin_lock(&hctx->lock);
	list_add(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);
	return true;
}

320 321 322 323 324 325 326 327 328 329 330
static void blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
		if (blk_mq_hctx_has_pending(hctx))
			blk_mq_run_hw_queue(hctx, true);
	}
}

void blk_mq_sched_restart_queues(struct blk_mq_hw_ctx *hctx)
{
331
	struct request_queue *q = hctx->queue;
332 333
	unsigned int i;

334 335 336 337 338 339
	if (test_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
		if (test_and_clear_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
			queue_for_each_hw_ctx(q, hctx, i)
				blk_mq_sched_restart_hctx(hctx);
		}
	} else {
340 341 342 343
		blk_mq_sched_restart_hctx(hctx);
	}
}

344 345 346 347 348 349 350 351 352 353 354 355
/*
 * Add flush/fua to the queue. If we fail getting a driver tag, then
 * punt to the requeue list. Requeue will re-invoke us from a context
 * that's safe to block from.
 */
static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
				      struct request *rq, bool can_block)
{
	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(hctx, true);
	} else
356
		blk_mq_add_to_requeue_list(rq, false, true);
357 358 359 360 361 362 363 364 365 366
}

void blk_mq_sched_insert_request(struct request *rq, bool at_head,
				 bool run_queue, bool async, bool can_block)
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

367
	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
368 369 370 371
		blk_mq_sched_insert_flush(hctx, rq, can_block);
		return;
	}

372 373 374
	if (e && blk_mq_sched_bypass_insert(hctx, rq))
		goto run;

375 376 377 378 379 380 381 382 383 384 385
	if (e && e->type->ops.mq.insert_requests) {
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
		e->type->ops.mq.insert_requests(hctx, &list, at_head);
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

386
run:
387 388 389 390 391 392 393 394 395 396 397
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

void blk_mq_sched_insert_requests(struct request_queue *q,
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	struct elevator_queue *e = hctx->queue->elevator;

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	if (e) {
		struct request *rq, *next;

		/*
		 * We bypass requests that already have a driver tag assigned,
		 * which should only be flushes. Flushes are only ever inserted
		 * as single requests, so we shouldn't ever hit the
		 * WARN_ON_ONCE() below (but let's handle it just in case).
		 */
		list_for_each_entry_safe(rq, next, list, queuelist) {
			if (WARN_ON_ONCE(rq->tag != -1)) {
				list_del_init(&rq->queuelist);
				blk_mq_sched_bypass_insert(hctx, rq);
			}
		}
	}

415 416 417 418 419 420 421 422
	if (e && e->type->ops.mq.insert_requests)
		e->type->ops.mq.insert_requests(hctx, list, false);
	else
		blk_mq_insert_requests(hctx, ctx, list);

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

int blk_mq_sched_setup(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int ret, i;

	/*
	 * Default to 256, since we don't split into sync/async like the
	 * old code did. Additionally, this is a per-hw queue depth.
	 */
	q->nr_requests = 2 * BLKDEV_MAX_RQ;

	/*
	 * We're switching to using an IO scheduler, so setup the hctx
	 * scheduler tags and switch the request map from the regular
	 * tags to scheduler tags. First allocate what we need, so we
	 * can safely fail and fallback, if needed.
	 */
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
454 455
		hctx->sched_tags = blk_mq_alloc_rq_map(set, i,
				q->nr_requests, set->reserved_tags);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
		if (!hctx->sched_tags) {
			ret = -ENOMEM;
			break;
		}
		ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests);
		if (ret)
			break;
	}

	/*
	 * If we failed, free what we did allocate
	 */
	if (ret) {
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->sched_tags)
				continue;
			blk_mq_sched_free_tags(set, hctx, i);
		}

		return ret;
	}

	return 0;
}

void blk_mq_sched_teardown(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}
490 491 492 493 494 495 496 497 498 499 500

int blk_mq_sched_init(struct request_queue *q)
{
	int ret;

	mutex_lock(&q->sysfs_lock);
	ret = elevator_init(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return ret;
}