blk-mq-sched.c 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
14
#include "blk-mq-debugfs.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

34
void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35
{
36 37
	struct request_queue *q = rq->q;
	struct io_context *ioc = rq_ioc(bio);
38 39 40 41 42 43 44 45 46 47 48
	struct io_cq *icq;

	spin_lock_irq(q->queue_lock);
	icq = ioc_lookup_icq(ioc, q);
	spin_unlock_irq(q->queue_lock);

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
49
	get_io_context(icq->ioc);
50
	rq->elv.icq = icq;
51 52
}

53 54 55 56 57 58 59 60 61
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

62
	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
63 64
}

65
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
66 67
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
68 69
		return;
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
70

71
	blk_mq_run_hw_queue(hctx, true);
72 73
}

74 75 76 77 78 79
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
80 81 82 83 84 85
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
	LIST_HEAD(rq_list);

	do {
86
		struct request *rq;
87

88
		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
89
			break;
90

91
		if (!blk_mq_get_dispatch_budget(hctx))
92
			break;
93

94
		rq = e->type->ops.dispatch_request(hctx);
95 96 97 98 99 100 101 102 103 104
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
105
		list_add(&rq->queuelist, &rq_list);
106
	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
107 108
}

109 110 111 112 113 114 115 116 117 118 119
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
	unsigned idx = ctx->index_hw;

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

120 121 122 123 124 125
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
126 127 128 129 130 131 132 133 134 135 136
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);

	do {
		struct request *rq;

		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

137
		if (!blk_mq_get_dispatch_budget(hctx))
138
			break;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	WRITE_ONCE(hctx->dispatch_from, ctx);
}

161
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
162
{
163 164
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
165
	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
166 167
	LIST_HEAD(rq_list);

168 169
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
170
		return;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
193 194 195 196
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
197
	 */
198
	if (!list_empty(&rq_list)) {
199
		blk_mq_sched_mark_restart_hctx(hctx);
200 201
		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
			if (has_sched_dispatch)
202
				blk_mq_do_dispatch_sched(hctx);
203
			else
204
				blk_mq_do_dispatch_ctx(hctx);
205
		}
206
	} else if (has_sched_dispatch) {
207
		blk_mq_do_dispatch_sched(hctx);
208 209
	} else if (hctx->dispatch_busy) {
		/* dequeue request one by one from sw queue if queue is busy */
210
		blk_mq_do_dispatch_ctx(hctx);
211
	} else {
212
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
213
		blk_mq_dispatch_rq_list(q, &rq_list, false);
214
	}
215 216
}

217 218
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
219 220 221
{
	struct request *rq;

222 223
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
224 225
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
226 227 228 229 230 231 232
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
233 234
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
235 236 237 238 239 240
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
241 242
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio);
243 244
	default:
		return false;
245 246 247 248
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

249
/*
250 251
 * Iterate list of requests and see if we can merge this bio with any
 * of them.
252
 */
253 254
bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
			   struct bio *bio)
255 256 257 258
{
	struct request *rq;
	int checked = 8;

259
	list_for_each_entry_reverse(rq, list, queuelist) {
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		return merged;
	}

	return false;
}
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	lockdep_assert_held(&ctx->lock);

	if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
		ctx->rq_merged++;
		return true;
	}

	return false;
}
308

309 310 311
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
312 313 314
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	bool ret = false;
315

316
	if (e && e->type->ops.bio_merge) {
317
		blk_mq_put_ctx(ctx);
318
		return e->type->ops.bio_merge(hctx, bio);
319 320
	}

321 322
	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
			!list_empty_careful(&ctx->rq_list)) {
323 324 325 326 327 328 329 330
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
		ret = blk_mq_attempt_merge(q, ctx, bio);
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
331 332 333 334 335 336 337 338 339 340 341 342 343 344
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

345
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
346
				       bool has_sched,
347
				       struct request *rq)
348
{
349 350 351 352 353 354 355 356
	/* dispatch flush rq directly */
	if (rq->rq_flags & RQF_FLUSH_SEQ) {
		spin_lock(&hctx->lock);
		list_add(&rq->queuelist, &hctx->dispatch);
		spin_unlock(&hctx->lock);
		return true;
	}

357
	if (has_sched)
358 359
		rq->rq_flags |= RQF_SORTED;

360
	return false;
361 362
}

363
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
364
				 bool run_queue, bool async)
365 366 367 368 369 370
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

371 372
	/* flush rq in flush machinery need to be dispatched directly */
	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
373 374
		blk_insert_flush(rq);
		goto run;
375 376
	}

377 378
	WARN_ON(e && (rq->tag != -1));

379
	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
380 381
		goto run;

382
	if (e && e->type->ops.insert_requests) {
383 384 385
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
386
		e->type->ops.insert_requests(hctx, &list, at_head);
387 388 389 390 391 392
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

393
run:
394 395 396 397 398 399 400 401 402 403 404
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

void blk_mq_sched_insert_requests(struct request_queue *q,
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	struct elevator_queue *e = hctx->queue->elevator;

405 406
	if (e && e->type->ops.insert_requests)
		e->type->ops.insert_requests(hctx, list, false);
407 408 409 410 411 412 413 414 415 416 417
	else {
		/*
		 * try to issue requests directly if the hw queue isn't
		 * busy in case of 'none' scheduler, and this way may save
		 * us one extra enqueue & dequeue to sw queue.
		 */
		if (!hctx->dispatch_busy && !e && !run_queue_async) {
			blk_mq_try_issue_list_directly(hctx, list);
			if (list_empty(list))
				return;
		}
418
		blk_mq_insert_requests(hctx, ctx, list);
419
	}
420 421 422 423

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

424 425 426 427 428 429 430 431 432 433 434
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

454
static void blk_mq_sched_tags_teardown(struct request_queue *q)
455 456 457
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
458 459 460 461 462 463 464 465 466
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
467
	struct elevator_queue *eq;
468 469 470 471 472
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
473
		q->nr_requests = q->tag_set->queue_depth;
474 475
		return 0;
	}
476 477

	/*
478 479 480
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
481
	 */
482 483
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
484 485

	queue_for_each_hw_ctx(q, hctx, i) {
486
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
487
		if (ret)
488
			goto err;
489 490
	}

491
	ret = e->ops.init_sched(q, e);
492 493
	if (ret)
		goto err;
494

495 496 497
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
498 499
		if (e->ops.init_hctx) {
			ret = e->ops.init_hctx(hctx, i);
500 501 502 503 504 505 506
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
507
		blk_mq_debugfs_register_sched_hctx(q, hctx);
508 509
	}

510 511
	return 0;

512
err:
513 514
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
515
	return ret;
516
}
517

518 519
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
520 521 522
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

523 524
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
525 526
		if (e->type->ops.exit_hctx && hctx->sched_data) {
			e->type->ops.exit_hctx(hctx, i);
527
			hctx->sched_data = NULL;
528 529
		}
	}
530
	blk_mq_debugfs_unregister_sched(q);
531 532
	if (e->type->ops.exit_sched)
		e->type->ops.exit_sched(e);
533 534 535
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}