blk-mq-sched.c 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
14
#include "blk-mq-debugfs.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

static void __blk_mq_sched_assign_ioc(struct request_queue *q,
35 36 37
				      struct request *rq,
				      struct bio *bio,
				      struct io_context *ioc)
38
{
39
	struct elevator_queue *e = q->elevator;
40 41 42 43 44 45 46 47 48 49 50 51 52
	struct io_cq *icq;

	spin_lock_irq(q->queue_lock);
	icq = ioc_lookup_icq(ioc, q);
	spin_unlock_irq(q->queue_lock);

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}

	rq->elv.icq = icq;
53 54 55
	if (e && e->type->ops.mq.get_rq_priv &&
	    e->type->ops.mq.get_rq_priv(q, rq, bio)) {
		rq->elv.icq = NULL;
56 57 58
		return;
	}

59 60
	rq->rq_flags |= RQF_ELVPRIV;
	get_io_context(icq->ioc);
61 62
}

63 64
void blk_mq_sched_assign_ioc(struct request_queue *q, struct request *rq,
			     struct bio *bio)
65 66 67 68 69
{
	struct io_context *ioc;

	ioc = rq_ioc(bio);
	if (ioc)
70
		__blk_mq_sched_assign_ioc(q, rq, bio, ioc);
71 72 73 74
}

void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
75 76
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
77 78
	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
	bool did_work = false;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	LIST_HEAD(rq_list);

	if (unlikely(blk_mq_hctx_stopped(hctx)))
		return;

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
	 */
106
	if (!list_empty(&rq_list)) {
107
		blk_mq_sched_mark_restart_hctx(hctx);
108
		did_work = blk_mq_dispatch_rq_list(q, &rq_list);
109
	} else if (!has_sched_dispatch) {
110
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
111
		blk_mq_dispatch_rq_list(q, &rq_list);
112 113 114 115 116 117 118 119
	}

	/*
	 * We want to dispatch from the scheduler if we had no work left
	 * on the dispatch list, OR if we did have work but weren't able
	 * to make progress.
	 */
	if (!did_work && has_sched_dispatch) {
120 121 122 123 124 125 126
		do {
			struct request *rq;

			rq = e->type->ops.mq.dispatch_request(hctx);
			if (!rq)
				break;
			list_add(&rq->queuelist, &rq_list);
127
		} while (blk_mq_dispatch_rq_list(q, &rq_list));
128
	}
129 130
}

131 132
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
133 134 135
{
	struct request *rq;

136 137
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
138 139
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
140 141 142 143 144 145 146
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
147 148
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
149 150 151 152 153 154 155 156
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
	default:
		return false;
157 158 159 160
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		if (merged)
			ctx->rq_merged++;
		return merged;
	}

	return false;
}

205 206 207
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
208 209 210
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	bool ret = false;
211

212
	if (e && e->type->ops.mq.bio_merge) {
213 214 215 216
		blk_mq_put_ctx(ctx);
		return e->type->ops.mq.bio_merge(hctx, bio);
	}

217 218 219 220 221 222 223 224 225
	if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
		ret = blk_mq_attempt_merge(q, ctx, bio);
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
226 227 228 229 230 231 232 233 234 235 236 237 238 239
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

240 241
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
{
	if (rq->tag == -1) {
		rq->rq_flags |= RQF_SORTED;
		return false;
	}

	/*
	 * If we already have a real request tag, send directly to
	 * the dispatch list.
	 */
	spin_lock(&hctx->lock);
	list_add(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);
	return true;
}

258
static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
259 260 261
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
262
		if (blk_mq_hctx_has_pending(hctx)) {
263
			blk_mq_run_hw_queue(hctx, true);
264 265
			return true;
		}
266
	}
267
	return false;
268 269
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/**
 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
 * @pos:    loop cursor.
 * @skip:   the list element that will not be examined. Iteration starts at
 *          @skip->next.
 * @head:   head of the list to examine. This list must have at least one
 *          element, namely @skip.
 * @member: name of the list_head structure within typeof(*pos).
 */
#define list_for_each_entry_rcu_rr(pos, skip, head, member)		\
	for ((pos) = (skip);						\
	     (pos = (pos)->member.next != (head) ? list_entry_rcu(	\
			(pos)->member.next, typeof(*pos), member) :	\
	      list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
	     (pos) != (skip); )
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/*
 * Called after a driver tag has been freed to check whether a hctx needs to
 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
 * queues in a round-robin fashion if the tag set of @hctx is shared with other
 * hardware queues.
 */
void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
{
	struct blk_mq_tags *const tags = hctx->tags;
	struct blk_mq_tag_set *const set = hctx->queue->tag_set;
	struct request_queue *const queue = hctx->queue, *q;
	struct blk_mq_hw_ctx *hctx2;
	unsigned int i, j;

	if (set->flags & BLK_MQ_F_TAG_SHARED) {
		rcu_read_lock();
		list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
					   tag_set_list) {
			queue_for_each_hw_ctx(q, hctx2, i)
				if (hctx2->tags == tags &&
				    blk_mq_sched_restart_hctx(hctx2))
					goto done;
		}
		j = hctx->queue_num + 1;
		for (i = 0; i < queue->nr_hw_queues; i++, j++) {
			if (j == queue->nr_hw_queues)
				j = 0;
			hctx2 = queue->queue_hw_ctx[j];
			if (hctx2->tags == tags &&
			    blk_mq_sched_restart_hctx(hctx2))
				break;
317
		}
318 319
done:
		rcu_read_unlock();
320
	} else {
321 322 323 324
		blk_mq_sched_restart_hctx(hctx);
	}
}

325 326 327 328 329 330 331 332 333 334 335 336
/*
 * Add flush/fua to the queue. If we fail getting a driver tag, then
 * punt to the requeue list. Requeue will re-invoke us from a context
 * that's safe to block from.
 */
static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
				      struct request *rq, bool can_block)
{
	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(hctx, true);
	} else
337
		blk_mq_add_to_requeue_list(rq, false, true);
338 339 340 341 342 343 344 345 346 347
}

void blk_mq_sched_insert_request(struct request *rq, bool at_head,
				 bool run_queue, bool async, bool can_block)
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

348
	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
349 350 351 352
		blk_mq_sched_insert_flush(hctx, rq, can_block);
		return;
	}

353 354 355
	if (e && blk_mq_sched_bypass_insert(hctx, rq))
		goto run;

356 357 358 359 360 361 362 363 364 365 366
	if (e && e->type->ops.mq.insert_requests) {
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
		e->type->ops.mq.insert_requests(hctx, &list, at_head);
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

367
run:
368 369 370 371 372 373 374 375 376 377 378
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

void blk_mq_sched_insert_requests(struct request_queue *q,
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	struct elevator_queue *e = hctx->queue->elevator;

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	if (e) {
		struct request *rq, *next;

		/*
		 * We bypass requests that already have a driver tag assigned,
		 * which should only be flushes. Flushes are only ever inserted
		 * as single requests, so we shouldn't ever hit the
		 * WARN_ON_ONCE() below (but let's handle it just in case).
		 */
		list_for_each_entry_safe(rq, next, list, queuelist) {
			if (WARN_ON_ONCE(rq->tag != -1)) {
				list_del_init(&rq->queuelist);
				blk_mq_sched_bypass_insert(hctx, rq);
			}
		}
	}

396 397 398 399 400 401 402 403
	if (e && e->type->ops.mq.insert_requests)
		e->type->ops.mq.insert_requests(hctx, list, false);
	else
		blk_mq_insert_requests(hctx, ctx, list);

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

404 405 406 407 408 409 410 411 412 413 414
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

434
static void blk_mq_sched_tags_teardown(struct request_queue *q)
435 436 437
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
438 439 440 441 442 443
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

444 445 446 447
int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			   unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;
448
	int ret;
449 450 451 452

	if (!e)
		return 0;

453 454 455 456 457 458 459 460 461 462 463 464
	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
	if (ret)
		return ret;

	if (e->type->ops.mq.init_hctx) {
		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
		if (ret) {
			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
			return ret;
		}
	}

465 466
	blk_mq_debugfs_register_sched_hctx(q, hctx);

467
	return 0;
468 469 470 471 472 473 474 475 476 477
}

void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			    unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;

	if (!e)
		return;

478 479
	blk_mq_debugfs_unregister_sched_hctx(hctx);

480 481 482 483 484
	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
		hctx->sched_data = NULL;
	}

485 486 487
	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
}

488 489 490
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
491
	struct elevator_queue *eq;
492 493 494 495 496 497 498
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
		return 0;
	}
499 500 501 502 503 504 505 506

	/*
	 * Default to 256, since we don't split into sync/async like the
	 * old code did. Additionally, this is a per-hw queue depth.
	 */
	q->nr_requests = 2 * BLKDEV_MAX_RQ;

	queue_for_each_hw_ctx(q, hctx, i) {
507
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
508
		if (ret)
509
			goto err;
510 511
	}

512 513 514
	ret = e->ops.mq.init_sched(q, e);
	if (ret)
		goto err;
515

516 517 518 519
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (e->ops.mq.init_hctx) {
520 521 522 523 524 525 526 527
			ret = e->ops.mq.init_hctx(hctx, i);
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
528
		blk_mq_debugfs_register_sched_hctx(q, hctx);
529 530
	}

531 532
	return 0;

533
err:
534 535
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
536
	return ret;
537
}
538

539 540
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
541 542 543
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

544 545 546 547 548
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
			e->type->ops.mq.exit_hctx(hctx, i);
			hctx->sched_data = NULL;
549 550
		}
	}
551
	blk_mq_debugfs_unregister_sched(q);
552 553 554 555 556 557
	if (e->type->ops.mq.exit_sched)
		e->type->ops.mq.exit_sched(e);
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}

558 559 560 561 562 563 564 565 566 567
int blk_mq_sched_init(struct request_queue *q)
{
	int ret;

	mutex_lock(&q->sysfs_lock);
	ret = elevator_init(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return ret;
}