blk-mq-sched.c 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
14
#include "blk-mq-debugfs.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

D
Damien Le Moal 已提交
34
void blk_mq_sched_assign_ioc(struct request *rq)
35
{
36
	struct request_queue *q = rq->q;
37
	struct io_context *ioc;
38 39
	struct io_cq *icq;

40 41 42 43 44 45 46
	/*
	 * May not have an IO context if it's a passthrough request
	 */
	ioc = current->io_context;
	if (!ioc)
		return;

47
	spin_lock_irq(&q->queue_lock);
48
	icq = ioc_lookup_icq(ioc, q);
49
	spin_unlock_irq(&q->queue_lock);
50 51 52 53 54 55

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
56
	get_io_context(icq->ioc);
57
	rq->elv.icq = icq;
58 59
}

60 61 62 63
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
64
void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
65 66 67 68
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

69
	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
70
}
71
EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
72

73
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
74 75
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
76 77
		return;
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
78

79
	blk_mq_run_hw_queue(hctx, true);
80 81
}

82 83 84 85 86 87
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
88 89 90 91 92 93
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
	LIST_HEAD(rq_list);

	do {
94
		struct request *rq;
95

96
		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
97
			break;
98

99
		if (!blk_mq_get_dispatch_budget(hctx))
100
			break;
101

102
		rq = e->type->ops.dispatch_request(hctx);
103 104 105 106 107 108 109 110 111 112
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
113
		list_add(&rq->queuelist, &rq_list);
114
	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
115 116
}

117 118 119
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
120
	unsigned short idx = ctx->index_hw[hctx->type];
121 122 123 124 125 126 127

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

128 129 130 131 132 133
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
134 135 136 137 138 139 140 141 142 143 144
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);

	do {
		struct request *rq;

		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

145
		if (!blk_mq_get_dispatch_budget(hctx))
146
			break;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	WRITE_ONCE(hctx->dispatch_from, ctx);
}

169
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
170
{
171 172
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
173
	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
174 175
	LIST_HEAD(rq_list);

176 177
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
178
		return;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
201 202 203 204
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
205
	 */
206
	if (!list_empty(&rq_list)) {
207
		blk_mq_sched_mark_restart_hctx(hctx);
208 209
		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
			if (has_sched_dispatch)
210
				blk_mq_do_dispatch_sched(hctx);
211
			else
212
				blk_mq_do_dispatch_ctx(hctx);
213
		}
214
	} else if (has_sched_dispatch) {
215
		blk_mq_do_dispatch_sched(hctx);
216 217
	} else if (hctx->dispatch_busy) {
		/* dequeue request one by one from sw queue if queue is busy */
218
		blk_mq_do_dispatch_ctx(hctx);
219
	} else {
220
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
221
		blk_mq_dispatch_rq_list(q, &rq_list, false);
222
	}
223 224
}

225 226
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
227 228 229
{
	struct request *rq;

230 231
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
232 233
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
234 235 236 237 238 239 240
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
241 242
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
243 244 245 246 247 248
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
249 250
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio);
251 252
	default:
		return false;
253 254 255 256
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

257
/*
258 259
 * Iterate list of requests and see if we can merge this bio with any
 * of them.
260
 */
261 262
bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
			   struct bio *bio)
263 264 265 266
{
	struct request *rq;
	int checked = 8;

267
	list_for_each_entry_reverse(rq, list, queuelist) {
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		return merged;
	}

	return false;
}
297 298 299 300 301 302 303 304
EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
M
Ming Lei 已提交
305
				 struct blk_mq_hw_ctx *hctx,
306 307
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
M
Ming Lei 已提交
308 309
	enum hctx_type type = hctx->type;

310 311
	lockdep_assert_held(&ctx->lock);

M
Ming Lei 已提交
312
	if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio)) {
313 314 315 316 317 318
		ctx->rq_merged++;
		return true;
	}

	return false;
}
319

320 321 322
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
323
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
324
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
325
	bool ret = false;
M
Ming Lei 已提交
326
	enum hctx_type type;
327

328
	if (e && e->type->ops.bio_merge) {
329
		blk_mq_put_ctx(ctx);
330
		return e->type->ops.bio_merge(hctx, bio);
331 332
	}

M
Ming Lei 已提交
333
	type = hctx->type;
334
	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
M
Ming Lei 已提交
335
			!list_empty_careful(&ctx->rq_lists[type])) {
336 337
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
M
Ming Lei 已提交
338
		ret = blk_mq_attempt_merge(q, hctx, ctx, bio);
339 340 341 342 343
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
344 345 346 347 348 349 350 351 352 353 354 355 356 357
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

358
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
359
				       bool has_sched,
360
				       struct request *rq)
361
{
362 363 364 365 366 367 368 369
	/* dispatch flush rq directly */
	if (rq->rq_flags & RQF_FLUSH_SEQ) {
		spin_lock(&hctx->lock);
		list_add(&rq->queuelist, &hctx->dispatch);
		spin_unlock(&hctx->lock);
		return true;
	}

370
	if (has_sched)
371 372
		rq->rq_flags |= RQF_SORTED;

373
	return false;
374 375
}

376
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
377
				 bool run_queue, bool async)
378 379 380 381
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
382
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
383

384 385
	/* flush rq in flush machinery need to be dispatched directly */
	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
386 387
		blk_insert_flush(rq);
		goto run;
388 389
	}

390 391
	WARN_ON(e && (rq->tag != -1));

392
	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
393 394
		goto run;

395
	if (e && e->type->ops.insert_requests) {
396 397 398
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
399
		e->type->ops.insert_requests(hctx, &list, at_head);
400 401 402 403 404 405
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

406
run:
407 408 409 410
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

411
void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
412 413 414
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
415
	struct elevator_queue *e;
416

417
	e = hctx->queue->elevator;
418 419
	if (e && e->type->ops.insert_requests)
		e->type->ops.insert_requests(hctx, list, false);
420 421 422 423 424 425
	else {
		/*
		 * try to issue requests directly if the hw queue isn't
		 * busy in case of 'none' scheduler, and this way may save
		 * us one extra enqueue & dequeue to sw queue.
		 */
426
		if (!hctx->dispatch_busy && !e && !run_queue_async)
427
			blk_mq_try_issue_list_directly(hctx, list);
428 429
		else
			blk_mq_insert_requests(hctx, ctx, list);
430
	}
431 432 433 434

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

435 436 437 438 439 440 441 442 443 444 445
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

465
static void blk_mq_sched_tags_teardown(struct request_queue *q)
466 467 468
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
469 470 471 472 473 474 475 476 477
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
478
	struct elevator_queue *eq;
479 480 481 482 483
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
484
		q->nr_requests = q->tag_set->queue_depth;
485 486
		return 0;
	}
487 488

	/*
489 490 491
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
492
	 */
493 494
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
495 496

	queue_for_each_hw_ctx(q, hctx, i) {
497
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
498
		if (ret)
499
			goto err;
500 501
	}

502
	ret = e->ops.init_sched(q, e);
503 504
	if (ret)
		goto err;
505

506 507 508
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
509 510
		if (e->ops.init_hctx) {
			ret = e->ops.init_hctx(hctx, i);
511 512 513 514 515 516 517
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
518
		blk_mq_debugfs_register_sched_hctx(q, hctx);
519 520
	}

521 522
	return 0;

523
err:
524 525
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
526
	return ret;
527
}
528

529 530
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
531 532 533
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

534 535
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
536 537
		if (e->type->ops.exit_hctx && hctx->sched_data) {
			e->type->ops.exit_hctx(hctx, i);
538
			hctx->sched_data = NULL;
539 540
		}
	}
541
	blk_mq_debugfs_unregister_sched(q);
542 543
	if (e->type->ops.exit_sched)
		e->type->ops.exit_sched(e);
544 545 546
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}