blk-mq-sched.c 16.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
15
#include "blk-mq-debugfs.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

D
Damien Le Moal 已提交
35
void blk_mq_sched_assign_ioc(struct request *rq)
36
{
37
	struct request_queue *q = rq->q;
38
	struct io_context *ioc;
39 40
	struct io_cq *icq;

41 42 43 44 45 46 47
	/*
	 * May not have an IO context if it's a passthrough request
	 */
	ioc = current->io_context;
	if (!ioc)
		return;

48
	spin_lock_irq(&q->queue_lock);
49
	icq = ioc_lookup_icq(ioc, q);
50
	spin_unlock_irq(&q->queue_lock);
51 52 53 54 55 56

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
57
	get_io_context(icq->ioc);
58
	rq->elv.icq = icq;
59 60
}

61 62 63 64
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
65
void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
66 67 68 69
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

70
	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
71
}
72
EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
73

74
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
75 76
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
77 78
		return;
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
79

80
	blk_mq_run_hw_queue(hctx, true);
81 82
}

83 84
#define BLK_MQ_BUDGET_DELAY	3		/* ms units */

85 86 87 88 89 90
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
91 92 93 94 95 96
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
	LIST_HEAD(rq_list);

	do {
97
		struct request *rq;
98

99
		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
100
			break;
101

102
		if (!blk_mq_get_dispatch_budget(hctx))
103
			break;
104

105
		rq = e->type->ops.dispatch_request(hctx);
106 107
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
108 109 110 111 112 113 114 115
			/*
			 * We're releasing without dispatching. Holding the
			 * budget could have blocked any "hctx"s with the
			 * same queue and if we didn't dispatch then there's
			 * no guarantee anyone will kick the queue.  Kick it
			 * ourselves.
			 */
			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
116 117 118 119 120 121 122 123
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
124
		list_add(&rq->queuelist, &rq_list);
125
	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
126 127
}

128 129 130
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
131
	unsigned short idx = ctx->index_hw[hctx->type];
132 133 134 135 136 137 138

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

139 140 141 142 143 144
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
145 146 147 148 149 150 151 152 153 154 155
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);

	do {
		struct request *rq;

		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

156
		if (!blk_mq_get_dispatch_budget(hctx))
157
			break;
158 159 160 161

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
162 163 164 165 166 167 168 169
			/*
			 * We're releasing without dispatching. Holding the
			 * budget could have blocked any "hctx"s with the
			 * same queue and if we didn't dispatch then there's
			 * no guarantee anyone will kick the queue.  Kick it
			 * ourselves.
			 */
			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	WRITE_ONCE(hctx->dispatch_from, ctx);
}

188
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
189
{
190 191
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
192
	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
193 194
	LIST_HEAD(rq_list);

195 196
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
197
		return;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
220 221 222 223
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
224
	 */
225
	if (!list_empty(&rq_list)) {
226
		blk_mq_sched_mark_restart_hctx(hctx);
227 228
		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
			if (has_sched_dispatch)
229
				blk_mq_do_dispatch_sched(hctx);
230
			else
231
				blk_mq_do_dispatch_ctx(hctx);
232
		}
233
	} else if (has_sched_dispatch) {
234
		blk_mq_do_dispatch_sched(hctx);
235 236
	} else if (hctx->dispatch_busy) {
		/* dequeue request one by one from sw queue if queue is busy */
237
		blk_mq_do_dispatch_ctx(hctx);
238
	} else {
239
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
240
		blk_mq_dispatch_rq_list(q, &rq_list, false);
241
	}
242 243
}

244
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
245
		unsigned int nr_segs, struct request **merged_request)
246 247 248
{
	struct request *rq;

249 250
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
251 252
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
253
		if (!bio_attempt_back_merge(rq, bio, nr_segs))
254 255 256 257 258 259
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
260 261
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
262
		if (!bio_attempt_front_merge(rq, bio, nr_segs))
263 264 265 266 267
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
268 269
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio);
270 271
	default:
		return false;
272 273 274 275
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

276
/*
277 278
 * Iterate list of requests and see if we can merge this bio with any
 * of them.
279
 */
280
bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
281
			   struct bio *bio, unsigned int nr_segs)
282 283 284 285
{
	struct request *rq;
	int checked = 8;

286
	list_for_each_entry_reverse(rq, list, queuelist) {
287 288 289 290 291 292 293 294 295 296 297
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
298 299
				merged = bio_attempt_back_merge(rq, bio,
						nr_segs);
300 301 302
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
303 304
				merged = bio_attempt_front_merge(rq, bio,
						nr_segs);
305 306 307 308 309 310 311 312 313 314 315 316 317
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		return merged;
	}

	return false;
}
318 319 320 321 322 323 324 325
EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
M
Ming Lei 已提交
326
				 struct blk_mq_hw_ctx *hctx,
327 328
				 struct blk_mq_ctx *ctx, struct bio *bio,
				 unsigned int nr_segs)
329
{
M
Ming Lei 已提交
330 331
	enum hctx_type type = hctx->type;

332 333
	lockdep_assert_held(&ctx->lock);

334
	if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
335 336 337 338 339 340
		ctx->rq_merged++;
		return true;
	}

	return false;
}
341

342 343
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
		unsigned int nr_segs)
344 345
{
	struct elevator_queue *e = q->elevator;
346
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
347
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
348
	bool ret = false;
M
Ming Lei 已提交
349
	enum hctx_type type;
350

351
	if (e && e->type->ops.bio_merge)
352
		return e->type->ops.bio_merge(hctx, bio, nr_segs);
353

M
Ming Lei 已提交
354
	type = hctx->type;
355
	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
M
Ming Lei 已提交
356
			!list_empty_careful(&ctx->rq_lists[type])) {
357 358
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
359
		ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
360 361 362 363
		spin_unlock(&ctx->lock);
	}

	return ret;
364 365 366 367 368 369 370 371 372 373 374 375 376 377
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

378
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
379
				       bool has_sched,
380
				       struct request *rq)
381
{
382 383 384 385 386 387 388 389 390 391 392 393
	/*
	 * dispatch flush and passthrough rq directly
	 *
	 * passthrough request has to be added to hctx->dispatch directly.
	 * For some reason, device may be in one situation which can't
	 * handle FS request, so STS_RESOURCE is always returned and the
	 * FS request will be added to hctx->dispatch. However passthrough
	 * request may be required at that time for fixing the problem. If
	 * passthrough request is added to scheduler queue, there isn't any
	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
	 */
	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
394 395
		return true;

396
	if (has_sched)
397 398
		rq->rq_flags |= RQF_SORTED;

399
	return false;
400 401
}

402
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
403
				 bool run_queue, bool async)
404 405 406 407
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
408
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
409

410 411
	/* flush rq in flush machinery need to be dispatched directly */
	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
412 413
		blk_insert_flush(rq);
		goto run;
414 415
	}

416 417
	WARN_ON(e && (rq->tag != -1));

418
	if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
		/*
		 * Firstly normal IO request is inserted to scheduler queue or
		 * sw queue, meantime we add flush request to dispatch queue(
		 * hctx->dispatch) directly and there is at most one in-flight
		 * flush request for each hw queue, so it doesn't matter to add
		 * flush request to tail or front of the dispatch queue.
		 *
		 * Secondly in case of NCQ, flush request belongs to non-NCQ
		 * command, and queueing it will fail when there is any
		 * in-flight normal IO request(NCQ command). When adding flush
		 * rq to the front of hctx->dispatch, it is easier to introduce
		 * extra time to flush rq's latency because of S_SCHED_RESTART
		 * compared with adding to the tail of dispatch queue, then
		 * chance of flush merge is increased, and less flush requests
		 * will be issued to controller. It is observed that ~10% time
		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
		 * drive when adding flush rq to the front of hctx->dispatch.
		 *
		 * Simply queue flush rq to the front of hctx->dispatch so that
		 * intensive flush workloads can benefit in case of NCQ HW.
		 */
		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
441
		blk_mq_request_bypass_insert(rq, at_head, false);
442
		goto run;
443
	}
444

445
	if (e && e->type->ops.insert_requests) {
446 447 448
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
449
		e->type->ops.insert_requests(hctx, &list, at_head);
450 451 452 453 454 455
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

456
run:
457 458 459 460
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

461
void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
462 463 464
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
465
	struct elevator_queue *e;
466 467 468 469 470 471 472 473
	struct request_queue *q = hctx->queue;

	/*
	 * blk_mq_sched_insert_requests() is called from flush plug
	 * context only, and hold one usage counter to prevent queue
	 * from being released.
	 */
	percpu_ref_get(&q->q_usage_counter);
474

475
	e = hctx->queue->elevator;
476 477
	if (e && e->type->ops.insert_requests)
		e->type->ops.insert_requests(hctx, list, false);
478 479 480 481 482 483
	else {
		/*
		 * try to issue requests directly if the hw queue isn't
		 * busy in case of 'none' scheduler, and this way may save
		 * us one extra enqueue & dequeue to sw queue.
		 */
484
		if (!hctx->dispatch_busy && !e && !run_queue_async) {
485
			blk_mq_try_issue_list_directly(hctx, list);
486
			if (list_empty(list))
487
				goto out;
488 489
		}
		blk_mq_insert_requests(hctx, ctx, list);
490
	}
491 492

	blk_mq_run_hw_queue(hctx, run_queue_async);
493 494
 out:
	percpu_ref_put(&q->q_usage_counter);
495 496
}

497 498 499 500 501 502 503 504 505 506 507
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

527
/* called in queue's release handler, tagset has gone away */
528
static void blk_mq_sched_tags_teardown(struct request_queue *q)
529 530
{
	struct blk_mq_hw_ctx *hctx;
531 532
	int i;

533 534 535 536 537 538
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->sched_tags) {
			blk_mq_free_rq_map(hctx->sched_tags);
			hctx->sched_tags = NULL;
		}
	}
539 540 541 542 543
}

int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
544
	struct elevator_queue *eq;
545 546 547 548 549
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
550
		q->nr_requests = q->tag_set->queue_depth;
551 552
		return 0;
	}
553 554

	/*
555 556 557
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
558
	 */
559 560
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
561 562

	queue_for_each_hw_ctx(q, hctx, i) {
563
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
564
		if (ret)
565
			goto err;
566 567
	}

568
	ret = e->ops.init_sched(q, e);
569 570
	if (ret)
		goto err;
571

572 573 574
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
575 576
		if (e->ops.init_hctx) {
			ret = e->ops.init_hctx(hctx, i);
577 578
			if (ret) {
				eq = q->elevator;
579
				blk_mq_sched_free_requests(q);
580 581 582 583 584
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
585
		blk_mq_debugfs_register_sched_hctx(q, hctx);
586 587
	}

588 589
	return 0;

590
err:
591
	blk_mq_sched_free_requests(q);
592 593
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
594
	return ret;
595
}
596

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
/*
 * called in either blk_queue_cleanup or elevator_switch, tagset
 * is required for freeing requests
 */
void blk_mq_sched_free_requests(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->sched_tags)
			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
	}
}

612 613
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
614 615 616
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

617 618
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
619 620
		if (e->type->ops.exit_hctx && hctx->sched_data) {
			e->type->ops.exit_hctx(hctx, i);
621
			hctx->sched_data = NULL;
622 623
		}
	}
624
	blk_mq_debugfs_unregister_sched(q);
625 626
	if (e->type->ops.exit_sched)
		e->type->ops.exit_sched(e);
627 628 629
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}