blk-mq-sched.c 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
14
#include "blk-mq-debugfs.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

34
void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35
{
36 37
	struct request_queue *q = rq->q;
	struct io_context *ioc = rq_ioc(bio);
38 39 40 41 42 43 44 45 46 47 48
	struct io_cq *icq;

	spin_lock_irq(q->queue_lock);
	icq = ioc_lookup_icq(ioc, q);
	spin_unlock_irq(q->queue_lock);

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
49
	get_io_context(icq->ioc);
50
	rq->elv.icq = icq;
51 52
}

53 54 55 56 57 58 59 60 61
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

62
	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
63 64
}

65
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
66 67
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
68 69
		return;
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
70

71
	blk_mq_run_hw_queue(hctx, true);
72 73
}

74 75 76 77 78 79
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
80 81 82 83 84 85
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
	LIST_HEAD(rq_list);

	do {
86
		struct request *rq;
87

88 89
		if (e->type->ops.mq.has_work &&
				!e->type->ops.mq.has_work(hctx))
90
			break;
91

92
		if (!blk_mq_get_dispatch_budget(hctx))
93
			break;
94 95 96 97 98 99 100 101 102 103 104 105

		rq = e->type->ops.mq.dispatch_request(hctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
106
		list_add(&rq->queuelist, &rq_list);
107
	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
108 109
}

110 111 112 113 114 115 116 117 118 119 120
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
	unsigned idx = ctx->index_hw;

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

121 122 123 124 125 126
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
127 128 129 130 131 132 133 134 135 136 137
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);

	do {
		struct request *rq;

		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

138
		if (!blk_mq_get_dispatch_budget(hctx))
139
			break;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	WRITE_ONCE(hctx->dispatch_from, ctx);
}

162
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
163
{
164 165
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
166
	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
167 168
	LIST_HEAD(rq_list);

169 170
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
171
		return;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
194 195 196 197
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
198
	 */
199
	if (!list_empty(&rq_list)) {
200
		blk_mq_sched_mark_restart_hctx(hctx);
201 202
		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
			if (has_sched_dispatch)
203
				blk_mq_do_dispatch_sched(hctx);
204
			else
205
				blk_mq_do_dispatch_ctx(hctx);
206
		}
207
	} else if (has_sched_dispatch) {
208
		blk_mq_do_dispatch_sched(hctx);
209 210
	} else if (hctx->dispatch_busy) {
		/* dequeue request one by one from sw queue if queue is busy */
211
		blk_mq_do_dispatch_ctx(hctx);
212
	} else {
213
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
214
		blk_mq_dispatch_rq_list(q, &rq_list, false);
215
	}
216 217
}

218 219
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
220 221 222
{
	struct request *rq;

223 224
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
225 226
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
227 228 229 230 231 232 233
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
234 235
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
236 237 238 239 240 241
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
242 243
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio);
244 245
	default:
		return false;
246 247 248 249
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

250
/*
251 252
 * Iterate list of requests and see if we can merge this bio with any
 * of them.
253
 */
254 255
bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
			   struct bio *bio)
256 257 258 259
{
	struct request *rq;
	int checked = 8;

260
	list_for_each_entry_reverse(rq, list, queuelist) {
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		return merged;
	}

	return false;
}
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	lockdep_assert_held(&ctx->lock);

	if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
		ctx->rq_merged++;
		return true;
	}

	return false;
}
309

310 311 312
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
313 314 315
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	bool ret = false;
316

317
	if (e && e->type->ops.mq.bio_merge) {
318 319 320 321
		blk_mq_put_ctx(ctx);
		return e->type->ops.mq.bio_merge(hctx, bio);
	}

322 323
	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
			!list_empty_careful(&ctx->rq_list)) {
324 325 326 327 328 329 330 331
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
		ret = blk_mq_attempt_merge(q, ctx, bio);
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
332 333 334 335 336 337 338 339 340 341 342 343 344 345
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

346
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
347
				       bool has_sched,
348
				       struct request *rq)
349
{
350 351 352 353 354 355 356 357
	/* dispatch flush rq directly */
	if (rq->rq_flags & RQF_FLUSH_SEQ) {
		spin_lock(&hctx->lock);
		list_add(&rq->queuelist, &hctx->dispatch);
		spin_unlock(&hctx->lock);
		return true;
	}

358
	if (has_sched)
359 360
		rq->rq_flags |= RQF_SORTED;

361
	return false;
362 363
}

364
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
365
				 bool run_queue, bool async)
366 367 368 369 370 371
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

372 373
	/* flush rq in flush machinery need to be dispatched directly */
	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
374 375
		blk_insert_flush(rq);
		goto run;
376 377
	}

378 379
	WARN_ON(e && (rq->tag != -1));

380
	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
381 382
		goto run;

383 384 385 386 387 388 389 390 391 392 393
	if (e && e->type->ops.mq.insert_requests) {
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
		e->type->ops.mq.insert_requests(hctx, &list, at_head);
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

394
run:
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

void blk_mq_sched_insert_requests(struct request_queue *q,
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	struct elevator_queue *e = hctx->queue->elevator;

	if (e && e->type->ops.mq.insert_requests)
		e->type->ops.mq.insert_requests(hctx, list, false);
	else
		blk_mq_insert_requests(hctx, ctx, list);

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

414 415 416 417 418 419 420 421 422 423 424
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

444
static void blk_mq_sched_tags_teardown(struct request_queue *q)
445 446 447
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
448 449 450 451 452 453
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

454 455 456 457
int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			   unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;
458
	int ret;
459 460 461 462

	if (!e)
		return 0;

463 464 465 466 467 468 469 470 471 472 473 474
	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
	if (ret)
		return ret;

	if (e->type->ops.mq.init_hctx) {
		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
		if (ret) {
			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
			return ret;
		}
	}

475 476
	blk_mq_debugfs_register_sched_hctx(q, hctx);

477
	return 0;
478 479 480 481 482 483 484 485 486 487
}

void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			    unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;

	if (!e)
		return;

488 489
	blk_mq_debugfs_unregister_sched_hctx(hctx);

490 491 492 493 494
	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
		hctx->sched_data = NULL;
	}

495 496 497
	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
}

498 499 500
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
501
	struct elevator_queue *eq;
502 503 504 505 506
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
507
		q->nr_requests = q->tag_set->queue_depth;
508 509
		return 0;
	}
510 511

	/*
512 513 514
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
515
	 */
516 517
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
518 519

	queue_for_each_hw_ctx(q, hctx, i) {
520
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
521
		if (ret)
522
			goto err;
523 524
	}

525 526 527
	ret = e->ops.mq.init_sched(q, e);
	if (ret)
		goto err;
528

529 530 531 532
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (e->ops.mq.init_hctx) {
533 534 535 536 537 538 539 540
			ret = e->ops.mq.init_hctx(hctx, i);
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
541
		blk_mq_debugfs_register_sched_hctx(q, hctx);
542 543
	}

544 545
	return 0;

546
err:
547 548
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
549
	return ret;
550
}
551

552 553
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
554 555 556
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

557 558 559 560 561
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
			e->type->ops.mq.exit_hctx(hctx, i);
			hctx->sched_data = NULL;
562 563
		}
	}
564
	blk_mq_debugfs_unregister_sched(q);
565 566 567 568 569
	if (e->type->ops.mq.exit_sched)
		e->type->ops.mq.exit_sched(e);
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}