blk-mq-sched.c 16.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>
10
#include <linux/list_sort.h>
11 12 13 14 15

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
16
#include "blk-mq-debugfs.h"
17 18 19 20
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

D
Damien Le Moal 已提交
21
void blk_mq_sched_assign_ioc(struct request *rq)
22
{
23
	struct request_queue *q = rq->q;
24
	struct io_context *ioc;
25 26
	struct io_cq *icq;

27 28 29 30 31 32 33
	/*
	 * May not have an IO context if it's a passthrough request
	 */
	ioc = current->io_context;
	if (!ioc)
		return;

34
	spin_lock_irq(&q->queue_lock);
35
	icq = ioc_lookup_icq(ioc, q);
36
	spin_unlock_irq(&q->queue_lock);
37 38 39 40 41 42

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
43
	get_io_context(icq->ioc);
44
	rq->elv.icq = icq;
45 46
}

47 48 49 50
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
51
void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
52 53 54 55
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

56
	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
57
}
58
EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
59

60
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
61 62
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
63 64
		return;
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
65

66 67 68 69 70 71 72 73 74
	/*
	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
	 * meantime new request added to hctx->dispatch is missed to check in
	 * blk_mq_run_hw_queue().
	 */
	smp_mb();

75
	blk_mq_run_hw_queue(hctx, true);
76 77
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
static int sched_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return rqa->mq_hctx > rqb->mq_hctx;
}

static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
{
	struct blk_mq_hw_ctx *hctx =
		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
	struct request *rq;
	LIST_HEAD(hctx_list);
	unsigned int count = 0;

	list_for_each_entry(rq, rq_list, queuelist) {
		if (rq->mq_hctx != hctx) {
			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
			goto dispatch;
		}
		count++;
	}
	list_splice_tail_init(rq_list, &hctx_list);

dispatch:
104
	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
105 106
}

107 108
#define BLK_MQ_BUDGET_DELAY	3		/* ms units */

109 110 111 112
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
113 114 115
 *
 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
 * be run again.  This is necessary to avoid starving flushes.
116
 */
117
static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
118 119 120
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
121 122 123
	bool multi_hctxs = false, run_queue = false;
	bool dispatched = false, busy = false;
	unsigned int max_dispatch;
124
	LIST_HEAD(rq_list);
125 126 127 128 129 130
	int count = 0;

	if (hctx->dispatch_busy)
		max_dispatch = 1;
	else
		max_dispatch = hctx->queue->nr_requests;
131 132

	do {
133 134
		struct request *rq;

135
		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
136
			break;
137

138
		if (!list_empty_careful(&hctx->dispatch)) {
139
			busy = true;
140 141 142
			break;
		}

143
		if (!blk_mq_get_dispatch_budget(q))
144
			break;
145

146
		rq = e->type->ops.dispatch_request(hctx);
147
		if (!rq) {
148
			blk_mq_put_dispatch_budget(q);
149 150 151 152 153 154 155
			/*
			 * We're releasing without dispatching. Holding the
			 * budget could have blocked any "hctx"s with the
			 * same queue and if we didn't dispatch then there's
			 * no guarantee anyone will kick the queue.  Kick it
			 * ourselves.
			 */
156
			run_queue = true;
157 158 159 160 161 162 163 164
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
		list_add_tail(&rq->queuelist, &rq_list);
		if (rq->mq_hctx != hctx)
			multi_hctxs = true;
	} while (++count < max_dispatch);

	if (!count) {
		if (run_queue)
			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
	} else if (multi_hctxs) {
		/*
		 * Requests from different hctx may be dequeued from some
		 * schedulers, such as bfq and deadline.
		 *
		 * Sort the requests in the list according to their hctx,
		 * dispatch batching requests from same hctx at a time.
		 */
		list_sort(NULL, &rq_list, sched_rq_cmp);
		do {
			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
		} while (!list_empty(&rq_list));
	} else {
		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
	}

	if (busy)
		return -EAGAIN;
	return !!dispatched;
}

static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
{
	int ret;

	do {
		ret = __blk_mq_do_dispatch_sched(hctx);
	} while (ret == 1);
201 202

	return ret;
203 204
}

205 206 207
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
208
	unsigned short idx = ctx->index_hw[hctx->type];
209 210 211 212 213 214 215

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

216 217 218 219
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
220 221
 *
 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
222
 * be run again.  This is necessary to avoid starving flushes.
223
 */
224
static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
225 226 227 228
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
229
	int ret = 0;
230
	struct request *rq;
231 232

	do {
233 234 235 236 237
		if (!list_empty_careful(&hctx->dispatch)) {
			ret = -EAGAIN;
			break;
		}

238 239 240
		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

241
		if (!blk_mq_get_dispatch_budget(q))
242
			break;
243 244 245

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
246
			blk_mq_put_dispatch_budget(q);
247 248 249 250 251 252 253 254
			/*
			 * We're releasing without dispatching. Holding the
			 * budget could have blocked any "hctx"s with the
			 * same queue and if we didn't dispatch then there's
			 * no guarantee anyone will kick the queue.  Kick it
			 * ourselves.
			 */
			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
255 256 257 258 259 260 261 262 263 264 265 266 267
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

268
	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
269 270

	WRITE_ONCE(hctx->dispatch_from, ctx);
271
	return ret;
272 273
}

274
static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
275
{
276 277
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
278
	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
279
	int ret = 0;
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	LIST_HEAD(rq_list);

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
301 302 303 304
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
305
	 */
306
	if (!list_empty(&rq_list)) {
307
		blk_mq_sched_mark_restart_hctx(hctx);
308
		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
309
			if (has_sched_dispatch)
310
				ret = blk_mq_do_dispatch_sched(hctx);
311
			else
312
				ret = blk_mq_do_dispatch_ctx(hctx);
313
		}
314
	} else if (has_sched_dispatch) {
315
		ret = blk_mq_do_dispatch_sched(hctx);
316 317
	} else if (hctx->dispatch_busy) {
		/* dequeue request one by one from sw queue if queue is busy */
318
		ret = blk_mq_do_dispatch_ctx(hctx);
319
	} else {
320
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
321
		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
322
	}
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	return ret;
}

void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;

	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
		return;

	hctx->run++;

	/*
	 * A return of -EAGAIN is an indication that hctx->dispatch is not
	 * empty and we must run again in order to avoid starving flushes.
	 */
	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
			blk_mq_run_hw_queue(hctx, true);
	}
345 346
}

347 348
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
		unsigned int nr_segs)
349 350
{
	struct elevator_queue *e = q->elevator;
351
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
352
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
353
	bool ret = false;
M
Ming Lei 已提交
354
	enum hctx_type type;
355

356
	if (e && e->type->ops.bio_merge)
357
		return e->type->ops.bio_merge(hctx, bio, nr_segs);
358

M
Ming Lei 已提交
359
	type = hctx->type;
360 361 362 363 364 365 366 367 368 369 370 371 372 373
	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
	    list_empty_careful(&ctx->rq_lists[type]))
		return false;

	/* default per sw-queue merge */
	spin_lock(&ctx->lock);
	/*
	 * Reverse check our software queue for entries that we could
	 * potentially merge with. Currently includes a hand-wavy stop
	 * count of 8, to not spend too much time checking for merges.
	 */
	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
		ctx->rq_merged++;
		ret = true;
374 375
	}

376 377
	spin_unlock(&ctx->lock);

378
	return ret;
379 380 381 382 383 384 385 386
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

387
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
388
				       bool has_sched,
389
				       struct request *rq)
390
{
391 392 393 394 395 396 397 398 399 400 401 402
	/*
	 * dispatch flush and passthrough rq directly
	 *
	 * passthrough request has to be added to hctx->dispatch directly.
	 * For some reason, device may be in one situation which can't
	 * handle FS request, so STS_RESOURCE is always returned and the
	 * FS request will be added to hctx->dispatch. However passthrough
	 * request may be required at that time for fixing the problem. If
	 * passthrough request is added to scheduler queue, there isn't any
	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
	 */
	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
403 404
		return true;

405
	if (has_sched)
406 407
		rq->rq_flags |= RQF_SORTED;

408
	return false;
409 410
}

411
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
412
				 bool run_queue, bool async)
413 414 415 416
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
417
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
418

419
	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
420

421
	if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
		/*
		 * Firstly normal IO request is inserted to scheduler queue or
		 * sw queue, meantime we add flush request to dispatch queue(
		 * hctx->dispatch) directly and there is at most one in-flight
		 * flush request for each hw queue, so it doesn't matter to add
		 * flush request to tail or front of the dispatch queue.
		 *
		 * Secondly in case of NCQ, flush request belongs to non-NCQ
		 * command, and queueing it will fail when there is any
		 * in-flight normal IO request(NCQ command). When adding flush
		 * rq to the front of hctx->dispatch, it is easier to introduce
		 * extra time to flush rq's latency because of S_SCHED_RESTART
		 * compared with adding to the tail of dispatch queue, then
		 * chance of flush merge is increased, and less flush requests
		 * will be issued to controller. It is observed that ~10% time
		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
		 * drive when adding flush rq to the front of hctx->dispatch.
		 *
		 * Simply queue flush rq to the front of hctx->dispatch so that
		 * intensive flush workloads can benefit in case of NCQ HW.
		 */
		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
444
		blk_mq_request_bypass_insert(rq, at_head, false);
445
		goto run;
446
	}
447

448
	if (e && e->type->ops.insert_requests) {
449 450 451
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
452
		e->type->ops.insert_requests(hctx, &list, at_head);
453 454 455 456 457 458
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

459
run:
460 461 462 463
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

464
void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
465 466 467
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
468
	struct elevator_queue *e;
469 470 471 472 473 474 475 476
	struct request_queue *q = hctx->queue;

	/*
	 * blk_mq_sched_insert_requests() is called from flush plug
	 * context only, and hold one usage counter to prevent queue
	 * from being released.
	 */
	percpu_ref_get(&q->q_usage_counter);
477

478
	e = hctx->queue->elevator;
479 480
	if (e && e->type->ops.insert_requests)
		e->type->ops.insert_requests(hctx, list, false);
481 482 483 484 485 486
	else {
		/*
		 * try to issue requests directly if the hw queue isn't
		 * busy in case of 'none' scheduler, and this way may save
		 * us one extra enqueue & dequeue to sw queue.
		 */
487
		if (!hctx->dispatch_busy && !e && !run_queue_async) {
488
			blk_mq_try_issue_list_directly(hctx, list);
489
			if (list_empty(list))
490
				goto out;
491 492
		}
		blk_mq_insert_requests(hctx, ctx, list);
493
	}
494 495

	blk_mq_run_hw_queue(hctx, run_queue_async);
496 497
 out:
	percpu_ref_put(&q->q_usage_counter);
498 499
}

500 501 502 503
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
504
	unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
505

506 507
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
508
		blk_mq_free_rq_map(hctx->sched_tags, flags);
509 510 511 512
		hctx->sched_tags = NULL;
	}
}

513 514 515 516 517
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
518 519
	/* Clear HCTX_SHARED so tags are init'ed */
	unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
520 521 522
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
523
					       set->reserved_tags, flags);
524 525 526 527 528 529 530 531 532 533
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

534
/* called in queue's release handler, tagset has gone away */
535
static void blk_mq_sched_tags_teardown(struct request_queue *q)
536 537
{
	struct blk_mq_hw_ctx *hctx;
538 539
	int i;

540
	queue_for_each_hw_ctx(q, hctx, i) {
541 542
		/* Clear HCTX_SHARED so tags are freed */
		unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
543

544
		if (hctx->sched_tags) {
545
			blk_mq_free_rq_map(hctx->sched_tags, flags);
546 547 548
			hctx->sched_tags = NULL;
		}
	}
549 550 551 552 553
}

int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
554
	struct elevator_queue *eq;
555 556 557 558 559
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
560
		q->nr_requests = q->tag_set->queue_depth;
561 562
		return 0;
	}
563 564

	/*
565 566 567
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
568
	 */
569 570
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
571 572

	queue_for_each_hw_ctx(q, hctx, i) {
573
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
574
		if (ret)
575
			goto err;
576 577
	}

578
	ret = e->ops.init_sched(q, e);
579 580
	if (ret)
		goto err;
581

582 583 584
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
585 586
		if (e->ops.init_hctx) {
			ret = e->ops.init_hctx(hctx, i);
587 588
			if (ret) {
				eq = q->elevator;
589
				blk_mq_sched_free_requests(q);
590 591 592 593 594
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
595
		blk_mq_debugfs_register_sched_hctx(q, hctx);
596 597
	}

598 599
	return 0;

600
err:
601
	blk_mq_sched_free_requests(q);
602 603
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
604
	return ret;
605
}
606

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/*
 * called in either blk_queue_cleanup or elevator_switch, tagset
 * is required for freeing requests
 */
void blk_mq_sched_free_requests(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->sched_tags)
			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
	}
}

622 623
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
624 625 626
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

627 628
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
629 630
		if (e->type->ops.exit_hctx && hctx->sched_data) {
			e->type->ops.exit_hctx(hctx, i);
631
			hctx->sched_data = NULL;
632 633
		}
	}
634
	blk_mq_debugfs_unregister_sched(q);
635 636
	if (e->type->ops.exit_sched)
		e->type->ops.exit_sched(e);
637 638 639
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}