blk-mq-sched.c 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
14
#include "blk-mq-debugfs.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

34
void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35
{
36 37
	struct request_queue *q = rq->q;
	struct io_context *ioc = rq_ioc(bio);
38 39 40 41 42 43 44 45 46 47 48
	struct io_cq *icq;

	spin_lock_irq(q->queue_lock);
	icq = ioc_lookup_icq(ioc, q);
	spin_unlock_irq(q->queue_lock);

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
49
	get_io_context(icq->ioc);
50
	rq->elv.icq = icq;
51 52
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
		struct request_queue *q = hctx->queue;

		if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			atomic_inc(&q->shared_hctx_restart);
	} else
		set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
}

71
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
72 73
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
74
		return;
75

76
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
77 78 79

	if (blk_mq_hctx_has_pending(hctx)) {
		blk_mq_run_hw_queue(hctx, true);
80
		return;
81 82 83
	}
}

84 85
/* return true if hctx need to run again */
static bool blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
86 87 88 89 90 91
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
	LIST_HEAD(rq_list);

	do {
92 93
		struct request *rq;
		blk_status_t ret;
94

95 96
		if (e->type->ops.mq.has_work &&
				!e->type->ops.mq.has_work(hctx))
97
			break;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

		ret = blk_mq_get_dispatch_budget(hctx);
		if (ret == BLK_STS_RESOURCE)
			return true;

		rq = e->type->ops.mq.dispatch_request(hctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		} else if (ret != BLK_STS_OK) {
			blk_mq_end_request(rq, ret);
			continue;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
117
		list_add(&rq->queuelist, &rq_list);
118 119 120
	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	return false;
121 122
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
	unsigned idx = ctx->index_hw;

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

/* return true if hctx need to run again */
static bool blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);

	do {
		struct request *rq;
		blk_status_t ret;

		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

		ret = blk_mq_get_dispatch_budget(hctx);
		if (ret == BLK_STS_RESOURCE)
			return true;

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		} else if (ret != BLK_STS_OK) {
			blk_mq_end_request(rq, ret);
			continue;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	WRITE_ONCE(hctx->dispatch_from, ctx);

	return false;
}

178 179
/* return true if hw queue need to be run again */
bool blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
180
{
181 182
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
183
	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
184
	LIST_HEAD(rq_list);
185
	bool run_queue = false;
186

187 188
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
189
		return false;
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
212 213 214 215
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
216
	 */
217
	if (!list_empty(&rq_list)) {
218
		blk_mq_sched_mark_restart_hctx(hctx);
219 220 221 222 223 224
		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
			if (has_sched_dispatch)
				run_queue = blk_mq_do_dispatch_sched(hctx);
			else
				run_queue = blk_mq_do_dispatch_ctx(hctx);
		}
225
	} else if (has_sched_dispatch) {
226
		run_queue = blk_mq_do_dispatch_sched(hctx);
227 228 229 230 231 232 233 234 235 236
	} else if (q->mq_ops->get_budget) {
		/*
		 * If we need to get budget before queuing request, we
		 * dequeue request one by one from sw queue for avoiding
		 * to mess up I/O merge when dispatch runs out of resource.
		 *
		 * TODO: get more budgets, and dequeue more requests in
		 * one time.
		 */
		run_queue = blk_mq_do_dispatch_ctx(hctx);
237
	} else {
238
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
239
		blk_mq_dispatch_rq_list(q, &rq_list, false);
240
	}
241 242 243 244 245 246 247 248

	if (run_queue && !blk_mq_sched_needs_restart(hctx) &&
			!test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state)) {
		blk_mq_sched_mark_restart_hctx(hctx);
		return true;
	}

	return false;
249 250
}

251 252
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
253 254 255
{
	struct request *rq;

256 257
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
258 259
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
260 261 262 263 264 265 266
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
267 268
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
269 270 271 272 273 274 275 276
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
	default:
		return false;
277 278 279 280
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

281 282 283 284 285 286 287 288 289 290 291
/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

292 293
	lockdep_assert_held(&ctx->lock);

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		if (merged)
			ctx->rq_merged++;
		return merged;
	}

	return false;
}

327 328 329
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
330 331 332
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	bool ret = false;
333

334
	if (e && e->type->ops.mq.bio_merge) {
335 336 337 338
		blk_mq_put_ctx(ctx);
		return e->type->ops.mq.bio_merge(hctx, bio);
	}

339 340 341 342 343 344 345 346 347
	if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
		ret = blk_mq_attempt_merge(q, ctx, bio);
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
348 349 350 351 352 353 354 355 356 357 358 359 360 361
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

362 363
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
{
	if (rq->tag == -1) {
		rq->rq_flags |= RQF_SORTED;
		return false;
	}

	/*
	 * If we already have a real request tag, send directly to
	 * the dispatch list.
	 */
	spin_lock(&hctx->lock);
	list_add(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);
	return true;
}

380 381 382 383 384 385 386 387 388 389 390 391
/*
 * Add flush/fua to the queue. If we fail getting a driver tag, then
 * punt to the requeue list. Requeue will re-invoke us from a context
 * that's safe to block from.
 */
static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
				      struct request *rq, bool can_block)
{
	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(hctx, true);
	} else
392
		blk_mq_add_to_requeue_list(rq, false, true);
393 394 395 396 397 398 399 400 401 402
}

void blk_mq_sched_insert_request(struct request *rq, bool at_head,
				 bool run_queue, bool async, bool can_block)
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

403
	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
404 405 406 407
		blk_mq_sched_insert_flush(hctx, rq, can_block);
		return;
	}

408 409 410
	if (e && blk_mq_sched_bypass_insert(hctx, rq))
		goto run;

411 412 413 414 415 416 417 418 419 420 421
	if (e && e->type->ops.mq.insert_requests) {
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
		e->type->ops.mq.insert_requests(hctx, &list, at_head);
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

422
run:
423 424 425 426 427 428 429 430 431 432 433
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

void blk_mq_sched_insert_requests(struct request_queue *q,
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	struct elevator_queue *e = hctx->queue->elevator;

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	if (e) {
		struct request *rq, *next;

		/*
		 * We bypass requests that already have a driver tag assigned,
		 * which should only be flushes. Flushes are only ever inserted
		 * as single requests, so we shouldn't ever hit the
		 * WARN_ON_ONCE() below (but let's handle it just in case).
		 */
		list_for_each_entry_safe(rq, next, list, queuelist) {
			if (WARN_ON_ONCE(rq->tag != -1)) {
				list_del_init(&rq->queuelist);
				blk_mq_sched_bypass_insert(hctx, rq);
			}
		}
	}

451 452 453 454 455 456 457 458
	if (e && e->type->ops.mq.insert_requests)
		e->type->ops.mq.insert_requests(hctx, list, false);
	else
		blk_mq_insert_requests(hctx, ctx, list);

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

459 460 461 462 463 464 465 466 467 468 469
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

489
static void blk_mq_sched_tags_teardown(struct request_queue *q)
490 491 492
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
493 494 495 496 497 498
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

499 500 501 502
int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			   unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;
503
	int ret;
504 505 506 507

	if (!e)
		return 0;

508 509 510 511 512 513 514 515 516 517 518 519
	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
	if (ret)
		return ret;

	if (e->type->ops.mq.init_hctx) {
		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
		if (ret) {
			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
			return ret;
		}
	}

520 521
	blk_mq_debugfs_register_sched_hctx(q, hctx);

522
	return 0;
523 524 525 526 527 528 529 530 531 532
}

void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			    unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;

	if (!e)
		return;

533 534
	blk_mq_debugfs_unregister_sched_hctx(hctx);

535 536 537 538 539
	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
		hctx->sched_data = NULL;
	}

540 541 542
	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
}

543 544 545
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
546
	struct elevator_queue *eq;
547 548 549 550 551 552 553
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
		return 0;
	}
554 555

	/*
556 557 558
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
559
	 */
560 561
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
562 563

	queue_for_each_hw_ctx(q, hctx, i) {
564
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
565
		if (ret)
566
			goto err;
567 568
	}

569 570 571
	ret = e->ops.mq.init_sched(q, e);
	if (ret)
		goto err;
572

573 574 575 576
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (e->ops.mq.init_hctx) {
577 578 579 580 581 582 583 584
			ret = e->ops.mq.init_hctx(hctx, i);
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
585
		blk_mq_debugfs_register_sched_hctx(q, hctx);
586 587
	}

588 589
	return 0;

590
err:
591 592
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
593
	return ret;
594
}
595

596 597
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
598 599 600
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

601 602 603 604 605
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
			e->type->ops.mq.exit_hctx(hctx, i);
			hctx->sched_data = NULL;
606 607
		}
	}
608
	blk_mq_debugfs_unregister_sched(q);
609 610 611 612 613 614
	if (e->type->ops.mq.exit_sched)
		e->type->ops.mq.exit_sched(e);
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}

615 616 617 618 619 620 621 622 623 624
int blk_mq_sched_init(struct request_queue *q)
{
	int ret;

	mutex_lock(&q->sysfs_lock);
	ret = elevator_init(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return ret;
}