intel-iommu.c 144.4 KB
Newer Older
1
/*
2
 * Copyright © 2006-2014 Intel Corporation.
3 4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
13 14 15 16 17
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
J
Joerg Roedel 已提交
18
 *          Joerg Roedel <jroedel@suse.de>
19 20
 */

J
Joerg Roedel 已提交
21
#define pr_fmt(fmt)     "DMAR: " fmt
22
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
23

24 25
#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
26
#include <linux/debugfs.h>
27
#include <linux/export.h>
28 29 30 31 32 33 34 35
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
36
#include <linux/memory.h>
37
#include <linux/cpu.h>
M
mark gross 已提交
38
#include <linux/timer.h>
39
#include <linux/io.h>
K
Kay, Allen M 已提交
40
#include <linux/iova.h>
41
#include <linux/iommu.h>
K
Kay, Allen M 已提交
42
#include <linux/intel-iommu.h>
43
#include <linux/syscore_ops.h>
44
#include <linux/tboot.h>
45
#include <linux/dmi.h>
46
#include <linux/pci-ats.h>
T
Tejun Heo 已提交
47
#include <linux/memblock.h>
A
Akinobu Mita 已提交
48
#include <linux/dma-contiguous.h>
49
#include <linux/dma-direct.h>
50
#include <linux/crash_dump.h>
51
#include <linux/numa.h>
52
#include <asm/irq_remapping.h>
53
#include <asm/cacheflush.h>
54
#include <asm/iommu.h>
55

56
#include "irq_remapping.h"
L
Lu Baolu 已提交
57
#include "intel-pasid.h"
58

F
Fenghua Yu 已提交
59 60 61
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

62
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
63
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
64
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
65
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
66 67 68 69 70

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

71
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
72

F
Fenghua Yu 已提交
73
#define MAX_AGAW_WIDTH 64
74
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
F
Fenghua Yu 已提交
75

76 77 78 79 80 81 82 83
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
84

85 86 87
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

88
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
M
mark gross 已提交
89

90 91 92 93
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

112 113 114 115 116 117 118
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
119
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
120 121 122 123
}

static inline int width_to_agaw(int width)
{
124
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

static inline int pfn_level_offset(unsigned long pfn, int level)
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

static inline unsigned long level_mask(int level)
{
	return -1UL << level_to_offset_bits(level);
}

static inline unsigned long level_size(int level)
{
	return 1UL << level_to_offset_bits(level);
}

static inline unsigned long align_to_level(unsigned long pfn, int level)
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
151

152 153
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
154
	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
155 156
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

W
Weidong Han 已提交
177 178 179
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

180
static void __init check_tylersburg_isoch(void);
181 182
static int rwbf_quirk;

183 184 185 186 187
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
188
int intel_iommu_tboot_noforce;
189
static int no_platform_optin;
190

191 192
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
213

214 215
	return re->hi & VTD_PAGE_MASK;
}
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
238 239 240
{
	return (context->lo & 1);
}
241

242
bool context_present(struct context_entry *context)
243 244 245 246 247 248
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
269
	context->lo &= ~VTD_PAGE_MASK;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

285 286 287 288 289
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

290 291 292 293 294
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
295

296 297 298 299 300 301
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
302 303
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
304 305

/* si_domain contains mulitple devices */
306
#define DOMAIN_FLAG_STATIC_IDENTITY		BIT(0)
307

308 309 310 311 312 313 314 315
/*
 * This is a DMA domain allocated through the iommu domain allocation
 * interface. But one or more devices belonging to this domain have
 * been chosen to use a private domain. We should avoid to use the
 * map/unmap/iova_to_phys APIs on it.
 */
#define DOMAIN_FLAG_LOSE_CHILDREN		BIT(1)

316 317 318 319
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

320 321 322 323 324
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
325
	struct dmar_dev_scope *devices;	/* target devices */
326
	int	devices_cnt;		/* target device count */
327
	struct iommu_resv_region *resv; /* reserved region handle */
328 329 330 331 332
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
333
	struct dmar_dev_scope *devices;	/* target devices */
334 335 336 337 338 339 340 341 342 343
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

M
mark gross 已提交
344 345 346
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

347
static void domain_exit(struct dmar_domain *domain);
348
static void domain_remove_dev_info(struct dmar_domain *domain);
349
static void dmar_remove_one_dev_info(struct device *dev);
350
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
351 352
static void domain_context_clear(struct intel_iommu *iommu,
				 struct device *dev);
353 354
static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu);
355
static bool device_is_rmrr_locked(struct device *dev);
356 357
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev);
358

359
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
360 361 362
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
363
#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
364

365
int intel_iommu_sm;
366 367 368
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

369
static int dmar_map_gfx = 1;
370
static int dmar_forcedac;
M
mark gross 已提交
371
static int intel_iommu_strict;
372
static int intel_iommu_superpage = 1;
373
static int iommu_identity_mapping;
374

375 376 377
#define IDENTMAP_ALL		1
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
378

379 380 381
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

382
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
383
#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
384 385 386
static DEFINE_SPINLOCK(device_domain_lock);
static LIST_HEAD(device_domain_list);

387 388
/*
 * Iterate over elements in device_domain_list and call the specified
389
 * callback @fn against each element.
390 391 392 393 394
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
395
	unsigned long flags;
396 397
	struct device_domain_info *info;

398
	spin_lock_irqsave(&device_domain_lock, flags);
399 400
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
401 402
		if (ret) {
			spin_unlock_irqrestore(&device_domain_lock, flags);
403
			return ret;
404
		}
405
	}
406
	spin_unlock_irqrestore(&device_domain_lock, flags);
407 408 409 410

	return 0;
}

411
const struct iommu_ops intel_iommu_ops;
412

413 414 415 416 417
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

418 419 420 421 422
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

423 424 425 426 427 428 429 430 431
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

432 433 434 435 436 437
/* Convert generic 'struct iommu_domain to private struct dmar_domain */
static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct dmar_domain, domain);
}

438 439 440 441 442
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
443 444
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
J
Joerg Roedel 已提交
445
			pr_info("IOMMU enabled\n");
446
		} else if (!strncmp(str, "off", 3)) {
447
			dmar_disabled = 1;
448
			no_platform_optin = 1;
J
Joerg Roedel 已提交
449
			pr_info("IOMMU disabled\n");
450 451
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
J
Joerg Roedel 已提交
452
			pr_info("Disable GFX device mapping\n");
453
		} else if (!strncmp(str, "forcedac", 8)) {
J
Joerg Roedel 已提交
454
			pr_info("Forcing DAC for PCI devices\n");
455
			dmar_forcedac = 1;
M
mark gross 已提交
456
		} else if (!strncmp(str, "strict", 6)) {
J
Joerg Roedel 已提交
457
			pr_info("Disable batched IOTLB flush\n");
M
mark gross 已提交
458
			intel_iommu_strict = 1;
459
		} else if (!strncmp(str, "sp_off", 6)) {
J
Joerg Roedel 已提交
460
			pr_info("Disable supported super page\n");
461
			intel_iommu_superpage = 0;
462 463 464
		} else if (!strncmp(str, "sm_on", 5)) {
			pr_info("Intel-IOMMU: scalable mode supported\n");
			intel_iommu_sm = 1;
465 466 467 468
		} else if (!strncmp(str, "tboot_noforce", 13)) {
			printk(KERN_INFO
				"Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
			intel_iommu_tboot_noforce = 1;
469 470 471 472 473 474 475 476 477 478 479 480 481
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

482 483
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
484 485 486 487 488 489 490 491
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
492 493 494 495 496
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
497 498 499 500 501 502 503 504 505 506 507 508 509
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
510 511
}

512
void *alloc_pgtable_page(int node)
513
{
514 515
	struct page *page;
	void *vaddr = NULL;
516

517 518 519
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
520
	return vaddr;
521 522
}

523
void free_pgtable_page(void *vaddr)
524 525 526 527 528 529
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
530
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
531 532
}

K
Kay, Allen M 已提交
533
static void free_domain_mem(void *vaddr)
534 535 536 537 538 539
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
540
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
541 542 543 544 545 546 547
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

548 549 550 551 552
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

553 554 555 556 557 558 559 560
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

F
Fenghua Yu 已提交
561
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
W
Weidong Han 已提交
562 563 564 565 566
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
F
Fenghua Yu 已提交
567
	for (agaw = width_to_agaw(max_gaw);
W
Weidong Han 已提交
568 569 570 571 572 573 574 575
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

F
Fenghua Yu 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

594
/* This functionin only returns single iommu in a domain */
595
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
596 597 598
{
	int iommu_id;

599
	/* si_domain and vm domain should not get here. */
600 601 602
	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
		return NULL;

603 604 605
	for_each_domain_iommu(iommu_id, domain)
		break;

606 607 608 609 610 611
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

W
Weidong Han 已提交
612 613
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
614 615
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
616 617
	bool found = false;
	int i;
618

619
	domain->iommu_coherency = 1;
W
Weidong Han 已提交
620

621
	for_each_domain_iommu(i, domain) {
622
		found = true;
W
Weidong Han 已提交
623 624 625 626 627
		if (!ecap_coherent(g_iommus[i]->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
628 629 630 631 632 633 634 635 636 637 638 639
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!ecap_coherent(iommu->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
W
Weidong Han 已提交
640 641
}

642
static int domain_update_iommu_snooping(struct intel_iommu *skip)
643
{
644 645 646
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
647

648 649 650 651 652 653 654
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
655 656
		}
	}
657 658 659
	rcu_read_unlock();

	return ret;
660 661
}

662
static int domain_update_iommu_superpage(struct intel_iommu *skip)
663
{
664
	struct dmar_drhd_unit *drhd;
665
	struct intel_iommu *iommu;
666
	int mask = 0xf;
667 668

	if (!intel_iommu_superpage) {
669
		return 0;
670 671
	}

672
	/* set iommu_superpage to the smallest common denominator */
673
	rcu_read_lock();
674
	for_each_active_iommu(iommu, drhd) {
675 676 677 678
		if (iommu != skip) {
			mask &= cap_super_page_val(iommu->cap);
			if (!mask)
				break;
679 680
		}
	}
681 682
	rcu_read_unlock();

683
	return fls(mask);
684 685
}

686 687 688 689
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
690 691
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
	domain->iommu_superpage = domain_update_iommu_superpage(NULL);
692 693
}

694 695
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
					 u8 devfn, int alloc)
696 697 698 699 700
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

701
	entry = &root->lo;
702
	if (sm_supported(iommu)) {
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

728 729 730 731 732
static int iommu_dummy(struct device *dev)
{
	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}

733
static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
734 735
{
	struct dmar_drhd_unit *drhd = NULL;
736
	struct intel_iommu *iommu;
737 738
	struct device *tmp;
	struct pci_dev *ptmp, *pdev = NULL;
739
	u16 segment = 0;
740 741
	int i;

742 743 744
	if (iommu_dummy(dev))
		return NULL;

745
	if (dev_is_pci(dev)) {
746 747
		struct pci_dev *pf_pdev;

748
		pdev = to_pci_dev(dev);
749 750 751 752 753 754 755

#ifdef CONFIG_X86
		/* VMD child devices currently cannot be handled individually */
		if (is_vmd(pdev->bus))
			return NULL;
#endif

756 757 758 759
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
760
		segment = pci_domain_nr(pdev->bus);
761
	} else if (has_acpi_companion(dev))
762 763
		dev = &ACPI_COMPANION(dev)->dev;

764
	rcu_read_lock();
765
	for_each_active_iommu(iommu, drhd) {
766
		if (pdev && segment != drhd->segment)
767
			continue;
768

769
		for_each_active_dev_scope(drhd->devices,
770 771
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
772 773 774 775
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
776
				if (pdev && pdev->is_virtfn)
777 778
					goto got_pdev;

779 780
				*bus = drhd->devices[i].bus;
				*devfn = drhd->devices[i].devfn;
781
				goto out;
782 783 784 785 786 787 788 789 790 791
			}

			if (!pdev || !dev_is_pci(tmp))
				continue;

			ptmp = to_pci_dev(tmp);
			if (ptmp->subordinate &&
			    ptmp->subordinate->number <= pdev->bus->number &&
			    ptmp->subordinate->busn_res.end >= pdev->bus->number)
				goto got_pdev;
792
		}
793

794 795 796 797
		if (pdev && drhd->include_all) {
		got_pdev:
			*bus = pdev->bus->number;
			*devfn = pdev->devfn;
798
			goto out;
799
		}
800
	}
801
	iommu = NULL;
802
 out:
803
	rcu_read_unlock();
804

805
	return iommu;
806 807
}

W
Weidong Han 已提交
808 809 810 811 812 813 814
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

815 816 817
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
818
	int ret = 0;
819 820 821
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
822 823 824
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
840
		context = iommu_context_addr(iommu, i, 0, 0);
841 842
		if (context)
			free_pgtable_page(context);
843

844
		if (!sm_supported(iommu))
845 846 847 848 849 850
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

851 852 853 854 855 856 857
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

858
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
859
				      unsigned long pfn, int *target_level)
860
{
861
	struct dma_pte *parent, *pte;
862
	int level = agaw_to_level(domain->agaw);
863
	int offset;
864 865

	BUG_ON(!domain->pgd);
866

867
	if (!domain_pfn_supported(domain, pfn))
868 869 870
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

871 872
	parent = domain->pgd;

873
	while (1) {
874 875
		void *tmp_page;

876
		offset = pfn_level_offset(pfn, level);
877
		pte = &parent[offset];
878
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
879
			break;
880
		if (level == *target_level)
881 882
			break;

883
		if (!dma_pte_present(pte)) {
884 885
			uint64_t pteval;

886
			tmp_page = alloc_pgtable_page(domain->nid);
887

888
			if (!tmp_page)
889
				return NULL;
890

891
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
892
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
893
			if (cmpxchg64(&pte->val, 0ULL, pteval))
894 895
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
896
			else
897
				domain_flush_cache(domain, pte, sizeof(*pte));
898
		}
899 900 901
		if (level == 1)
			break;

902
		parent = phys_to_virt(dma_pte_addr(pte));
903 904 905
		level--;
	}

906 907 908
	if (!*target_level)
		*target_level = level;

909 910 911
	return pte;
}

912

913
/* return address's pte at specific level */
914 915
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
916
					 int level, int *large_page)
917
{
918
	struct dma_pte *parent, *pte;
919 920 921 922 923
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
924
		offset = pfn_level_offset(pfn, total);
925 926 927 928
		pte = &parent[offset];
		if (level == total)
			return pte;

929 930
		if (!dma_pte_present(pte)) {
			*large_page = total;
931
			break;
932 933
		}

934
		if (dma_pte_superpage(pte)) {
935 936 937 938
			*large_page = total;
			return pte;
		}

939
		parent = phys_to_virt(dma_pte_addr(pte));
940 941 942 943 944 945
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
946
static void dma_pte_clear_range(struct dmar_domain *domain,
947 948
				unsigned long start_pfn,
				unsigned long last_pfn)
949
{
950
	unsigned int large_page;
951
	struct dma_pte *first_pte, *pte;
952

953 954
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
955
	BUG_ON(start_pfn > last_pfn);
956

957
	/* we don't need lock here; nobody else touches the iova range */
958
	do {
959 960
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
961
		if (!pte) {
962
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
963 964
			continue;
		}
965
		do {
966
			dma_clear_pte(pte);
967
			start_pfn += lvl_to_nr_pages(large_page);
968
			pte++;
969 970
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

971 972
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
973 974

	} while (start_pfn && start_pfn <= last_pfn);
975 976
}

977
static void dma_pte_free_level(struct dmar_domain *domain, int level,
978 979 980
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
981 982 983 984 985 986 987 988 989 990 991
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

992
		level_pfn = pfn & level_mask(level);
993 994
		level_pte = phys_to_virt(dma_pte_addr(pte));

995 996 997 998 999
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1000

1001 1002 1003 1004 1005
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1006
		      last_pfn < level_pfn + level_size(level) - 1)) {
1007 1008 1009 1010 1011 1012 1013 1014 1015
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1016 1017 1018 1019
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1020
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1021
				   unsigned long start_pfn,
1022 1023
				   unsigned long last_pfn,
				   int retain_level)
1024
{
1025 1026
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1027
	BUG_ON(start_pfn > last_pfn);
1028

1029 1030
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1031
	/* We don't need lock here; nobody else touches the iova range */
1032
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1033
			   domain->pgd, 0, start_pfn, last_pfn);
1034

1035
	/* free pgd */
1036
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1037 1038 1039 1040 1041
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1061 1062
	pte = page_address(pg);
	do {
1063 1064 1065
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1066 1067
		pte++;
	} while (!first_pte_in_page(pte));
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1124 1125 1126
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1127
{
1128
	struct page *freelist;
1129

1130 1131
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1150
static void dma_free_pagelist(struct page *freelist)
1151 1152 1153 1154 1155 1156 1157 1158 1159
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1160 1161 1162 1163 1164 1165 1166
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1167 1168 1169 1170 1171 1172
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1173
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1174
	if (!root) {
J
Joerg Roedel 已提交
1175
		pr_err("Allocating root entry for %s failed\n",
1176
			iommu->name);
1177
		return -ENOMEM;
1178
	}
1179

F
Fenghua Yu 已提交
1180
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1191
	u64 addr;
1192
	u32 sts;
1193 1194
	unsigned long flag;

1195
	addr = virt_to_phys(iommu->root_entry);
1196 1197
	if (sm_supported(iommu))
		addr |= DMA_RTADDR_SMT;
1198

1199
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1200
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1201

1202
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1203 1204 1205

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1206
		      readl, (sts & DMA_GSTS_RTPS), sts);
1207

1208
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1209 1210
}

1211
void iommu_flush_write_buffer(struct intel_iommu *iommu)
1212 1213 1214 1215
{
	u32 val;
	unsigned long flag;

1216
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1217 1218
		return;

1219
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1220
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1221 1222 1223

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1224
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1225

1226
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1227 1228 1229
}

/* return value determine if we need a write buffer flush */
1230 1231 1232
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1253
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1254 1255 1256 1257 1258 1259
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1260
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1261 1262 1263
}

/* return value determine if we need a write buffer flush */
1264 1265
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1281
		/* IH bit is passed in as part of address */
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1299
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1300 1301 1302 1303 1304 1305 1306 1307 1308
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1309
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1310 1311 1312

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
J
Joerg Roedel 已提交
1313
		pr_err("Flush IOTLB failed\n");
1314
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
J
Joerg Roedel 已提交
1315
		pr_debug("TLB flush request %Lx, actual %Lx\n",
F
Fenghua Yu 已提交
1316 1317
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1318 1319
}

1320 1321 1322
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Y
Yu Zhao 已提交
1323 1324 1325
{
	struct device_domain_info *info;

1326 1327
	assert_spin_locked(&device_domain_lock);

Y
Yu Zhao 已提交
1328 1329 1330 1331
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1332 1333
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1334 1335
			if (info->ats_supported && info->dev)
				return info;
Y
Yu Zhao 已提交
1336 1337 1338
			break;
		}

1339
	return NULL;
Y
Yu Zhao 已提交
1340 1341
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Y
Yu Zhao 已提交
1365
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1366
{
1367 1368
	struct pci_dev *pdev;

1369 1370
	assert_spin_locked(&device_domain_lock);

1371
	if (!info || !dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1372 1373
		return;

1374
	pdev = to_pci_dev(info->dev);
J
Jacob Pan 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
1387
		info->pfsid = pci_dev_id(pf_pdev);
J
Jacob Pan 已提交
1388
	}
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

1399 1400 1401
	if (info->pri_supported &&
	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1402 1403
		info->pri_enabled = 1;
#endif
1404
	if (!pdev->untrusted && info->ats_supported &&
1405
	    pci_ats_page_aligned(pdev) &&
1406
	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1407
		info->ats_enabled = 1;
1408
		domain_update_iotlb(info->domain);
1409 1410
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Y
Yu Zhao 已提交
1411 1412 1413 1414
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1415 1416
	struct pci_dev *pdev;

1417 1418
	assert_spin_locked(&device_domain_lock);

1419
	if (!dev_is_pci(info->dev))
Y
Yu Zhao 已提交
1420 1421
		return;

1422 1423 1424 1425 1426
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1427
		domain_update_iotlb(info->domain);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Y
Yu Zhao 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1448 1449 1450
	if (!domain->has_iotlb_device)
		return;

Y
Yu Zhao 已提交
1451 1452
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1453
		if (!info->ats_enabled)
Y
Yu Zhao 已提交
1454 1455 1456
			continue;

		sid = info->bus << 8 | info->devfn;
1457
		qdep = info->ats_qdep;
J
Jacob Pan 已提交
1458 1459
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Y
Yu Zhao 已提交
1460 1461 1462 1463
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1464 1465 1466 1467
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1468
{
1469
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1470
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1471
	u16 did = domain->iommu_did[iommu->seq_id];
1472 1473 1474

	BUG_ON(pages == 0);

1475 1476
	if (ih)
		ih = 1 << 6;
1477
	/*
1478 1479
	 * Fallback to domain selective flush if no PSI support or the size is
	 * too big.
1480 1481 1482
	 * PSI requires page size to be 2 ^ x, and the base address is naturally
	 * aligned to the size
	 */
1483 1484
	if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
		iommu->flush.flush_iotlb(iommu, did, 0, 0,
1485
						DMA_TLB_DSI_FLUSH);
1486
	else
1487
		iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1488
						DMA_TLB_PSI_FLUSH);
1489 1490

	/*
1491 1492
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1493
	 */
1494
	if (!cap_caching_mode(iommu->cap) || !map)
1495
		iommu_flush_dev_iotlb(domain, addr, mask);
1496 1497
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
	/* It's a non-present to present mapping. Only flush if caching mode */
	if (cap_caching_mode(iommu->cap))
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

M
mark gross 已提交
1529 1530 1531 1532 1533
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1534 1535 1536
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1537
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
M
mark gross 已提交
1538 1539 1540 1541 1542 1543 1544 1545
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1546
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
M
mark gross 已提交
1547 1548
}

1549
static void iommu_enable_translation(struct intel_iommu *iommu)
1550 1551 1552 1553
{
	u32 sts;
	unsigned long flags;

1554
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1555 1556
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1557 1558 1559

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1560
		      readl, (sts & DMA_GSTS_TES), sts);
1561

1562
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1563 1564
}

1565
static void iommu_disable_translation(struct intel_iommu *iommu)
1566 1567 1568 1569
{
	u32 sts;
	unsigned long flag;

1570
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1571 1572 1573 1574 1575
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1576
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1577

1578
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1579 1580
}

1581

1582 1583
static int iommu_init_domains(struct intel_iommu *iommu)
{
1584 1585
	u32 ndomains, nlongs;
	size_t size;
1586 1587

	ndomains = cap_ndoms(iommu->cap);
1588
	pr_debug("%s: Number of Domains supported <%d>\n",
J
Joerg Roedel 已提交
1589
		 iommu->name, ndomains);
1590 1591
	nlongs = BITS_TO_LONGS(ndomains);

1592 1593
	spin_lock_init(&iommu->lock);

1594 1595
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
J
Joerg Roedel 已提交
1596 1597
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1598 1599
		return -ENOMEM;
	}
1600

1601
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1602 1603 1604 1605 1606 1607 1608 1609
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
J
Joerg Roedel 已提交
1610 1611
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1612
		kfree(iommu->domain_ids);
1613
		kfree(iommu->domains);
1614
		iommu->domain_ids = NULL;
1615
		iommu->domains    = NULL;
1616 1617 1618
		return -ENOMEM;
	}

1619 1620


1621
	/*
1622 1623 1624 1625
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1626
	 */
1627 1628
	set_bit(0, iommu->domain_ids);

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	/*
	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
	 * entry for first-level or pass-through translation modes should
	 * be programmed with a domain id different from those used for
	 * second-level or nested translation. We reserve a domain id for
	 * this purpose.
	 */
	if (sm_supported(iommu))
		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);

1639 1640 1641
	return 0;
}

1642
static void disable_dmar_iommu(struct intel_iommu *iommu)
1643
{
1644
	struct device_domain_info *info, *tmp;
1645
	unsigned long flags;
1646

1647 1648
	if (!iommu->domains || !iommu->domain_ids)
		return;
1649

1650
	spin_lock_irqsave(&device_domain_lock, flags);
1651 1652 1653 1654 1655 1656 1657
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

1658
		__dmar_remove_one_dev_info(info);
1659
	}
1660
	spin_unlock_irqrestore(&device_domain_lock, flags);
1661 1662 1663

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1664
}
1665

1666 1667 1668
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1669
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1670 1671 1672 1673
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1674 1675 1676 1677 1678
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1679

W
Weidong Han 已提交
1680 1681
	g_iommus[iommu->seq_id] = NULL;

1682 1683
	/* free context mapping */
	free_context_table(iommu);
1684 1685

#ifdef CONFIG_INTEL_IOMMU_SVM
1686
	if (pasid_supported(iommu)) {
1687 1688 1689
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
	}
1690
#endif
1691 1692
}

1693
static struct dmar_domain *alloc_domain(int flags)
1694 1695 1696 1697 1698 1699 1700
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1701
	memset(domain, 0, sizeof(*domain));
1702
	domain->nid = NUMA_NO_NODE;
1703
	domain->flags = flags;
1704
	domain->has_iotlb_device = false;
1705
	INIT_LIST_HEAD(&domain->devices);
1706 1707 1708 1709

	return domain;
}

1710 1711
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1712 1713
			       struct intel_iommu *iommu)
{
1714
	unsigned long ndomains;
1715
	int num;
1716

1717
	assert_spin_locked(&device_domain_lock);
1718
	assert_spin_locked(&iommu->lock);
1719

1720 1721 1722
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1723
		ndomains = cap_ndoms(iommu->cap);
1724 1725 1726 1727 1728 1729
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1730
			return -ENOSPC;
1731
		}
1732

1733 1734 1735 1736 1737
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1738 1739 1740

		domain_update_iommu_cap(domain);
	}
1741

1742
	return 0;
1743 1744 1745 1746 1747
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1748
	int num, count;
1749

1750
	assert_spin_locked(&device_domain_lock);
1751
	assert_spin_locked(&iommu->lock);
1752

1753 1754 1755
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1756 1757 1758
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1759 1760

		domain_update_iommu_cap(domain);
1761
		domain->iommu_did[iommu->seq_id] = 0;
1762 1763 1764 1765 1766
	}

	return count;
}

1767
static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1768
static struct lock_class_key reserved_rbtree_key;
1769

1770
static int dmar_init_reserved_ranges(void)
1771 1772 1773 1774 1775
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1776
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1777

M
Mark Gross 已提交
1778 1779 1780
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1781 1782 1783
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1784
	if (!iova) {
J
Joerg Roedel 已提交
1785
		pr_err("Reserve IOAPIC range failed\n");
1786 1787
		return -ENODEV;
	}
1788 1789 1790 1791 1792 1793 1794 1795 1796

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1797 1798 1799
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1800
			if (!iova) {
1801
				pci_err(pdev, "Reserve iova for %pR failed\n", r);
1802 1803
				return -ENODEV;
			}
1804 1805
		}
	}
1806
	return 0;
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
}

static void domain_reserve_special_ranges(struct dmar_domain *domain)
{
	copy_reserved_iova(&reserved_iova_list, &domain->iovad);
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

1828 1829
static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
		       int guest_width)
1830 1831 1832
{
	int adjust_width, agaw;
	unsigned long sagaw;
1833
	int err;
1834

1835
	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1836 1837 1838 1839 1840 1841

	err = init_iova_flush_queue(&domain->iovad,
				    iommu_flush_iova, iova_entry_free);
	if (err)
		return err;

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	if (guest_width > cap_mgaw(iommu->cap))
		guest_width = cap_mgaw(iommu->cap);
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	agaw = width_to_agaw(adjust_width);
	sagaw = cap_sagaw(iommu->cap);
	if (!test_bit(agaw, &sagaw)) {
		/* hardware doesn't support it, choose a bigger one */
J
Joerg Roedel 已提交
1853
		pr_debug("Hardware doesn't support agaw %d\n", agaw);
1854 1855 1856 1857 1858 1859
		agaw = find_next_bit(&sagaw, 5, agaw);
		if (agaw >= 5)
			return -ENODEV;
	}
	domain->agaw = agaw;

W
Weidong Han 已提交
1860 1861 1862 1863 1864
	if (ecap_coherent(iommu->ecap))
		domain->iommu_coherency = 1;
	else
		domain->iommu_coherency = 0;

1865 1866 1867 1868 1869
	if (ecap_sc_support(iommu->ecap))
		domain->iommu_snooping = 1;
	else
		domain->iommu_snooping = 0;

1870 1871 1872 1873 1874
	if (intel_iommu_superpage)
		domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
	else
		domain->iommu_superpage = 0;

1875
	domain->nid = iommu->node;
1876

1877
	/* always allocate the top pgd */
1878
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1879 1880
	if (!domain->pgd)
		return -ENOMEM;
F
Fenghua Yu 已提交
1881
	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1882 1883 1884 1885 1886
	return 0;
}

static void domain_exit(struct dmar_domain *domain)
{
1887
	struct page *freelist;
1888

1889
	/* Remove associated devices and clear attached or cached domains */
1890
	domain_remove_dev_info(domain);
1891

1892 1893 1894
	/* destroy iovas */
	put_iova_domain(&domain->iovad);

1895
	freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1896

1897 1898
	dma_free_pagelist(freelist);

1899 1900 1901
	free_domain_mem(domain);
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
/*
 * Get the PASID directory size for scalable mode context entry.
 * Value of X in the PDTS field of a scalable mode context entry
 * indicates PASID directory with 2^(X + 7) entries.
 */
static inline unsigned long context_get_sm_pds(struct pasid_table *table)
{
	int pds, max_pde;

	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
	if (pds < 7)
		return 0;

	return pds - 7;
}

/*
 * Set the RID_PASID field of a scalable mode context entry. The
 * IOMMU hardware will use the PASID value set in this field for
 * DMA translations of DMA requests without PASID.
 */
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
	context->hi |= pasid & ((1 << 20) - 1);
	context->hi |= (1 << 20);
}

/*
 * Set the DTE(Device-TLB Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_dte(struct context_entry *context)
{
	context->lo |= (1 << 2);
}

/*
 * Set the PRE(Page Request Enable) field of a scalable mode context
 * entry.
 */
static inline void context_set_sm_pre(struct context_entry *context)
{
	context->lo |= (1 << 4);
}

/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds)	(((pds) & 0x7) << 9)

1952 1953
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
1954
				      struct pasid_table *table,
1955
				      u8 bus, u8 devfn)
1956
{
1957
	u16 did = domain->iommu_did[iommu->seq_id];
1958 1959
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
1960 1961
	struct context_entry *context;
	unsigned long flags;
1962
	int ret;
1963

1964 1965
	WARN_ON(did == 0);

1966 1967
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
1968 1969 1970

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
F
Fenghua Yu 已提交
1971

1972
	BUG_ON(!domain->pgd);
W
Weidong Han 已提交
1973

1974 1975 1976 1977
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
1978
	context = iommu_context_addr(iommu, bus, devfn, 1);
1979
	if (!context)
1980
		goto out_unlock;
1981

1982 1983 1984
	ret = 0;
	if (context_present(context))
		goto out_unlock;
1985

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

1998
		if (did_old < cap_ndoms(iommu->cap)) {
1999 2000 2001 2002
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2003 2004 2005
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2006 2007
	}

2008
	context_clear_entry(context);
2009

2010 2011
	if (sm_supported(iommu)) {
		unsigned long pds;
F
Fenghua Yu 已提交
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021
		WARN_ON(!table);

		/* Setup the PASID DIR pointer: */
		pds = context_get_sm_pds(table);
		context->lo = (u64)virt_to_phys(table->table) |
				context_pdts(pds);

		/* Setup the RID_PASID field: */
		context_set_sm_rid2pasid(context, PASID_RID2PASID);
2022 2023

		/*
2024 2025
		 * Setup the Device-TLB enable bit and Page request
		 * Enable bit:
2026
		 */
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
		if (info && info->ats_supported)
			context_set_sm_dte(context);
		if (info && info->pri_supported)
			context_set_sm_pre(context);
	} else {
		struct dma_pte *pgd = domain->pgd;
		int agaw;

		context_set_domain_id(context, did);

		if (translation != CONTEXT_TT_PASS_THROUGH) {
			/*
			 * Skip top levels of page tables for iommu which has
			 * less agaw than default. Unnecessary for PT mode.
			 */
			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
				ret = -ENOMEM;
				pgd = phys_to_virt(dma_pte_addr(pgd));
				if (!dma_pte_present(pgd))
					goto out_unlock;
			}

			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
			if (info && info->ats_supported)
				translation = CONTEXT_TT_DEV_IOTLB;
			else
				translation = CONTEXT_TT_MULTI_LEVEL;

			context_set_address_root(context, virt_to_phys(pgd));
			context_set_address_width(context, agaw);
		} else {
			/*
			 * In pass through mode, AW must be programmed to
			 * indicate the largest AGAW value supported by
			 * hardware. And ASR is ignored by hardware.
			 */
			context_set_address_width(context, iommu->msagaw);
		}
2066 2067

		context_set_translation_type(context, translation);
Y
Yu Zhao 已提交
2068
	}
F
Fenghua Yu 已提交
2069

2070 2071
	context_set_fault_enable(context);
	context_set_present(context);
W
Weidong Han 已提交
2072
	domain_flush_cache(domain, context, sizeof(*context));
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2085
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2086
	} else {
2087
		iommu_flush_write_buffer(iommu);
2088
	}
Y
Yu Zhao 已提交
2089
	iommu_enable_dev_iotlb(info);
2090

2091 2092 2093 2094 2095
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2096

2097
	return ret;
2098 2099
}

2100 2101 2102
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
2103
	struct pasid_table *table;
2104 2105 2106 2107 2108 2109 2110 2111
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
2112 2113
					  data->table, PCI_BUS_NUM(alias),
					  alias & 0xff);
2114 2115
}

2116
static int
2117
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2118
{
2119 2120
	struct domain_context_mapping_data data;
	struct pasid_table *table;
2121
	struct intel_iommu *iommu;
2122
	u8 bus, devfn;
2123

2124
	iommu = device_to_iommu(dev, &bus, &devfn);
2125 2126
	if (!iommu)
		return -ENODEV;
2127

2128 2129
	table = intel_pasid_get_table(dev);

2130
	if (!dev_is_pci(dev))
2131 2132
		return domain_context_mapping_one(domain, iommu, table,
						  bus, devfn);
2133 2134 2135

	data.domain = domain;
	data.iommu = iommu;
2136
	data.table = table;
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2148 2149
}

2150
static int domain_context_mapped(struct device *dev)
2151
{
W
Weidong Han 已提交
2152
	struct intel_iommu *iommu;
2153
	u8 bus, devfn;
W
Weidong Han 已提交
2154

2155
	iommu = device_to_iommu(dev, &bus, &devfn);
W
Weidong Han 已提交
2156 2157
	if (!iommu)
		return -ENODEV;
2158

2159 2160
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2161

2162 2163
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2164 2165
}

2166 2167 2168 2169 2170 2171 2172 2173
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2202 2203 2204
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2205 2206
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2207
	phys_addr_t uninitialized_var(pteval);
2208
	unsigned long sg_res = 0;
2209 2210
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2211

2212
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2213 2214 2215 2216 2217 2218

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

	prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;

2219 2220
	if (!sg) {
		sg_res = nr_pages;
2221 2222 2223
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
	}

2224
	while (nr_pages > 0) {
2225 2226
		uint64_t tmp;

2227
		if (!sg_res) {
2228 2229
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2230
			sg_res = aligned_nrpages(sg->offset, sg->length);
2231
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2232
			sg->dma_length = sg->length;
2233
			pteval = (sg_phys(sg) - pgoff) | prot;
2234
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2235
		}
2236

2237
		if (!pte) {
2238 2239
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2240
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2241 2242
			if (!pte)
				return -ENOMEM;
2243
			/* It is large page*/
2244
			if (largepage_lvl > 1) {
2245 2246
				unsigned long nr_superpages, end_pfn;

2247
				pteval |= DMA_PTE_LARGE_PAGE;
2248
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2249 2250 2251 2252

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2253 2254
				/*
				 * Ensure that old small page tables are
2255
				 * removed to make room for superpage(s).
2256 2257
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2258
				 */
2259 2260
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2261
			} else {
2262
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2263
			}
2264

2265 2266 2267 2268
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2269
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2270
		if (tmp) {
2271
			static int dumps = 5;
J
Joerg Roedel 已提交
2272 2273
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2274 2275 2276 2277 2278 2279
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2303
		pte++;
2304 2305
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2306 2307 2308 2309
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2310 2311

		if (!sg_res && nr_pages)
2312 2313 2314 2315 2316
			sg = sg_next(sg);
	}
	return 0;
}

2317
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2318 2319 2320
			  struct scatterlist *sg, unsigned long phys_pfn,
			  unsigned long nr_pages, int prot)
{
2321
	int iommu_id, ret;
2322 2323 2324 2325 2326 2327 2328
	struct intel_iommu *iommu;

	/* Do the real mapping first */
	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
	if (ret)
		return ret;

2329 2330
	for_each_domain_iommu(iommu_id, domain) {
		iommu = g_iommus[iommu_id];
2331 2332 2333 2334
		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	}

	return 0;
2335 2336
}

2337 2338 2339
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2340
{
2341
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2342
}
2343

2344 2345 2346 2347
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2348
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2349 2350
}

2351
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2352
{
2353 2354 2355 2356
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2357 2358
	if (!iommu)
		return;
2359

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2380 2381
}

2382 2383 2384 2385 2386 2387
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2388
		info->dev->archdata.iommu = NULL;
2389 2390
}

2391 2392
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2393
	struct device_domain_info *info, *tmp;
2394
	unsigned long flags;
2395 2396

	spin_lock_irqsave(&device_domain_lock, flags);
2397
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2398
		__dmar_remove_one_dev_info(info);
2399 2400 2401 2402 2403
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

/*
 * find_domain
2404
 * Note: we use struct device->archdata.iommu stores the info
2405
 */
2406
static struct dmar_domain *find_domain(struct device *dev)
2407 2408 2409
{
	struct device_domain_info *info;

2410 2411 2412 2413 2414 2415 2416 2417 2418
	if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
		struct iommu_domain *domain;

		dev->archdata.iommu = NULL;
		domain = iommu_get_domain_for_dev(dev);
		if (domain)
			intel_iommu_attach_device(domain, dev);
	}

2419
	/* No lock here, assumes no domain exit in normal case */
2420
	info = dev->archdata.iommu;
2421

2422
	if (likely(info))
2423 2424 2425 2426
		return info->domain;
	return NULL;
}

2427
static inline struct device_domain_info *
2428 2429 2430 2431 2432
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2433
		if (info->iommu->segment == segment && info->bus == bus &&
2434
		    info->devfn == devfn)
2435
			return info;
2436 2437 2438 2439

	return NULL;
}

2440 2441 2442 2443
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2444
{
2445
	struct dmar_domain *found = NULL;
2446 2447
	struct device_domain_info *info;
	unsigned long flags;
2448
	int ret;
2449 2450 2451

	info = alloc_devinfo_mem();
	if (!info)
2452
		return NULL;
2453 2454 2455

	info->bus = bus;
	info->devfn = devfn;
2456 2457 2458
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2459 2460
	info->dev = dev;
	info->domain = domain;
2461
	info->iommu = iommu;
2462
	info->pasid_table = NULL;
2463
	info->auxd_enabled = 0;
2464
	INIT_LIST_HEAD(&info->auxiliary_domains);
2465

2466 2467 2468
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2469 2470
		if (!pdev->untrusted &&
		    !pci_ats_disabled() &&
G
Gil Kupfer 已提交
2471
		    ecap_dev_iotlb_support(iommu->ecap) &&
2472 2473 2474 2475
		    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

2476 2477
		if (sm_supported(iommu)) {
			if (pasid_supported(iommu)) {
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
				info->pri_supported = 1;
		}
	}

2489 2490
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2491
		found = find_domain(dev);
2492 2493

	if (!found) {
2494
		struct device_domain_info *info2;
2495
		info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2496 2497 2498 2499
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2500
	}
2501

2502 2503 2504
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2505 2506
		/* Caller must free the original domain */
		return found;
2507 2508
	}

2509 2510 2511 2512 2513
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2514
		spin_unlock_irqrestore(&device_domain_lock, flags);
2515
		free_devinfo_mem(info);
2516 2517 2518
		return NULL;
	}

2519 2520 2521 2522
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
		dev->archdata.iommu = info;
2523
	spin_unlock_irqrestore(&device_domain_lock, flags);
2524

2525 2526
	/* PASID table is mandatory for a PCI device in scalable mode. */
	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2527 2528
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2529
			dev_err(dev, "PASID table allocation failed\n");
2530
			dmar_remove_one_dev_info(dev);
2531
			return NULL;
2532
		}
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

		/* Setup the PASID entry for requests without PASID: */
		spin_lock(&iommu->lock);
		if (hw_pass_through && domain_type_is_si(domain))
			ret = intel_pasid_setup_pass_through(iommu, domain,
					dev, PASID_RID2PASID);
		else
			ret = intel_pasid_setup_second_level(iommu, domain,
					dev, PASID_RID2PASID);
		spin_unlock(&iommu->lock);
		if (ret) {
2544
			dev_err(dev, "Setup RID2PASID failed\n");
2545
			dmar_remove_one_dev_info(dev);
2546
			return NULL;
2547 2548
		}
	}
2549

2550
	if (dev && domain_context_mapping(domain, dev)) {
2551
		dev_err(dev, "Domain context map failed\n");
2552
		dmar_remove_one_dev_info(dev);
2553 2554 2555
		return NULL;
	}

2556
	return domain;
2557 2558
}

2559 2560 2561 2562 2563 2564
static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
{
	*(u16 *)opaque = alias;
	return 0;
}

2565
static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2566
{
2567
	struct device_domain_info *info;
2568
	struct dmar_domain *domain = NULL;
2569
	struct intel_iommu *iommu;
2570
	u16 dma_alias;
2571
	unsigned long flags;
2572
	u8 bus, devfn;
2573

2574 2575 2576 2577
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

2578 2579
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2580

2581 2582 2583 2584 2585 2586 2587 2588 2589
		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		spin_lock_irqsave(&device_domain_lock, flags);
		info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
						      PCI_BUS_NUM(dma_alias),
						      dma_alias & 0xff);
		if (info) {
			iommu = info->iommu;
			domain = info->domain;
2590
		}
2591
		spin_unlock_irqrestore(&device_domain_lock, flags);
2592

2593
		/* DMA alias already has a domain, use it */
2594
		if (info)
2595
			goto out;
2596
	}
2597

2598
	/* Allocate and initialize new domain for the device */
2599
	domain = alloc_domain(0);
2600
	if (!domain)
2601
		return NULL;
2602
	if (domain_init(domain, iommu, gaw)) {
2603 2604
		domain_exit(domain);
		return NULL;
2605
	}
2606

2607 2608 2609
out:
	return domain;
}
2610

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
static struct dmar_domain *set_domain_for_dev(struct device *dev,
					      struct dmar_domain *domain)
{
	struct intel_iommu *iommu;
	struct dmar_domain *tmp;
	u16 req_id, dma_alias;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

	req_id = ((u16)bus << 8) | devfn;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		/* register PCI DMA alias device */
		if (req_id != dma_alias) {
			tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
					dma_alias & 0xff, NULL, domain);

			if (!tmp || tmp != domain)
				return tmp;
		}
2638 2639
	}

2640
	tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2641 2642 2643 2644 2645
	if (!tmp || tmp != domain)
		return tmp;

	return domain;
}
2646

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
{
	struct dmar_domain *domain, *tmp;

	domain = find_domain(dev);
	if (domain)
		goto out;

	domain = find_or_alloc_domain(dev, gaw);
	if (!domain)
		goto out;

	tmp = set_domain_for_dev(dev, domain);
	if (!tmp || domain != tmp) {
2661 2662 2663
		domain_exit(domain);
		domain = tmp;
	}
2664

2665 2666
out:

2667
	return domain;
2668 2669
}

2670 2671 2672
static int iommu_domain_identity_map(struct dmar_domain *domain,
				     unsigned long long start,
				     unsigned long long end)
2673
{
2674 2675 2676 2677 2678
	unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
	unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;

	if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
			  dma_to_mm_pfn(last_vpfn))) {
J
Joerg Roedel 已提交
2679
		pr_err("Reserving iova failed\n");
2680
		return -ENOMEM;
2681 2682
	}

J
Joerg Roedel 已提交
2683
	pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2684 2685 2686 2687
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2688
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2689

2690 2691 2692
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2693 2694
}

2695 2696 2697 2698
static int domain_prepare_identity_map(struct device *dev,
				       struct dmar_domain *domain,
				       unsigned long long start,
				       unsigned long long end)
2699
{
2700 2701 2702 2703 2704
	/* For _hardware_ passthrough, don't bother. But for software
	   passthrough, we do it anyway -- it may indicate a memory
	   range which is reserved in E820, so which didn't get set
	   up to start with in si_domain */
	if (domain == si_domain && hw_pass_through) {
2705 2706
		dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
			 start, end);
2707 2708 2709
		return 0;
	}

2710
	dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
J
Joerg Roedel 已提交
2711

2712 2713 2714 2715 2716 2717
	if (end < start) {
		WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
			"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			dmi_get_system_info(DMI_BIOS_VENDOR),
			dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2718
		return -EIO;
2719 2720
	}

2721 2722 2723 2724 2725 2726 2727
	if (end >> agaw_to_width(domain->agaw)) {
		WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     agaw_to_width(domain->agaw),
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2728
		return -EIO;
2729
	}
2730

2731 2732
	return iommu_domain_identity_map(domain, start, end);
}
2733

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
static int iommu_prepare_identity_map(struct device *dev,
				      unsigned long long start,
				      unsigned long long end)
{
	struct dmar_domain *domain;
	int ret;

	domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain)
		return -ENOMEM;

	ret = domain_prepare_identity_map(dev, domain, start, end);
	if (ret)
		domain_exit(domain);
2748

2749 2750 2751 2752
	return ret;
}

static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2753
					 struct device *dev)
2754
{
2755
	if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2756
		return 0;
2757 2758
	return iommu_prepare_identity_map(dev, rmrr->base_address,
					  rmrr->end_address);
2759 2760
}

2761
static int md_domain_init(struct dmar_domain *domain, int guest_width);
2762

2763
static int __init si_domain_init(int hw)
2764
{
2765 2766 2767
	struct dmar_rmrr_unit *rmrr;
	struct device *dev;
	int i, nid, ret;
2768

2769
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2770 2771 2772 2773 2774 2775 2776 2777
	if (!si_domain)
		return -EFAULT;

	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
		domain_exit(si_domain);
		return -EFAULT;
	}

2778 2779 2780
	if (hw)
		return 0;

2781
	for_each_online_node(nid) {
2782 2783 2784 2785 2786 2787 2788 2789 2790
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
					PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
			if (ret)
				return ret;
		}
2791 2792
	}

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
	/*
	 * Normally we use DMA domains for devices which have RMRRs. But we
	 * loose this requirement for graphic and usb devices. Identity map
	 * the RMRRs for graphic and USB devices so that they could use the
	 * si_domain.
	 */
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, dev) {
			unsigned long long start = rmrr->base_address;
			unsigned long long end = rmrr->end_address;

			if (device_is_rmrr_locked(dev))
				continue;

			if (WARN_ON(end < start ||
				    end >> agaw_to_width(si_domain->agaw)))
				continue;

			ret = iommu_domain_identity_map(si_domain, start, end);
			if (ret)
				return ret;
		}
	}

2818 2819 2820
	return 0;
}

2821
static int identity_mapping(struct device *dev)
2822 2823 2824
{
	struct device_domain_info *info;

2825
	info = dev->archdata.iommu;
2826 2827
	if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
		return (info->domain == si_domain);
2828 2829 2830 2831

	return 0;
}

2832
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2833
{
2834
	struct dmar_domain *ndomain;
2835
	struct intel_iommu *iommu;
2836
	u8 bus, devfn;
2837

2838
	iommu = device_to_iommu(dev, &bus, &devfn);
2839 2840 2841
	if (!iommu)
		return -ENODEV;

2842
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2843 2844
	if (ndomain != domain)
		return -EBUSY;
2845 2846 2847 2848

	return 0;
}

2849
static bool device_has_rmrr(struct device *dev)
2850 2851
{
	struct dmar_rmrr_unit *rmrr;
2852
	struct device *tmp;
2853 2854
	int i;

2855
	rcu_read_lock();
2856
	for_each_rmrr_units(rmrr) {
2857 2858 2859 2860 2861 2862
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2863
			if (tmp == dev) {
2864
				rcu_read_unlock();
2865
				return true;
2866
			}
2867
	}
2868
	rcu_read_unlock();
2869 2870 2871
	return false;
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
 * In both cases we assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
2889 2890 2891 2892
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
2893 2894 2895 2896 2897 2898 2899 2900 2901
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

2902
		if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2903 2904 2905 2906 2907 2908
			return false;
	}

	return true;
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
/*
 * Return the required default domain type for a specific device.
 *
 * @dev: the device in query
 * @startup: true if this is during early boot
 *
 * Returns:
 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
 *  - 0: both identity and dynamic domains work for this device
 */
2920
static int device_def_domain_type(struct device *dev)
2921
{
2922 2923
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2924

2925
		if (device_is_rmrr_locked(dev))
2926
			return IOMMU_DOMAIN_DMA;
2927

2928 2929 2930 2931 2932
		/*
		 * Prevent any device marked as untrusted from getting
		 * placed into the statically identity mapping domain.
		 */
		if (pdev->untrusted)
2933
			return IOMMU_DOMAIN_DMA;
2934

2935
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2936
			return IOMMU_DOMAIN_IDENTITY;
2937

2938
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2939
			return IOMMU_DOMAIN_IDENTITY;
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959

		/*
		 * We want to start off with all devices in the 1:1 domain, and
		 * take them out later if we find they can't access all of memory.
		 *
		 * However, we can't do this for PCI devices behind bridges,
		 * because all PCI devices behind the same bridge will end up
		 * with the same source-id on their transactions.
		 *
		 * Practically speaking, we can't change things around for these
		 * devices at run-time, because we can't be sure there'll be no
		 * DMA transactions in flight for any of their siblings.
		 *
		 * So PCI devices (unless they're on the root bus) as well as
		 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
		 * the 1:1 domain, just in _case_ one of their siblings turns out
		 * not to be able to map all of memory.
		 */
		if (!pci_is_pcie(pdev)) {
			if (!pci_is_root_bus(pdev->bus))
2960
				return IOMMU_DOMAIN_DMA;
2961
			if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2962
				return IOMMU_DOMAIN_DMA;
2963
		} else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2964
			return IOMMU_DOMAIN_DMA;
2965 2966
	} else {
		if (device_has_rmrr(dev))
2967
			return IOMMU_DOMAIN_DMA;
2968
	}
2969

2970 2971 2972 2973
	return (iommu_identity_mapping & IDENTMAP_ALL) ?
			IOMMU_DOMAIN_IDENTITY : 0;
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
J
Joerg Roedel 已提交
3000
		pr_info("%s: Using Register based invalidation\n",
3001 3002 3003 3004
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
J
Joerg Roedel 已提交
3005
		pr_info("%s: Using Queued invalidation\n", iommu->name);
3006 3007 3008
	}
}

3009
static int copy_context_table(struct intel_iommu *iommu,
3010
			      struct root_entry *old_re,
3011 3012 3013
			      struct context_entry **tbl,
			      int bus, bool ext)
{
3014
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3015
	struct context_entry *new_ce = NULL, ce;
3016
	struct context_entry *old_ce = NULL;
3017
	struct root_entry re;
3018 3019 3020
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
3021
	memcpy(&re, old_re, sizeof(re));
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
3037
				memunmap(old_ce);
3038 3039 3040

			ret = 0;
			if (devfn < 0x80)
3041
				old_ce_phys = root_entry_lctp(&re);
3042
			else
3043
				old_ce_phys = root_entry_uctp(&re);
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
3056 3057
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
3069
		memcpy(&ce, old_ce + idx, sizeof(ce));
3070

3071
		if (!__context_present(&ce))
3072 3073
			continue;

3074 3075 3076 3077
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

3097 3098 3099 3100 3101 3102 3103 3104
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
3105
	memunmap(old_ce);
3106 3107 3108 3109 3110 3111 3112 3113

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
3114
	struct root_entry *old_rt;
3115 3116 3117 3118 3119
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
3120
	bool new_ext, ext;
3121 3122 3123

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3134 3135 3136 3137 3138

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3139
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3140 3141 3142 3143 3144 3145
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
K
Kees Cook 已提交
3146
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3188
	memunmap(old_rt);
3189 3190 3191 3192

	return ret;
}

3193
static int __init init_dmars(void)
3194 3195 3196
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
3197
	int ret;
3198

3199 3200 3201 3202 3203 3204 3205
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
3206 3207 3208 3209 3210
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3211
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3212 3213 3214
			g_num_of_iommus++;
			continue;
		}
J
Joerg Roedel 已提交
3215
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
M
mark gross 已提交
3216 3217
	}

3218 3219 3220 3221
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

W
Weidong Han 已提交
3222 3223 3224
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
J
Joerg Roedel 已提交
3225
		pr_err("Allocating global iommu array failed\n");
W
Weidong Han 已提交
3226 3227 3228 3229
		ret = -ENOMEM;
		goto error;
	}

3230
	for_each_active_iommu(iommu, drhd) {
L
Lu Baolu 已提交
3231 3232 3233 3234 3235
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
3236
		if (pasid_supported(iommu)) {
L
Lu Baolu 已提交
3237 3238 3239 3240 3241 3242
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

W
Weidong Han 已提交
3243
		g_iommus[iommu->seq_id] = iommu;
3244

3245 3246
		intel_iommu_init_qi(iommu);

3247 3248
		ret = iommu_init_domains(iommu);
		if (ret)
3249
			goto free_iommu;
3250

3251 3252
		init_translation_status(iommu);

3253 3254 3255 3256 3257 3258
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3259

3260 3261 3262
		/*
		 * TBD:
		 * we could share the same root & context tables
L
Lucas De Marchi 已提交
3263
		 * among all IOMMU's. Need to Split it later.
3264 3265
		 */
		ret = iommu_alloc_root_entry(iommu);
3266
		if (ret)
3267
			goto free_iommu;
3268

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
			}
		}

F
Fenghua Yu 已提交
3293
		if (!ecap_pass_through(iommu->ecap))
3294
			hw_pass_through = 0;
3295
#ifdef CONFIG_INTEL_IOMMU_SVM
3296
		if (pasid_supported(iommu))
3297
			intel_svm_init(iommu);
3298
#endif
3299 3300
	}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3313
	if (iommu_pass_through)
3314 3315
		iommu_identity_mapping |= IDENTMAP_ALL;

3316
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3317
	dmar_map_gfx = 0;
3318
#endif
3319

3320 3321 3322
	if (!dmar_map_gfx)
		iommu_identity_mapping |= IDENTMAP_GFX;

3323 3324
	check_tylersburg_isoch();

3325 3326 3327
	ret = si_domain_init(hw_pass_through);
	if (ret)
		goto free_iommu;
3328

3329 3330 3331 3332 3333 3334 3335
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3336
	for_each_iommu(iommu, drhd) {
3337 3338 3339 3340 3341 3342
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3343
				iommu_disable_protect_mem_regions(iommu);
3344
			continue;
3345
		}
3346 3347 3348

		iommu_flush_write_buffer(iommu);

3349
#ifdef CONFIG_INTEL_IOMMU_SVM
3350
		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3351 3352 3353 3354 3355
			/*
			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
			 * could cause possible lock race condition.
			 */
			up_write(&dmar_global_lock);
3356
			ret = intel_svm_enable_prq(iommu);
3357
			down_write(&dmar_global_lock);
3358 3359 3360 3361
			if (ret)
				goto free_iommu;
		}
#endif
3362 3363
		ret = dmar_set_interrupt(iommu);
		if (ret)
3364
			goto free_iommu;
3365 3366 3367
	}

	return 0;
3368 3369

free_iommu:
3370 3371
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3372
		free_dmar_iommu(iommu);
3373
	}
3374

W
Weidong Han 已提交
3375
	kfree(g_iommus);
3376

3377
error:
3378 3379 3380
	return ret;
}

3381
/* This takes a number of _MM_ pages, not VTD pages */
3382
static unsigned long intel_alloc_iova(struct device *dev,
3383 3384
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3385
{
3386
	unsigned long iova_pfn;
3387

3388 3389
	/* Restrict dma_mask to the width that the iommu can handle */
	dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3390 3391
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3392 3393

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3394 3395
		/*
		 * First try to allocate an io virtual address in
3396
		 * DMA_BIT_MASK(32) and if that fails then try allocating
J
Joe Perches 已提交
3397
		 * from higher range
3398
		 */
3399
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3400
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3401 3402
		if (iova_pfn)
			return iova_pfn;
3403
	}
3404 3405
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3406
	if (unlikely(!iova_pfn)) {
3407
		dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3408
		return 0;
3409 3410
	}

3411
	return iova_pfn;
3412 3413
}

3414
static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3415
{
3416
	struct dmar_domain *domain, *tmp;
3417 3418 3419
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i, ret;
3420

3421
	/* Device shouldn't be attached by any domains. */
3422 3423
	domain = find_domain(dev);
	if (domain)
3424
		return NULL;
3425 3426 3427 3428

	domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain)
		goto out;
3429

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	/* We have a new domain - setup possible RMRRs for the device */
	rcu_read_lock();
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
			if (i_dev != dev)
				continue;

			ret = domain_prepare_identity_map(dev, domain,
							  rmrr->base_address,
							  rmrr->end_address);
			if (ret)
				dev_err(dev, "Mapping reserved region failed\n");
		}
	}
	rcu_read_unlock();

3447 3448 3449 3450 3451 3452 3453 3454
	tmp = set_domain_for_dev(dev, domain);
	if (!tmp || domain != tmp) {
		domain_exit(domain);
		domain = tmp;
	}

out:
	if (!domain)
3455
		dev_err(dev, "Allocating domain failed\n");
3456

3457 3458 3459
	return domain;
}

3460
/* Check if the dev needs to go through non-identity map and unmap process.*/
3461
static bool iommu_need_mapping(struct device *dev)
3462
{
3463
	int ret;
3464

3465
	if (iommu_dummy(dev))
3466
		return false;
3467

3468 3469 3470 3471 3472 3473 3474 3475
	ret = identity_mapping(dev);
	if (ret) {
		u64 dma_mask = *dev->dma_mask;

		if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
			dma_mask = dev->coherent_dma_mask;

		if (dma_mask >= dma_get_required_mask(dev))
3476 3477 3478 3479 3480 3481 3482
			return false;

		/*
		 * 32 bit DMA is removed from si_domain and fall back to
		 * non-identity mapping.
		 */
		dmar_remove_one_dev_info(dev);
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
		ret = iommu_request_dma_domain_for_dev(dev);
		if (ret) {
			struct iommu_domain *domain;
			struct dmar_domain *dmar_domain;

			domain = iommu_get_domain_for_dev(dev);
			if (domain) {
				dmar_domain = to_dmar_domain(domain);
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
			}
3493
			get_private_domain_for_dev(dev);
3494
		}
3495 3496

		dev_info(dev, "32bit DMA uses non-identity mapping\n");
3497 3498
	}

3499
	return true;
3500 3501
}

3502 3503
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
				     size_t size, int dir, u64 dma_mask)
3504 3505
{
	struct dmar_domain *domain;
F
Fenghua Yu 已提交
3506
	phys_addr_t start_paddr;
3507
	unsigned long iova_pfn;
3508
	int prot = 0;
I
Ingo Molnar 已提交
3509
	int ret;
3510
	struct intel_iommu *iommu;
3511
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3512 3513

	BUG_ON(dir == DMA_NONE);
3514

3515
	domain = find_domain(dev);
3516
	if (!domain)
3517
		return DMA_MAPPING_ERROR;
3518

3519
	iommu = domain_get_iommu(domain);
3520
	size = aligned_nrpages(paddr, size);
3521

3522 3523
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3524 3525
		goto error;

3526 3527 3528 3529 3530
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3531
			!cap_zlr(iommu->cap))
3532 3533 3534 3535
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
3536
	 * paddr - (paddr + size) might be partial page, we should map the whole
3537
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
3538
	 * might have two guest_addr mapping to the same host paddr, but this
3539 3540
	 * is not a big problem
	 */
3541
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3542
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3543 3544 3545
	if (ret)
		goto error;

3546
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3547 3548
	start_paddr += paddr & ~PAGE_MASK;
	return start_paddr;
3549 3550

error:
3551
	if (iova_pfn)
3552
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3553 3554
	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
		size, (unsigned long long)paddr, dir);
3555
	return DMA_MAPPING_ERROR;
3556 3557
}

3558 3559 3560
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3561
				 unsigned long attrs)
3562
{
3563 3564 3565 3566
	if (iommu_need_mapping(dev))
		return __intel_map_single(dev, page_to_phys(page) + offset,
				size, dir, *dev->dma_mask);
	return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3567 3568 3569 3570 3571 3572
}

static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
				     size_t size, enum dma_data_direction dir,
				     unsigned long attrs)
{
3573 3574 3575 3576
	if (iommu_need_mapping(dev))
		return __intel_map_single(dev, phys_addr, size, dir,
				*dev->dma_mask);
	return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3577 3578
}

3579
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3580
{
3581
	struct dmar_domain *domain;
3582
	unsigned long start_pfn, last_pfn;
3583
	unsigned long nrpages;
3584
	unsigned long iova_pfn;
3585
	struct intel_iommu *iommu;
3586
	struct page *freelist;
3587
	struct pci_dev *pdev = NULL;
3588

3589
	domain = find_domain(dev);
3590 3591
	BUG_ON(!domain);

3592 3593
	iommu = domain_get_iommu(domain);

3594
	iova_pfn = IOVA_PFN(dev_addr);
3595

3596
	nrpages = aligned_nrpages(dev_addr, size);
3597
	start_pfn = mm_to_dma_pfn(iova_pfn);
3598
	last_pfn = start_pfn + nrpages - 1;
3599

3600 3601 3602
	if (dev_is_pci(dev))
		pdev = to_pci_dev(dev);

3603
	dev_dbg(dev, "Device unmapping: pfn %lx-%lx\n", start_pfn, last_pfn);
3604

3605
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3606

3607
	if (intel_iommu_strict || (pdev && pdev->untrusted)) {
3608
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3609
				      nrpages, !freelist, 0);
M
mark gross 已提交
3610
		/* free iova */
3611
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3612
		dma_free_pagelist(freelist);
M
mark gross 已提交
3613
	} else {
3614 3615
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
M
mark gross 已提交
3616 3617 3618 3619 3620
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3621 3622
}

3623 3624
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3625
			     unsigned long attrs)
3626
{
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	if (iommu_need_mapping(dev))
		intel_unmap(dev, dev_addr, size);
	else
		dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
}

static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	if (iommu_need_mapping(dev))
		intel_unmap(dev, dev_addr, size);
3638 3639
}

3640
static void *intel_alloc_coherent(struct device *dev, size_t size,
3641
				  dma_addr_t *dma_handle, gfp_t flags,
3642
				  unsigned long attrs)
3643
{
3644 3645
	struct page *page = NULL;
	int order;
3646

3647 3648 3649
	if (!iommu_need_mapping(dev))
		return dma_direct_alloc(dev, size, dma_handle, flags, attrs);

3650 3651 3652 3653 3654 3655
	size = PAGE_ALIGN(size);
	order = get_order(size);

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3656 3657
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3658 3659 3660 3661 3662 3663 3664 3665
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

3666 3667 3668
	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
3669
	if (*dma_handle != DMA_MAPPING_ERROR)
3670 3671 3672
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
A
Akinobu Mita 已提交
3673

3674 3675 3676
	return NULL;
}

3677
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3678
				dma_addr_t dma_handle, unsigned long attrs)
3679
{
3680 3681 3682
	int order;
	struct page *page = virt_to_page(vaddr);

3683 3684 3685
	if (!iommu_need_mapping(dev))
		return dma_direct_free(dev, size, vaddr, dma_handle, attrs);

3686 3687 3688 3689 3690 3691
	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3692 3693
}

3694
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3695
			   int nelems, enum dma_data_direction dir,
3696
			   unsigned long attrs)
3697
{
3698 3699 3700 3701 3702
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

3703 3704 3705
	if (!iommu_need_mapping(dev))
		return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);

3706 3707 3708 3709 3710
	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3711 3712
}

3713
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3714
			enum dma_data_direction dir, unsigned long attrs)
3715 3716 3717
{
	int i;
	struct dmar_domain *domain;
3718 3719
	size_t size = 0;
	int prot = 0;
3720
	unsigned long iova_pfn;
3721
	int ret;
F
FUJITA Tomonori 已提交
3722
	struct scatterlist *sg;
3723
	unsigned long start_vpfn;
3724
	struct intel_iommu *iommu;
3725 3726

	BUG_ON(dir == DMA_NONE);
3727
	if (!iommu_need_mapping(dev))
3728
		return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3729

3730
	domain = find_domain(dev);
3731 3732 3733
	if (!domain)
		return 0;

3734 3735
	iommu = domain_get_iommu(domain);

3736
	for_each_sg(sglist, sg, nelems, i)
3737
		size += aligned_nrpages(sg->offset, sg->length);
3738

3739
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3740
				*dev->dma_mask);
3741
	if (!iova_pfn) {
F
FUJITA Tomonori 已提交
3742
		sglist->dma_length = 0;
3743 3744 3745 3746 3747 3748 3749 3750
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3751
			!cap_zlr(iommu->cap))
3752 3753 3754 3755
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3756
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3757

3758
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3759 3760
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3761 3762
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3763
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3764
		return 0;
3765 3766 3767 3768 3769
	}

	return nelems;
}

3770
static const struct dma_map_ops intel_dma_ops = {
3771 3772
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3773 3774
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3775 3776
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3777
	.map_resource = intel_map_resource,
3778
	.unmap_resource = intel_unmap_resource,
3779
	.dma_supported = dma_direct_supported,
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
};

static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
J
Joerg Roedel 已提交
3793
		pr_err("Couldn't create iommu_domain cache\n");
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
J
Joerg Roedel 已提交
3810
		pr_err("Couldn't create devinfo cache\n");
3811 3812 3813 3814 3815 3816 3817 3818 3819
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
3820
	ret = iova_cache_get();
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
3834
	iova_cache_put();
3835 3836 3837 3838 3839 3840 3841 3842

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
3843
	iova_cache_put();
3844 3845
}

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
			    TAINT_FIRMWARE_WORKAROUND,
			    "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);

3874 3875 3876
static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
3877
	struct device *dev;
3878
	int i;
3879 3880 3881

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
3882 3883 3884
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
3885
			/* ignore DMAR unit if no devices exist */
3886 3887 3888 3889 3890
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

3891 3892
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
3893 3894
			continue;

3895 3896
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
3897
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3898 3899 3900 3901
				break;
		if (i < drhd->devices_cnt)
			continue;

3902 3903
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
3904
		if (!dmar_map_gfx) {
3905
			drhd->ignored = 1;
3906 3907
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
3908
				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3909 3910 3911 3912
		}
	}
}

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
3933

3934 3935 3936 3937 3938
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
3939
					   DMA_CCMD_GLOBAL_INVL);
3940 3941
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
3942
		iommu_disable_protect_mem_regions(iommu);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
3955
					   DMA_CCMD_GLOBAL_INVL);
3956
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3957
					 DMA_TLB_GLOBAL_FLUSH);
3958 3959 3960
	}
}

3961
static int iommu_suspend(void)
3962 3963 3964 3965 3966 3967
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
K
Kees Cook 已提交
3968
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

3979
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

3990
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4001
static void iommu_resume(void)
4002 4003 4004 4005 4006 4007
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4008 4009 4010 4011
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4012
		return;
4013 4014 4015 4016
	}

	for_each_active_iommu(iommu, drhd) {

4017
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4028
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4029 4030 4031 4032 4033 4034
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4035
static struct syscore_ops iommu_syscore_ops = {
4036 4037 4038 4039
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4040
static void __init init_iommu_pm_ops(void)
4041
{
4042
	register_syscore_ops(&iommu_syscore_ops);
4043 4044 4045
}

#else
4046
static inline void init_iommu_pm_ops(void) {}
4047 4048
#endif	/* CONFIG_PM */

4049

4050
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4051 4052
{
	struct acpi_dmar_reserved_memory *rmrr;
4053
	int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4054
	struct dmar_rmrr_unit *rmrru;
4055
	size_t length;
4056 4057 4058

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4059
		goto out;
4060 4061 4062 4063 4064

	rmrru->hdr = header;
	rmrr = (struct acpi_dmar_reserved_memory *)header;
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4065 4066 4067 4068 4069 4070 4071

	length = rmrr->end_address - rmrr->base_address + 1;
	rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
					      IOMMU_RESV_DIRECT);
	if (!rmrru->resv)
		goto free_rmrru;

4072 4073 4074
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4075 4076
	if (rmrru->devices_cnt && rmrru->devices == NULL)
		goto free_all;
4077

4078
	list_add(&rmrru->list, &dmar_rmrr_units);
4079

4080
	return 0;
4081 4082 4083 4084 4085 4086
free_all:
	kfree(rmrru->resv);
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4087 4088
}

4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4108 4109 4110 4111
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4112
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4113 4114
		return 0;

4115
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4116 4117 4118 4119 4120
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4121 4122 4123
	if (!atsru)
		return -ENOMEM;

4124 4125 4126 4127 4128 4129 4130
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4131
	atsru->include_all = atsr->flags & 0x1;
4132 4133 4134 4135 4136 4137 4138 4139 4140
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4141

4142
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4143 4144 4145 4146

	return 0;
}

4147 4148 4149 4150 4151 4152
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4181
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4182 4183 4184
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4185
	}
4186 4187 4188 4189

	return 0;
}

4190 4191
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
4192
	int sp, ret;
4193 4194 4195 4196 4197 4198
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
J
Joerg Roedel 已提交
4199
		pr_warn("%s: Doesn't support hardware pass through.\n",
4200 4201 4202 4203 4204
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
J
Joerg Roedel 已提交
4205
		pr_warn("%s: Doesn't support snooping.\n",
4206 4207 4208 4209 4210
			iommu->name);
		return -ENXIO;
	}
	sp = domain_update_iommu_superpage(iommu) - 1;
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
J
Joerg Roedel 已提交
4211
		pr_warn("%s: Doesn't support large page.\n",
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4229
#ifdef CONFIG_INTEL_IOMMU_SVM
4230
	if (pasid_supported(iommu))
4231
		intel_svm_init(iommu);
4232 4233
#endif

4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4245 4246

#ifdef CONFIG_INTEL_IOMMU_SVM
4247
	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4248 4249 4250 4251 4252
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4272 4273
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4290 4291
}

4292 4293 4294 4295 4296 4297 4298 4299
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4300
		kfree(rmrru->resv);
4301
		kfree(rmrru);
4302 4303
	}

4304 4305 4306 4307
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4308 4309 4310 4311
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4312
	int i, ret = 1;
4313
	struct pci_bus *bus;
4314 4315
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4316 4317 4318 4319 4320
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4321
		bridge = bus->self;
4322 4323 4324 4325 4326
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4327
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4328
			return 0;
4329
		/* If we found the root port, look it up in the ATSR */
4330
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4331 4332 4333
			break;
	}

4334
	rcu_read_lock();
4335 4336 4337 4338 4339
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4340
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4341
			if (tmp == &bridge->dev)
4342
				goto out;
4343 4344

		if (atsru->include_all)
4345
			goto out;
4346
	}
4347 4348
	ret = 0;
out:
4349
	rcu_read_unlock();
4350

4351
	return ret;
4352 4353
}

4354 4355
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
4356
	int ret;
4357 4358 4359 4360 4361
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4362
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4373
			if (ret < 0)
4374
				return ret;
4375
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4376 4377
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
4393
			else if (ret < 0)
4394
				return ret;
4395
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4396 4397 4398 4399 4400 4401 4402 4403 4404
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
	unsigned long long start, end;
	unsigned long start_vpfn, last_vpfn;

	switch (val) {
	case MEM_GOING_ONLINE:
		start = mhp->start_pfn << PAGE_SHIFT;
		end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
		if (iommu_domain_identity_map(si_domain, start, end)) {
J
Joerg Roedel 已提交
4417
			pr_warn("Failed to build identity map for [%llx-%llx]\n",
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
				start, end);
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
		last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
		while (start_vpfn <= last_vpfn) {
			struct iova *iova;
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4431
			struct page *freelist;
4432 4433 4434

			iova = find_iova(&si_domain->iovad, start_vpfn);
			if (iova == NULL) {
J
Joerg Roedel 已提交
4435
				pr_debug("Failed get IOVA for PFN %lx\n",
4436 4437 4438 4439 4440 4441 4442
					 start_vpfn);
				break;
			}

			iova = split_and_remove_iova(&si_domain->iovad, iova,
						     start_vpfn, last_vpfn);
			if (iova == NULL) {
J
Joerg Roedel 已提交
4443
				pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4444 4445 4446 4447
					start_vpfn, last_vpfn);
				return NOTIFY_BAD;
			}

4448 4449 4450
			freelist = domain_unmap(si_domain, iova->pfn_lo,
					       iova->pfn_hi);

4451 4452
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4453
				iommu_flush_iotlb_psi(iommu, si_domain,
4454
					iova->pfn_lo, iova_size(iova),
4455
					!freelist, 0);
4456
			rcu_read_unlock();
4457
			dma_free_pagelist(freelist);
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472

			start_vpfn = iova->pfn_hi + 1;
			free_iova_mem(iova);
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4473 4474 4475 4476 4477 4478 4479
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4480
		int did;
4481 4482 4483 4484

		if (!iommu)
			continue;

4485
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4486
			domain = get_iommu_domain(iommu, (u16)did);
4487 4488 4489 4490 4491 4492 4493 4494

			if (!domain)
				continue;
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4495
static int intel_iommu_cpu_dead(unsigned int cpu)
4496
{
4497 4498
	free_all_cpu_cached_iovas(cpu);
	return 0;
4499 4500
}

4501 4502 4503 4504 4505 4506 4507 4508 4509
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4510 4511
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4512 4513 4514
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4515 4516
}

4517 4518 4519 4520
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4521
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4532
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4533 4534 4535 4536 4537 4538 4539 4540
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4541
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4542 4543 4544 4545 4546 4547 4548 4549
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4550
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4551 4552 4553 4554
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4555 4556 4557 4558
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4559
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4560 4561 4562 4563 4564 4565 4566 4567
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4568
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4569 4570 4571 4572 4573
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4574 4575 4576 4577 4578
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4579 4580
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
static int __init platform_optin_force_iommu(void)
{
	struct pci_dev *pdev = NULL;
	bool has_untrusted_dev = false;

	if (!dmar_platform_optin() || no_platform_optin)
		return 0;

	for_each_pci_dev(pdev) {
		if (pdev->untrusted) {
			has_untrusted_dev = true;
			break;
		}
	}

	if (!has_untrusted_dev)
		return 0;

	if (no_iommu || dmar_disabled)
		pr_info("Intel-IOMMU force enabled due to platform opt in\n");

	/*
	 * If Intel-IOMMU is disabled by default, we will apply identity
	 * map for all devices except those marked as being untrusted.
	 */
	if (dmar_disabled)
		iommu_identity_mapping |= IDENTMAP_ALL;

	dmar_disabled = 0;
#if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
	swiotlb = 0;
#endif
	no_iommu = 0;

	return 1;
}

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
static int __init probe_acpi_namespace_devices(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	struct device *dev;
	int i, ret = 0;

	for_each_active_iommu(iommu, drhd) {
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct iommu_group *group;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;

			adev = to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn,
					    &adev->physical_node_list, node) {
				group = iommu_group_get(pn->dev);
				if (group) {
					iommu_group_put(group);
					continue;
				}

				pn->dev->bus->iommu_ops = &intel_iommu_ops;
				ret = iommu_probe_device(pn->dev);
				if (ret)
					break;
			}
			mutex_unlock(&adev->physical_node_lock);

			if (ret)
				return ret;
		}
	}

	return 0;
}

4673 4674
int __init intel_iommu_init(void)
{
4675
	int ret = -ENODEV;
4676
	struct dmar_drhd_unit *drhd;
4677
	struct intel_iommu *iommu;
4678

4679 4680 4681 4682 4683
	/*
	 * Intel IOMMU is required for a TXT/tboot launch or platform
	 * opt in, so enforce that.
	 */
	force_on = tboot_force_iommu() || platform_optin_force_iommu();
4684

4685 4686 4687 4688 4689 4690 4691
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4692 4693 4694
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4695
		goto out_free_dmar;
4696
	}
4697

4698
	if (dmar_dev_scope_init() < 0) {
4699 4700
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4701
		goto out_free_dmar;
4702
	}
4703

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4714
	if (no_iommu || dmar_disabled) {
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4728 4729 4730 4731 4732 4733
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4734
		goto out_free_dmar;
4735
	}
4736

4737
	if (list_empty(&dmar_rmrr_units))
J
Joerg Roedel 已提交
4738
		pr_info("No RMRR found\n");
4739 4740

	if (list_empty(&dmar_atsr_units))
J
Joerg Roedel 已提交
4741
		pr_info("No ATSR found\n");
4742

4743 4744 4745
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
4746
		goto out_free_reserved_range;
4747
	}
4748

4749 4750 4751
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4752 4753
	init_no_remapping_devices();

4754
	ret = init_dmars();
4755
	if (ret) {
4756 4757
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
J
Joerg Roedel 已提交
4758
		pr_err("Initialization failed\n");
4759
		goto out_free_reserved_range;
4760
	}
4761
	up_write(&dmar_global_lock);
4762

4763
#if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4764 4765
	swiotlb = 0;
#endif
4766
	dma_ops = &intel_dma_ops;
F
Fenghua Yu 已提交
4767

4768
	init_iommu_pm_ops();
4769

4770 4771 4772 4773 4774 4775 4776
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4777

4778
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4779 4780
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4781 4782
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4783

4784 4785 4786
	if (probe_acpi_namespace_devices())
		pr_warn("ACPI name space devices didn't probe correctly\n");

4787 4788 4789 4790 4791 4792 4793 4794 4795
	/* Finally, we enable the DMA remapping hardware. */
	for_each_iommu(iommu, drhd) {
		if (!translation_pre_enabled(iommu))
			iommu_enable_translation(iommu);

		iommu_disable_protect_mem_regions(iommu);
	}
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");

4796
	intel_iommu_enabled = 1;
4797
	intel_iommu_debugfs_init();
4798

4799
	return 0;
4800 4801 4802 4803 4804

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
4805 4806
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4807
	return ret;
4808
}
4809

4810
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4811 4812 4813
{
	struct intel_iommu *iommu = opaque;

4814
	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4815 4816 4817 4818 4819 4820 4821 4822 4823
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
4824
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4825
{
4826
	if (!iommu || !dev || !dev_is_pci(dev))
4827 4828
		return;

4829
	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4830 4831
}

4832
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4833
{
4834
	struct dmar_domain *domain;
4835 4836 4837
	struct intel_iommu *iommu;
	unsigned long flags;

4838 4839
	assert_spin_locked(&device_domain_lock);

4840
	if (WARN_ON(!info))
4841 4842
		return;

4843
	iommu = info->iommu;
4844
	domain = info->domain;
4845

4846
	if (info->dev) {
4847 4848 4849 4850
		if (dev_is_pci(info->dev) && sm_supported(iommu))
			intel_pasid_tear_down_entry(iommu, info->dev,
					PASID_RID2PASID);

4851 4852
		iommu_disable_dev_iotlb(info);
		domain_context_clear(iommu, info->dev);
4853
		intel_pasid_free_table(info->dev);
4854
	}
4855

4856
	unlink_domain_info(info);
4857

4858
	spin_lock_irqsave(&iommu->lock, flags);
4859
	domain_detach_iommu(domain, iommu);
4860
	spin_unlock_irqrestore(&iommu->lock, flags);
4861

4862 4863 4864 4865 4866
	/* free the private domain */
	if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
	    !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY))
		domain_exit(info->domain);

4867
	free_devinfo_mem(info);
4868 4869
}

4870
static void dmar_remove_one_dev_info(struct device *dev)
4871
{
4872
	struct device_domain_info *info;
4873
	unsigned long flags;
4874

4875
	spin_lock_irqsave(&device_domain_lock, flags);
4876 4877
	info = dev->archdata.iommu;
	__dmar_remove_one_dev_info(info);
4878
	spin_unlock_irqrestore(&device_domain_lock, flags);
4879 4880
}

4881
static int md_domain_init(struct dmar_domain *domain, int guest_width)
4882 4883 4884
{
	int adjust_width;

4885
	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
4886 4887 4888 4889 4890 4891 4892 4893
	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
4894
	domain->iommu_snooping = 0;
4895
	domain->iommu_superpage = 0;
4896
	domain->max_addr = 0;
4897 4898

	/* always allocate the top pgd */
4899
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4900 4901 4902 4903 4904 4905
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

4906
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
K
Kay, Allen M 已提交
4907
{
4908
	struct dmar_domain *dmar_domain;
4909 4910
	struct iommu_domain *domain;

4911
	switch (type) {
4912 4913
	case IOMMU_DOMAIN_DMA:
	/* fallthrough */
4914
	case IOMMU_DOMAIN_UNMANAGED:
4915
		dmar_domain = alloc_domain(0);
4916 4917 4918 4919 4920 4921 4922 4923 4924
		if (!dmar_domain) {
			pr_err("Can't allocate dmar_domain\n");
			return NULL;
		}
		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
			pr_err("Domain initialization failed\n");
			domain_exit(dmar_domain);
			return NULL;
		}
4925 4926 4927 4928 4929 4930 4931 4932

		if (type == IOMMU_DOMAIN_DMA &&
		    init_iova_flush_queue(&dmar_domain->iovad,
					  iommu_flush_iova, iova_entry_free)) {
			pr_warn("iova flush queue initialization failed\n");
			intel_iommu_strict = 1;
		}

4933
		domain_update_iommu_cap(dmar_domain);
K
Kay, Allen M 已提交
4934

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
		domain = &dmar_domain->domain;
		domain->geometry.aperture_start = 0;
		domain->geometry.aperture_end   =
				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
		domain->geometry.force_aperture = true;

		return domain;
	case IOMMU_DOMAIN_IDENTITY:
		return &si_domain->domain;
	default:
4945
		return NULL;
K
Kay, Allen M 已提交
4946
	}
4947

4948
	return NULL;
K
Kay, Allen M 已提交
4949 4950
}

4951
static void intel_iommu_domain_free(struct iommu_domain *domain)
K
Kay, Allen M 已提交
4952
{
4953 4954
	if (domain != &si_domain->domain)
		domain_exit(to_dmar_domain(domain));
K
Kay, Allen M 已提交
4955 4956
}

4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
/*
 * Check whether a @domain could be attached to the @dev through the
 * aux-domain attach/detach APIs.
 */
static inline bool
is_aux_domain(struct device *dev, struct iommu_domain *domain)
{
	struct device_domain_info *info = dev->archdata.iommu;

	return info && info->auxd_enabled &&
			domain->type == IOMMU_DOMAIN_UNMANAGED;
}

static void auxiliary_link_device(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info = dev->archdata.iommu;

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	domain->auxd_refcnt++;
	list_add(&domain->auxd, &info->auxiliary_domains);
}

static void auxiliary_unlink_device(struct dmar_domain *domain,
				    struct device *dev)
{
	struct device_domain_info *info = dev->archdata.iommu;

	assert_spin_locked(&device_domain_lock);
	if (WARN_ON(!info))
		return;

	list_del(&domain->auxd);
	domain->auxd_refcnt--;

	if (!domain->auxd_refcnt && domain->default_pasid > 0)
		intel_pasid_free_id(domain->default_pasid);
}

static int aux_domain_add_dev(struct dmar_domain *domain,
			      struct device *dev)
{
	int ret;
	u8 bus, devfn;
	unsigned long flags;
	struct intel_iommu *iommu;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return -ENODEV;

	if (domain->default_pasid <= 0) {
		int pasid;

		pasid = intel_pasid_alloc_id(domain, PASID_MIN,
					     pci_max_pasids(to_pci_dev(dev)),
					     GFP_KERNEL);
		if (pasid <= 0) {
			pr_err("Can't allocate default pasid\n");
			return -ENODEV;
		}
		domain->default_pasid = pasid;
	}

	spin_lock_irqsave(&device_domain_lock, flags);
	/*
	 * iommu->lock must be held to attach domain to iommu and setup the
	 * pasid entry for second level translation.
	 */
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	if (ret)
		goto attach_failed;

	/* Setup the PASID entry for mediated devices: */
	ret = intel_pasid_setup_second_level(iommu, domain, dev,
					     domain->default_pasid);
	if (ret)
		goto table_failed;
	spin_unlock(&iommu->lock);

	auxiliary_link_device(domain, dev);

	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;

table_failed:
	domain_detach_iommu(domain, iommu);
attach_failed:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
	if (!domain->auxd_refcnt && domain->default_pasid > 0)
		intel_pasid_free_id(domain->default_pasid);

	return ret;
}

static void aux_domain_remove_dev(struct dmar_domain *domain,
				  struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;

	if (!is_aux_domain(dev, &domain->domain))
		return;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	iommu = info->iommu;

	auxiliary_unlink_device(domain, dev);

	spin_lock(&iommu->lock);
	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
	domain_detach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	spin_unlock_irqrestore(&device_domain_lock, flags);
}

5082 5083
static int prepare_domain_attach_device(struct iommu_domain *domain,
					struct device *dev)
K
Kay, Allen M 已提交
5084
{
5085
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5086 5087
	struct intel_iommu *iommu;
	int addr_width;
5088
	u8 bus, devfn;
5089

5090
	iommu = device_to_iommu(dev, &bus, &devfn);
5091 5092 5093 5094 5095
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5096 5097 5098 5099
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5100 5101 5102
		dev_err(dev, "%s: iommu width (%d) is not "
		        "sufficient for the mapped address (%llx)\n",
		        __func__, addr_width, dmar_domain->max_addr);
5103 5104
		return -EFAULT;
	}
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5115 5116
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5117
			free_pgtable_page(pte);
5118 5119 5120
		}
		dmar_domain->agaw--;
	}
5121

5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
	return 0;
}

static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
{
	int ret;

	if (device_is_rmrr_locked(dev)) {
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5135 5136 5137
	if (is_aux_domain(dev, domain))
		return -EPERM;

5138 5139 5140 5141 5142
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
		struct dmar_domain *old_domain;

		old_domain = find_domain(dev);
5143
		if (old_domain)
5144 5145 5146 5147 5148 5149 5150 5151
			dmar_remove_one_dev_info(dev);
	}

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return domain_add_dev_info(to_dmar_domain(domain), dev);
K
Kay, Allen M 已提交
5152 5153
}

5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
					 struct device *dev)
{
	int ret;

	if (!is_aux_domain(dev, domain))
		return -EPERM;

	ret = prepare_domain_attach_device(domain, dev);
	if (ret)
		return ret;

	return aux_domain_add_dev(to_dmar_domain(domain), dev);
}

5169 5170
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
K
Kay, Allen M 已提交
5171
{
5172
	dmar_remove_one_dev_info(dev);
5173
}
5174

5175 5176 5177 5178 5179 5180
static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
					  struct device *dev)
{
	aux_domain_remove_dev(to_dmar_domain(domain), dev);
}

5181 5182
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5183
			   size_t size, int iommu_prot)
5184
{
5185
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5186
	u64 max_addr;
5187
	int prot = 0;
5188
	int ret;
5189

5190 5191 5192
	if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
		return -EINVAL;

5193 5194 5195 5196
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5197 5198
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5199

5200
	max_addr = iova + size;
5201
	if (dmar_domain->max_addr < max_addr) {
5202 5203 5204
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5205
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5206
		if (end < max_addr) {
J
Joerg Roedel 已提交
5207
			pr_err("%s: iommu width (%d) is not "
5208
			       "sufficient for the mapped address (%llx)\n",
5209
			       __func__, dmar_domain->gaw, max_addr);
5210 5211
			return -EFAULT;
		}
5212
		dmar_domain->max_addr = max_addr;
5213
	}
5214 5215
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5216
	size = aligned_nrpages(hpa, size);
5217 5218
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5219
	return ret;
K
Kay, Allen M 已提交
5220 5221
}

5222
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5223
				unsigned long iova, size_t size)
K
Kay, Allen M 已提交
5224
{
5225
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5226 5227 5228
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5229
	int iommu_id, level = 0;
5230 5231 5232

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5233
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5234 5235
	if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
		return 0;
5236 5237 5238

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5239

5240 5241 5242 5243 5244 5245 5246
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5247
	for_each_domain_iommu(iommu_id, dmar_domain)
5248 5249
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5250 5251

	dma_free_pagelist(freelist);
5252

5253 5254
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5255

5256
	return size;
K
Kay, Allen M 已提交
5257 5258
}

5259
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5260
					    dma_addr_t iova)
K
Kay, Allen M 已提交
5261
{
5262
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
K
Kay, Allen M 已提交
5263
	struct dma_pte *pte;
5264
	int level = 0;
5265
	u64 phys = 0;
K
Kay, Allen M 已提交
5266

5267 5268 5269
	if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
		return 0;

5270
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
K
Kay, Allen M 已提交
5271
	if (pte)
5272
		phys = dma_pte_addr(pte);
K
Kay, Allen M 已提交
5273

5274
	return phys;
K
Kay, Allen M 已提交
5275
}
5276

5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
static inline bool scalable_mode_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!sm_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

static inline bool iommu_pasid_support(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	bool ret = true;

	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!pasid_supported(iommu)) {
			ret = false;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

5313
static bool intel_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
5314 5315
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5316
		return domain_update_iommu_snooping(NULL) == 1;
5317
	if (cap == IOMMU_CAP_INTR_REMAP)
5318
		return irq_remapping_enabled == 1;
S
Sheng Yang 已提交
5319

5320
	return false;
S
Sheng Yang 已提交
5321 5322
}

5323 5324
static int intel_iommu_add_device(struct device *dev)
{
5325 5326
	struct dmar_domain *dmar_domain;
	struct iommu_domain *domain;
5327
	struct intel_iommu *iommu;
5328
	struct iommu_group *group;
5329
	u8 bus, devfn;
5330
	int ret;
5331

5332 5333
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
5334 5335
		return -ENODEV;

5336
	iommu_device_link(&iommu->iommu, dev);
5337

5338 5339 5340
	if (translation_pre_enabled(iommu))
		dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;

5341
	group = iommu_group_get_for_dev(dev);
5342

5343 5344
	if (IS_ERR(group))
		return PTR_ERR(group);
5345

5346
	iommu_group_put(group);
5347 5348 5349 5350

	domain = iommu_get_domain_for_dev(dev);
	dmar_domain = to_dmar_domain(domain);
	if (domain->type == IOMMU_DOMAIN_DMA) {
5351
		if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
			ret = iommu_request_dm_for_dev(dev);
			if (ret) {
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
				domain_add_dev_info(si_domain, dev);
				dev_info(dev,
					 "Device uses a private identity domain.\n");
				return 0;
			}

			return -ENODEV;
		}
	} else {
5364
		if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
5365 5366 5367
			ret = iommu_request_dma_domain_for_dev(dev);
			if (ret) {
				dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5368
				if (!get_private_domain_for_dev(dev)) {
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
					dev_warn(dev,
						 "Failed to get a private domain.\n");
					return -ENOMEM;
				}

				dev_info(dev,
					 "Device uses a private dma domain.\n");
				return 0;
			}

			return -ENODEV;
		}
	}

5383
	return 0;
5384
}
5385

5386 5387
static void intel_iommu_remove_device(struct device *dev)
{
5388 5389 5390 5391 5392 5393 5394
	struct intel_iommu *iommu;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return;

5395
	iommu_group_remove_device(dev);
5396

5397
	iommu_device_unlink(&iommu->iommu, dev);
5398 5399
}

5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

	rcu_read_lock();
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
			if (i_dev != device)
				continue;

			list_add_tail(&rmrr->resv->list, head);
		}
	}
	rcu_read_unlock();

5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
	if (dev_is_pci(device)) {
		struct pci_dev *pdev = to_pci_dev(device);

		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
			reg = iommu_alloc_resv_region(0, 1UL << 24, 0,
						      IOMMU_RESV_DIRECT);
			if (reg)
				list_add_tail(&reg->list, head);
		}
	}
#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */

5433 5434
	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5435
				      0, IOMMU_RESV_MSI);
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

static void intel_iommu_put_resv_regions(struct device *dev,
					 struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list) {
5447
		if (entry->type == IOMMU_RESV_MSI)
5448 5449
			kfree(entry);
	}
5450 5451
}

5452
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5453 5454 5455 5456 5457 5458 5459 5460
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

5461
	domain = find_domain(dev);
5462 5463 5464 5465 5466 5467 5468
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
5469
	info = dev->archdata.iommu;
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	if (!(ctx_lo & CONTEXT_PASIDE)) {
		ctx_lo |= CONTEXT_PASIDE;
		context[0].lo = ctx_lo;
		wmb();
5483 5484 5485
		iommu->flush.flush_context(iommu,
					   domain->iommu_did[iommu->seq_id],
					   PCI_DEVID(info->bus, info->devfn),
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
static void intel_iommu_apply_resv_region(struct device *dev,
					  struct iommu_domain *domain,
					  struct iommu_resv_region *region)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length - 1);

	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
}

5516
#ifdef CONFIG_INTEL_IOMMU_SVM
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
{
	struct intel_iommu *iommu;
	u8 bus, devfn;

	if (iommu_dummy(dev)) {
		dev_warn(dev,
			 "No IOMMU translation for device; cannot enable SVM\n");
		return NULL;
	}

	iommu = device_to_iommu(dev, &bus, &devfn);
	if ((!iommu)) {
5530
		dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5531 5532 5533 5534 5535 5536 5537
		return NULL;
	}

	return iommu;
}
#endif /* CONFIG_INTEL_IOMMU_SVM */

5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
static int intel_iommu_enable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	struct intel_iommu *iommu;
	unsigned long flags;
	u8 bus, devfn;
	int ret;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu || dmar_disabled)
		return -EINVAL;

	if (!sm_supported(iommu) || !pasid_supported(iommu))
		return -EINVAL;

	ret = intel_iommu_enable_pasid(iommu, dev);
	if (ret)
		return -ENODEV;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	info->auxd_enabled = 1;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

static int intel_iommu_disable_auxd(struct device *dev)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
	info = dev->archdata.iommu;
	if (!WARN_ON(!info))
		info->auxd_enabled = 0;
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return 0;
}

/*
 * A PCI express designated vendor specific extended capability is defined
 * in the section 3.7 of Intel scalable I/O virtualization technical spec
 * for system software and tools to detect endpoint devices supporting the
 * Intel scalable IO virtualization without host driver dependency.
 *
 * Returns the address of the matching extended capability structure within
 * the device's PCI configuration space or 0 if the device does not support
 * it.
 */
static int siov_find_pci_dvsec(struct pci_dev *pdev)
{
	int pos;
	u16 vendor, id;

	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
	while (pos) {
		pci_read_config_word(pdev, pos + 4, &vendor);
		pci_read_config_word(pdev, pos + 8, &id);
		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
			return pos;

		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
	}

	return 0;
}

static bool
intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX) {
		int ret;

		if (!dev_is_pci(dev) || dmar_disabled ||
		    !scalable_mode_support() || !iommu_pasid_support())
			return false;

		ret = pci_pasid_features(to_pci_dev(dev));
		if (ret < 0)
			return false;

		return !!siov_find_pci_dvsec(to_pci_dev(dev));
	}

	return false;
}

static int
intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_enable_auxd(dev);

	return -ENODEV;
}

static int
intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
{
	if (feat == IOMMU_DEV_FEAT_AUX)
		return intel_iommu_disable_auxd(dev);

	return -ENODEV;
}

static bool
intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
{
	struct device_domain_info *info = dev->archdata.iommu;

	if (feat == IOMMU_DEV_FEAT_AUX)
		return scalable_mode_support() && info && info->auxd_enabled;

	return false;
}

5656 5657 5658 5659 5660 5661 5662 5663 5664
static int
intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
{
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);

	return dmar_domain->default_pasid > 0 ?
			dmar_domain->default_pasid : -EINVAL;
}

5665 5666 5667 5668 5669 5670
static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
					   struct device *dev)
{
	return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
}

5671
const struct iommu_ops intel_iommu_ops = {
5672 5673 5674 5675 5676
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
5677 5678
	.aux_attach_dev		= intel_iommu_aux_attach_device,
	.aux_detach_dev		= intel_iommu_aux_detach_device,
5679
	.aux_get_pasid		= intel_iommu_aux_get_pasid,
5680 5681 5682 5683 5684 5685 5686
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
	.add_device		= intel_iommu_add_device,
	.remove_device		= intel_iommu_remove_device,
	.get_resv_regions	= intel_iommu_get_resv_regions,
	.put_resv_regions	= intel_iommu_put_resv_regions,
5687
	.apply_resv_region	= intel_iommu_apply_resv_region,
5688
	.device_group		= pci_device_group,
5689 5690 5691 5692
	.dev_has_feat		= intel_iommu_dev_has_feat,
	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
	.dev_enable_feat	= intel_iommu_dev_enable_feat,
	.dev_disable_feat	= intel_iommu_dev_disable_feat,
5693
	.is_attach_deferred	= intel_iommu_is_attach_deferred,
5694
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
5695
};
5696

5697 5698 5699
static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
{
	/* G4x/GM45 integrated gfx dmar support is totally busted. */
5700
	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
	dmar_map_gfx = 0;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);

5712
static void quirk_iommu_rwbf(struct pci_dev *dev)
5713 5714 5715
{
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
5716
	 * but needs it. Same seems to hold for the desktop versions.
5717
	 */
5718
	pci_info(dev, "Forcing write-buffer flush capability\n");
5719 5720 5721 5722
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5723 5724 5725 5726 5727 5728
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5729

5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

5740
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5741 5742 5743
{
	unsigned short ggc;

5744
	if (pci_read_config_word(dev, GGC, &ggc))
5745 5746
		return;

5747
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5748
		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5749
		dmar_map_gfx = 0;
5750 5751
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
5752
		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
5753 5754
		intel_iommu_strict = 1;
       }
5755 5756 5757 5758 5759 5760
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
J
Joerg Roedel 已提交
5814 5815

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5816 5817
	       vtisochctrl);
}