intel_ringbuffer.c 72.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178
	u32 scratch_addr =
179
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214
	u32 scratch_addr =
215
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288
	u32 scratch_addr =
289
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr =
374
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375
	u32 flags = 0;
376
	int ret;
B
Ben Widawsky 已提交
377 378 379

	flags |= PIPE_CONTROL_CS_STALL;

380
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
381 382
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
385
	}
386
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
387 388 389 390 391 392 393 394
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 396

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397
		ret = gen8_emit_pipe_control(req,
398 399 400 401 402
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
403 404
	}

405
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
406 407
}

408
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
409
{
410
	struct drm_i915_private *dev_priv = engine->i915;
411 412 413
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
414
	if (INTEL_GEN(dev_priv) >= 4)
415 416 417 418
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

419
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
420
{
421
	struct drm_i915_private *dev_priv = engine->i915;
422
	i915_reg_t mmio;
423 424 425 426

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
427
	if (IS_GEN7(dev_priv)) {
428
		switch (engine->id) {
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
447
	} else if (IS_GEN6(dev_priv)) {
448
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
449 450
	} else {
		/* XXX: gen8 returns to sanity */
451
		mmio = RING_HWS_PGA(engine->mmio_base);
452 453
	}

454
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
455 456 457 458 459 460 461 462 463
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
464
	if (IS_GEN(dev_priv, 6, 7)) {
465
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
466 467

		/* ring should be idle before issuing a sync flush*/
468
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
469 470 471 472

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
473 474 475
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
476
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
477
				  engine->name);
478 479 480
	}
}

481
static bool stop_ring(struct intel_engine_cs *engine)
482
{
483
	struct drm_i915_private *dev_priv = engine->i915;
484

485
	if (INTEL_GEN(dev_priv) > 2) {
486
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487 488 489 490 491
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
492 493
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
494 495 496 497
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
498
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
499
				return false;
500 501
		}
	}
502

503 504
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
505
	I915_WRITE_TAIL(engine, 0);
506

507
	if (INTEL_GEN(dev_priv) > 2) {
508 509
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
510
	}
511

512
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
513
}
514

515
static int init_ring_common(struct intel_engine_cs *engine)
516
{
517
	struct drm_i915_private *dev_priv = engine->i915;
518
	struct intel_ring *ring = engine->buffer;
519 520
	int ret = 0;

521
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
522

523
	if (!stop_ring(engine)) {
524
		/* G45 ring initialization often fails to reset head to zero */
525 526
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
527 528 529 530 531
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
532

533
		if (!stop_ring(engine)) {
534 535
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
536 537 538 539 540
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
541 542
			ret = -EIO;
			goto out;
543
		}
544 545
	}

546
	if (HWS_NEEDS_PHYSICAL(dev_priv))
547
		ring_setup_phys_status_page(engine);
548 549
	else
		intel_ring_setup_status_page(engine);
550

551
	intel_engine_reset_breadcrumbs(engine);
552

553
	/* Enforce ordering by reading HEAD register back */
554
	I915_READ_HEAD(engine);
555

556 557 558 559
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
560
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
561 562

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
563
	if (I915_READ_HEAD(engine))
564
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565
			  engine->name, I915_READ_HEAD(engine));
566 567 568 569 570

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
571

572
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
573 574

	/* If the head is still not zero, the ring is dead */
575 576 577
	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
				       RING_VALID, RING_VALID,
				       50)) {
578
		DRM_ERROR("%s initialization failed "
579
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
580 581 582
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
583 584
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
585
			  I915_READ_START(engine),
586
			  i915_ggtt_offset(ring->vma));
587 588
		ret = -EIO;
		goto out;
589 590
	}

591
	intel_engine_init_hangcheck(engine);
592

593
out:
594
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
595 596

	return ret;
597 598
}

599 600 601 602 603 604 605 606 607
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct intel_ring *ring = request->ring;

	ring->head = request->postfix;
	ring->last_retired_head = -1;
}

608
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
609
{
610
	struct intel_ring *ring = req->ring;
611 612
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
613

614
	if (w->count == 0)
615
		return 0;
616

617
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
618 619
	if (ret)
		return ret;
620

621
	ret = intel_ring_begin(req, (w->count * 2 + 2));
622 623 624
	if (ret)
		return ret;

625
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
626
	for (i = 0; i < w->count; i++) {
627 628
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
629
	}
630
	intel_ring_emit(ring, MI_NOOP);
631

632
	intel_ring_advance(ring);
633

634
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
635 636
	if (ret)
		return ret;
637

638
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
639

640
	return 0;
641 642
}

643
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
644 645 646
{
	int ret;

647
	ret = intel_ring_workarounds_emit(req);
648 649 650
	if (ret != 0)
		return ret;

651
	ret = i915_gem_render_state_emit(req);
652
	if (ret)
653
		return ret;
654

655
	return 0;
656 657
}

658
static int wa_add(struct drm_i915_private *dev_priv,
659 660
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
661 662 663 664 665 666 667 668 669 670 671 672 673
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
674 675
}

676
#define WA_REG(addr, mask, val) do { \
677
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
678 679
		if (r) \
			return r; \
680
	} while (0)
681 682

#define WA_SET_BIT_MASKED(addr, mask) \
683
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
684 685

#define WA_CLR_BIT_MASKED(addr, mask) \
686
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
687

688
#define WA_SET_FIELD_MASKED(addr, mask, value) \
689
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
690

691 692
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
693

694
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
695

696 697
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
698
{
699
	struct drm_i915_private *dev_priv = engine->i915;
700
	struct i915_workarounds *wa = &dev_priv->workarounds;
701
	const uint32_t index = wa->hw_whitelist_count[engine->id];
702 703 704 705

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

706
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
707
		 i915_mmio_reg_offset(reg));
708
	wa->hw_whitelist_count[engine->id]++;
709 710 711 712

	return 0;
}

713
static int gen8_init_workarounds(struct intel_engine_cs *engine)
714
{
715
	struct drm_i915_private *dev_priv = engine->i915;
716 717

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
718

719 720 721
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

722 723 724 725
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

726 727 728 729 730
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
731
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
732
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
733
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
734 735
			  HDC_FORCE_NON_COHERENT);

736 737 738 739 740 741 742 743 744 745
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

746 747 748
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

749 750 751 752 753 754 755 756 757 758 759 760
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

761 762 763
	return 0;
}

764
static int bdw_init_workarounds(struct intel_engine_cs *engine)
765
{
766
	struct drm_i915_private *dev_priv = engine->i915;
767
	int ret;
768

769
	ret = gen8_init_workarounds(engine);
770 771 772
	if (ret)
		return ret;

773
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
774
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
775

776
	/* WaDisableDopClockGating:bdw */
777 778
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
779

780 781
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
782

783
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
784 785 786
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
787
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
788 789 790 791

	return 0;
}

792
static int chv_init_workarounds(struct intel_engine_cs *engine)
793
{
794
	struct drm_i915_private *dev_priv = engine->i915;
795
	int ret;
796

797
	ret = gen8_init_workarounds(engine);
798 799 800
	if (ret)
		return ret;

801
	/* WaDisableThreadStallDopClockGating:chv */
802
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
803

804 805 806
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

807 808 809
	return 0;
}

810
static int gen9_init_workarounds(struct intel_engine_cs *engine)
811
{
812
	struct drm_i915_private *dev_priv = engine->i915;
813
	int ret;
814

815 816 817
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

818
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
819 820 821
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

822
	/* WaDisableKillLogic:bxt,skl,kbl */
823 824 825
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

826 827
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
828
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
829
			  FLOW_CONTROL_ENABLE |
830 831
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

832
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
833 834 835
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

836 837
	/* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
838 839
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
840

841 842
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
843 844
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
845 846 847 848 849
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
850 851
	}

852
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
853 854
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_GPGPU_PREEMPTION);
855

856 857
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
858 859
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
860

861
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
862 863 864
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

865 866
	/* WaDisableMaskBasedCammingInRCC:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
867 868 869
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

870 871 872 873
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
874

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

896 897 898 899
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
900 901 902
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

903
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
904 905
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

906
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
907 908 909
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

910 911 912 913 914
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

915
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
916
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
917 918 919
	if (ret)
		return ret;

920
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
921
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
922 923 924
	if (ret)
		return ret;

925 926 927
	return 0;
}

928
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
929
{
930
	struct drm_i915_private *dev_priv = engine->i915;
931 932 933 934 935 936 937 938 939 940
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
941
		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
942 943 944 945 946 947 948 949
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
950
		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

969
static int skl_init_workarounds(struct intel_engine_cs *engine)
970
{
971
	struct drm_i915_private *dev_priv = engine->i915;
972
	int ret;
973

974
	ret = gen9_init_workarounds(engine);
975 976
	if (ret)
		return ret;
977

978 979 980 981 982
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
983 984
	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
985

986
	/* WaEnableGapsTsvCreditFix:skl */
987 988
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));
989

990 991 992
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

993 994 995 996 997
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

998
	/* WaDisableLSQCROPERFforOCL:skl */
999
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1000 1001 1002
	if (ret)
		return ret;

1003
	return skl_tune_iz_hashing(engine);
1004 1005
}

1006
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1007
{
1008
	struct drm_i915_private *dev_priv = engine->i915;
1009
	int ret;
1010

1011
	ret = gen9_init_workarounds(engine);
1012 1013
	if (ret)
		return ret;
1014

1015 1016
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1017
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1018 1019 1020
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1021
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1022 1023 1024 1025
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1026 1027 1028 1029
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1030 1031 1032 1033 1034 1035
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1036
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1037
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1038 1039 1040 1041 1042
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1043 1044 1045
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1046
	/* WaDisableLSQCROPERFforOCL:bxt */
1047
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1048
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1049 1050
		if (ret)
			return ret;
1051

1052
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1053 1054
		if (ret)
			return ret;
1055 1056
	}

1057
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1058
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1059 1060
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1061

1062 1063
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1064 1065 1066
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1067 1068 1069 1070 1071
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1072 1073 1074
	return 0;
}

1075 1076
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1077
	struct drm_i915_private *dev_priv = engine->i915;
1078 1079 1080 1081 1082 1083
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1084 1085 1086 1087
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1088 1089 1090 1091 1092
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1093 1094 1095 1096 1097
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1098 1099 1100 1101 1102 1103 1104 1105
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1106 1107
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1108 1109 1110
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1111 1112 1113
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1114 1115 1116 1117 1118
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1119 1120 1121 1122
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1123 1124 1125 1126 1127
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1128 1129 1130
	return 0;
}

1131
int init_workarounds_ring(struct intel_engine_cs *engine)
1132
{
1133
	struct drm_i915_private *dev_priv = engine->i915;
1134

1135
	WARN_ON(engine->id != RCS);
1136 1137

	dev_priv->workarounds.count = 0;
1138
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1139

1140
	if (IS_BROADWELL(dev_priv))
1141
		return bdw_init_workarounds(engine);
1142

1143
	if (IS_CHERRYVIEW(dev_priv))
1144
		return chv_init_workarounds(engine);
1145

1146
	if (IS_SKYLAKE(dev_priv))
1147
		return skl_init_workarounds(engine);
1148

1149
	if (IS_BROXTON(dev_priv))
1150
		return bxt_init_workarounds(engine);
1151

1152 1153 1154
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1155 1156 1157
	return 0;
}

1158
static int init_render_ring(struct intel_engine_cs *engine)
1159
{
1160
	struct drm_i915_private *dev_priv = engine->i915;
1161
	int ret = init_ring_common(engine);
1162 1163
	if (ret)
		return ret;
1164

1165
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1166
	if (IS_GEN(dev_priv, 4, 6))
1167
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1168 1169 1170 1171

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1172
	 *
1173
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1174
	 */
1175
	if (IS_GEN(dev_priv, 6, 7))
1176 1177
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1178
	/* Required for the hardware to program scanline values for waiting */
1179
	/* WaEnableFlushTlbInvalidationMode:snb */
1180
	if (IS_GEN6(dev_priv))
1181
		I915_WRITE(GFX_MODE,
1182
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1183

1184
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1185
	if (IS_GEN7(dev_priv))
1186
		I915_WRITE(GFX_MODE_GEN7,
1187
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1188
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1189

1190
	if (IS_GEN6(dev_priv)) {
1191 1192 1193 1194 1195 1196
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1197
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1198 1199
	}

1200
	if (IS_GEN(dev_priv, 6, 7))
1201
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1202

1203 1204
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1205

1206
	return init_workarounds_ring(engine);
1207 1208
}

1209
static void render_ring_cleanup(struct intel_engine_cs *engine)
1210
{
1211
	struct drm_i915_private *dev_priv = engine->i915;
1212

1213
	i915_vma_unpin_and_release(&dev_priv->semaphore);
1214 1215
}

C
Chris Wilson 已提交
1216
static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
1217
{
1218
	struct drm_i915_private *dev_priv = req->i915;
1219
	struct intel_engine_cs *waiter;
1220
	enum intel_engine_id id;
1221

1222
	for_each_engine(waiter, dev_priv, id) {
1223
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1224 1225 1226
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

C
Chris Wilson 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		*out++ = GFX_OP_PIPE_CONTROL(6);
		*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
			  PIPE_CONTROL_QW_WRITE |
			  PIPE_CONTROL_CS_STALL);
		*out++ = lower_32_bits(gtt_offset);
		*out++ = upper_32_bits(gtt_offset);
		*out++ = req->global_seqno;
		*out++ = 0;
		*out++ = (MI_SEMAPHORE_SIGNAL |
			  MI_SEMAPHORE_TARGET(waiter->hw_id));
		*out++ = 0;
1238 1239
	}

C
Chris Wilson 已提交
1240
	return out;
1241 1242
}

C
Chris Wilson 已提交
1243
static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
1244
{
1245
	struct drm_i915_private *dev_priv = req->i915;
1246
	struct intel_engine_cs *waiter;
1247
	enum intel_engine_id id;
1248

1249
	for_each_engine(waiter, dev_priv, id) {
1250
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1251 1252 1253
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

C
Chris Wilson 已提交
1254 1255 1256 1257 1258 1259 1260
		*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
		*out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
		*out++ = upper_32_bits(gtt_offset);
		*out++ = req->global_seqno;
		*out++ = (MI_SEMAPHORE_SIGNAL |
			  MI_SEMAPHORE_TARGET(waiter->hw_id));
		*out++ = 0;
1261 1262
	}

C
Chris Wilson 已提交
1263
	return out;
1264 1265
}

C
Chris Wilson 已提交
1266
static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
1267
{
1268
	struct drm_i915_private *dev_priv = req->i915;
1269
	struct intel_engine_cs *engine;
1270
	enum intel_engine_id id;
C
Chris Wilson 已提交
1271
	int num_rings = 0;
1272

1273
	for_each_engine(engine, dev_priv, id) {
1274 1275 1276 1277
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
1278

1279
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1280
		if (i915_mmio_reg_valid(mbox_reg)) {
C
Chris Wilson 已提交
1281 1282 1283 1284
			*out++ = MI_LOAD_REGISTER_IMM(1);
			*out++ = i915_mmio_reg_offset(mbox_reg);
			*out++ = req->global_seqno;
			num_rings++;
1285 1286
		}
	}
C
Chris Wilson 已提交
1287 1288
	if (num_rings & 1)
		*out++ = MI_NOOP;
1289

C
Chris Wilson 已提交
1290
	return out;
1291 1292
}

1293 1294 1295 1296
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

C
Chris Wilson 已提交
1297
	I915_WRITE_TAIL(request->engine, request->tail);
1298 1299
}

C
Chris Wilson 已提交
1300 1301
static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
				 u32 *out)
1302
{
C
Chris Wilson 已提交
1303 1304 1305 1306
	*out++ = MI_STORE_DWORD_INDEX;
	*out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
	*out++ = req->global_seqno;
	*out++ = MI_USER_INTERRUPT;
1307

C
Chris Wilson 已提交
1308
	req->tail = intel_ring_offset(req->ring, out);
1309 1310
}

1311 1312
static const int i9xx_emit_breadcrumb_sz = 4;

1313
/**
1314
 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
1315 1316 1317 1318 1319 1320
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
C
Chris Wilson 已提交
1321 1322
static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
				      u32 *out)
1323
{
C
Chris Wilson 已提交
1324 1325
	return i9xx_emit_breadcrumb(req,
				    req->engine->semaphore.signal(req, out));
1326 1327
}

C
Chris Wilson 已提交
1328 1329
static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
					u32 *out)
1330 1331
{
	struct intel_engine_cs *engine = req->engine;
1332

C
Chris Wilson 已提交
1333 1334
	if (engine->semaphore.signal)
		out = engine->semaphore.signal(req, out);
1335

C
Chris Wilson 已提交
1336 1337
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1338
			       PIPE_CONTROL_CS_STALL |
C
Chris Wilson 已提交
1339 1340 1341 1342
			       PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(engine);
	*out++ = 0;
	*out++ = req->global_seqno;
1343
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1344 1345 1346
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
1347

C
Chris Wilson 已提交
1348
	req->tail = intel_ring_offset(req->ring, out);
1349 1350
}

1351 1352
static const int gen8_render_emit_breadcrumb_sz = 8;

1353 1354 1355 1356 1357 1358 1359
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1360 1361

static int
1362 1363
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1364
{
1365 1366 1367
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1368
	struct i915_hw_ppgtt *ppgtt;
1369 1370
	int ret;

1371
	ret = intel_ring_begin(req, 4);
1372 1373 1374
	if (ret)
		return ret;

1375 1376 1377 1378
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
1379
	intel_ring_emit(ring, signal->global_seqno);
1380 1381 1382
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1383 1384 1385 1386 1387 1388

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1389 1390 1391
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1392 1393 1394
	return 0;
}

1395
static int
1396 1397
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1398
{
1399
	struct intel_ring *ring = req->ring;
1400 1401 1402
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1403
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1404
	int ret;
1405

1406
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1407

1408
	ret = intel_ring_begin(req, 4);
1409 1410 1411
	if (ret)
		return ret;

1412
	intel_ring_emit(ring, dw1 | wait_mbox);
1413 1414 1415 1416
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1417
	intel_ring_emit(ring, signal->global_seqno - 1);
1418 1419 1420
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1421 1422 1423 1424

	return 0;
}

1425
static void
1426
gen5_seqno_barrier(struct intel_engine_cs *engine)
1427
{
1428 1429 1430
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1431
	 *
1432 1433 1434 1435 1436 1437 1438
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1439
	 */
1440
	usleep_range(125, 250);
1441 1442
}

1443 1444
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1445
{
1446
	struct drm_i915_private *dev_priv = engine->i915;
1447

1448 1449
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1450 1451 1452 1453 1454 1455 1456 1457 1458
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1459 1460 1461
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1462
	 */
1463
	spin_lock_irq(&dev_priv->uncore.lock);
1464
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1465
	spin_unlock_irq(&dev_priv->uncore.lock);
1466 1467
}

1468 1469
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1470
{
1471
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1472 1473 1474
}

static void
1475
gen5_irq_disable(struct intel_engine_cs *engine)
1476
{
1477
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1478 1479
}

1480 1481
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1482
{
1483
	struct drm_i915_private *dev_priv = engine->i915;
1484

1485 1486 1487
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1488 1489
}

1490
static void
1491
i9xx_irq_disable(struct intel_engine_cs *engine)
1492
{
1493
	struct drm_i915_private *dev_priv = engine->i915;
1494

1495 1496
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1497 1498
}

1499 1500
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1501
{
1502
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1503

1504 1505 1506
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1507 1508 1509
}

static void
1510
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1511
{
1512
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1513

1514 1515
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1516 1517
}

1518
static int
1519
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1520
{
1521
	struct intel_ring *ring = req->ring;
1522 1523
	int ret;

1524
	ret = intel_ring_begin(req, 2);
1525 1526 1527
	if (ret)
		return ret;

1528 1529 1530
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1531
	return 0;
1532 1533
}

1534 1535
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1536
{
1537
	struct drm_i915_private *dev_priv = engine->i915;
1538

1539 1540 1541
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1542
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1543 1544 1545
}

static void
1546
gen6_irq_disable(struct intel_engine_cs *engine)
1547
{
1548
	struct drm_i915_private *dev_priv = engine->i915;
1549

1550
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1551
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1552 1553
}

1554 1555
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1556
{
1557
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1558

1559
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1560
	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1561 1562 1563
}

static void
1564
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1565
{
1566
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1567

1568
	I915_WRITE_IMR(engine, ~0);
1569
	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1570 1571
}

1572 1573
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1574
{
1575
	struct drm_i915_private *dev_priv = engine->i915;
1576

1577 1578 1579
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1580
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1581 1582 1583
}

static void
1584
gen8_irq_disable(struct intel_engine_cs *engine)
1585
{
1586
	struct drm_i915_private *dev_priv = engine->i915;
1587

1588
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1589 1590
}

1591
static int
1592 1593 1594
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1595
{
1596
	struct intel_ring *ring = req->ring;
1597
	int ret;
1598

1599
	ret = intel_ring_begin(req, 2);
1600 1601 1602
	if (ret)
		return ret;

1603
	intel_ring_emit(ring,
1604 1605
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1606 1607
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1608 1609
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1610

1611 1612 1613
	return 0;
}

1614 1615
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1616 1617
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1618
static int
1619 1620 1621
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1622
{
1623
	struct intel_ring *ring = req->ring;
1624
	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1625
	int ret;
1626

1627
	ret = intel_ring_begin(req, 6);
1628 1629
	if (ret)
		return ret;
1630

1631
	/* Evict the invalid PTE TLBs */
1632 1633 1634 1635 1636 1637 1638
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1639

1640
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1641 1642 1643
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1644
		ret = intel_ring_begin(req, 6 + 2);
1645 1646
		if (ret)
			return ret;
1647 1648 1649 1650 1651

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1652 1653
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1654
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1655 1656 1657 1658
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1659

1660 1661 1662
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1663 1664

		/* ... and execute it. */
1665
		offset = cs_offset;
1666
	}
1667

1668
	ret = intel_ring_begin(req, 2);
1669 1670 1671
	if (ret)
		return ret;

1672 1673 1674 1675
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1676

1677 1678 1679 1680
	return 0;
}

static int
1681 1682 1683
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1684
{
1685
	struct intel_ring *ring = req->ring;
1686 1687
	int ret;

1688
	ret = intel_ring_begin(req, 2);
1689 1690 1691
	if (ret)
		return ret;

1692 1693 1694 1695
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1696 1697 1698 1699

	return 0;
}

1700
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1701
{
1702
	struct drm_i915_private *dev_priv = engine->i915;
1703 1704 1705 1706

	if (!dev_priv->status_page_dmah)
		return;

1707
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1708
	engine->status_page.page_addr = NULL;
1709 1710
}

1711
static void cleanup_status_page(struct intel_engine_cs *engine)
1712
{
1713
	struct i915_vma *vma;
1714
	struct drm_i915_gem_object *obj;
1715

1716 1717
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1718 1719
		return;

1720 1721
	obj = vma->obj;

1722
	i915_vma_unpin(vma);
1723 1724 1725 1726
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
1727 1728
}

1729
static int init_status_page(struct intel_engine_cs *engine)
1730
{
1731 1732 1733
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
1734
	void *vaddr;
1735
	int ret;
1736

1737
	obj = i915_gem_object_create_internal(engine->i915, 4096);
1738 1739 1740 1741
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1742

1743 1744 1745
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1746

1747 1748 1749 1750
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1751
	}
1752

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1769

1770 1771 1772 1773 1774 1775
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

1776
	engine->status_page.vma = vma;
1777
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1778
	engine->status_page.page_addr = memset(vaddr, 0, 4096);
1779

1780 1781
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1782
	return 0;
1783

1784 1785
err_unpin:
	i915_vma_unpin(vma);
1786 1787 1788
err:
	i915_gem_object_put(obj);
	return ret;
1789 1790
}

1791
static int init_phys_status_page(struct intel_engine_cs *engine)
1792
{
1793
	struct drm_i915_private *dev_priv = engine->i915;
1794

1795 1796 1797 1798
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1799

1800 1801
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1802 1803 1804 1805

	return 0;
}

1806
int intel_ring_pin(struct intel_ring *ring)
1807
{
1808
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1809
	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1810
	enum i915_map_type map;
1811
	struct i915_vma *vma = ring->vma;
1812
	void *addr;
1813 1814
	int ret;

1815
	GEM_BUG_ON(ring->vaddr);
1816

1817 1818 1819
	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;

	if (vma->obj->stolen)
1820
		flags |= PIN_MAPPABLE;
1821

1822
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1823
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1824 1825 1826 1827
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1828
			return ret;
1829
	}
1830

1831 1832 1833
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1834

1835
	if (i915_vma_is_map_and_fenceable(vma))
1836 1837
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1838
		addr = i915_gem_object_pin_map(vma->obj, map);
1839 1840
	if (IS_ERR(addr))
		goto err;
1841

1842
	ring->vaddr = addr;
1843
	return 0;
1844

1845 1846 1847
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1848 1849
}

1850 1851 1852 1853 1854
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1855
	if (i915_vma_is_map_and_fenceable(ring->vma))
1856
		i915_vma_unpin_iomap(ring->vma);
1857 1858
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1859 1860
	ring->vaddr = NULL;

1861
	i915_vma_unpin(ring->vma);
1862 1863
}

1864 1865
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1866
{
1867
	struct drm_i915_gem_object *obj;
1868
	struct i915_vma *vma;
1869

1870 1871
	obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
	if (!obj)
1872 1873 1874
		obj = i915_gem_object_create(&dev_priv->drm, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1875

1876 1877 1878
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1879 1880 1881 1882 1883
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	return vma;
1884

1885 1886 1887
err:
	i915_gem_object_put(obj);
	return vma;
1888 1889
}

1890 1891
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1892
{
1893
	struct intel_ring *ring;
1894
	struct i915_vma *vma;
1895

1896
	GEM_BUG_ON(!is_power_of_2(size));
1897
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1898

1899
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1900
	if (!ring)
1901 1902
		return ERR_PTR(-ENOMEM);

1903
	ring->engine = engine;
1904

1905 1906
	INIT_LIST_HEAD(&ring->request_list);

1907 1908 1909 1910 1911 1912
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1913
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
1914 1915 1916 1917 1918
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

1919 1920
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1921
		kfree(ring);
1922
		return ERR_CAST(vma);
1923
	}
1924
	ring->vma = vma;
1925 1926 1927 1928 1929

	return ring;
}

void
1930
intel_ring_free(struct intel_ring *ring)
1931
{
1932 1933 1934 1935 1936
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1937 1938 1939
	kfree(ring);
}

1940 1941 1942 1943 1944 1945
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

1946
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1947 1948 1949 1950 1951

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
1952
		struct i915_vma *vma;
1953

1954 1955 1956
		vma = i915_gem_context_pin_legacy(ctx, PIN_HIGH);
		if (IS_ERR(vma)) {
			ret = PTR_ERR(vma);
1957
			goto error;
1958
		}
1959 1960
	}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

1971
	i915_gem_context_get(ctx);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

1984
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1985 1986 1987 1988 1989

	if (--ce->pin_count)
		return;

	if (ce->state)
1990
		i915_vma_unpin(ce->state);
1991

1992
	i915_gem_context_put(ctx);
1993 1994
}

1995
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1996
{
1997
	struct drm_i915_private *dev_priv = engine->i915;
1998
	struct intel_ring *ring;
1999 2000
	int ret;

2001
	WARN_ON(engine->buffer);
2002

2003 2004 2005
	intel_engine_setup_common(engine);

	ret = intel_engine_init_common(engine);
2006 2007
	if (ret)
		goto error;
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2020 2021 2022
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2023 2024
		goto error;
	}
2025

2026 2027 2028
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2029
		if (ret)
2030
			goto error;
2031
	} else {
2032
		ret = init_status_page(engine);
2033
		if (ret)
2034
			goto error;
2035 2036
	}

2037
	ret = intel_ring_pin(ring);
2038
	if (ret) {
2039
		intel_ring_free(ring);
2040
		goto error;
2041
	}
2042
	engine->buffer = ring;
2043

2044
	return 0;
2045

2046
error:
2047
	intel_engine_cleanup(engine);
2048
	return ret;
2049 2050
}

2051
void intel_engine_cleanup(struct intel_engine_cs *engine)
2052
{
2053
	struct drm_i915_private *dev_priv;
2054

2055
	dev_priv = engine->i915;
2056

2057
	if (engine->buffer) {
2058 2059
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2060

2061
		intel_ring_unpin(engine->buffer);
2062
		intel_ring_free(engine->buffer);
2063
		engine->buffer = NULL;
2064
	}
2065

2066 2067
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2068

2069
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2070 2071
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2072 2073
	} else {
		cleanup_status_page(engine);
2074
	}
2075

2076
	intel_engine_cleanup_common(engine);
2077 2078 2079

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2080
	engine->i915 = NULL;
2081 2082
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2083 2084
}

2085 2086 2087
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
2088
	enum intel_engine_id id;
2089

2090
	for_each_engine(engine, dev_priv, id) {
2091 2092 2093 2094 2095
		engine->buffer->head = engine->buffer->tail;
		engine->buffer->last_retired_head = -1;
	}
}

2096
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2097
{
2098 2099 2100 2101 2102 2103
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2104
	request->reserved_space += LEGACY_REQUEST_SIZE;
2105

2106
	request->ring = request->engine->buffer;
2107 2108 2109 2110 2111

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2112
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2113
	return 0;
2114 2115
}

2116 2117
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2118
	struct intel_ring *ring = req->ring;
2119
	struct drm_i915_gem_request *target;
2120 2121 2122
	long timeout;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
2123

2124 2125
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2137
	GEM_BUG_ON(!req->reserved_space);
2138

2139
	list_for_each_entry(target, &ring->request_list, ring_link) {
2140 2141 2142
		unsigned space;

		/* Would completion of this request free enough space? */
2143 2144
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2145 2146
		if (space >= bytes)
			break;
2147
	}
2148

2149
	if (WARN_ON(&target->ring_link == &ring->request_list))
2150 2151
		return -ENOSPC;

2152 2153 2154 2155 2156
	timeout = i915_wait_request(target,
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
2157 2158 2159 2160 2161 2162

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2163 2164
}

2165
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2166
{
2167
	struct intel_ring *ring = req->ring;
2168 2169
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2170 2171
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2172
	bool need_wrap = false;
2173

2174
	total_bytes = bytes + req->reserved_space;
2175

2176 2177 2178 2179 2180 2181 2182
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2183 2184 2185 2186 2187 2188 2189
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2190
		wait_bytes = remain_actual + req->reserved_space;
2191
	} else {
2192 2193
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2194 2195
	}

2196
	if (wait_bytes > ring->space) {
2197
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2198 2199 2200 2201
		if (unlikely(ret))
			return ret;
	}

2202
	if (unlikely(need_wrap)) {
2203 2204
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2205

2206
		/* Fill the tail with MI_NOOP */
2207 2208 2209
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2210
	}
2211

2212 2213
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2214
	return 0;
2215
}
2216

2217
/* Align the ring tail to a cacheline boundary */
2218
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2219
{
2220
	struct intel_ring *ring = req->ring;
2221 2222
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2223 2224 2225 2226 2227
	int ret;

	if (num_dwords == 0)
		return 0;

2228
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2229
	ret = intel_ring_begin(req, num_dwords);
2230 2231 2232 2233
	if (ret)
		return ret;

	while (num_dwords--)
2234
		intel_ring_emit(ring, MI_NOOP);
2235

2236
	intel_ring_advance(ring);
2237 2238 2239 2240

	return 0;
}

2241
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2242
{
2243
	struct drm_i915_private *dev_priv = request->i915;
2244

2245 2246
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2247
       /* Every tail move must follow the sequence below */
2248 2249 2250 2251

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2252 2253
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2254 2255

	/* Clear the context id. Here be magic! */
2256
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2257

2258
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2259 2260 2261 2262 2263
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2264
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2265

2266
	/* Now that the ring is fully powered up, update the tail */
2267
	i9xx_submit_request(request);
2268 2269 2270 2271

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2272 2273 2274 2275
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2276 2277
}

2278
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2279
{
2280
	struct intel_ring *ring = req->ring;
2281
	uint32_t cmd;
2282 2283
	int ret;

2284
	ret = intel_ring_begin(req, 4);
2285 2286 2287
	if (ret)
		return ret;

2288
	cmd = MI_FLUSH_DW;
2289
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2290
		cmd += 1;
2291 2292 2293 2294 2295 2296 2297 2298

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2299 2300 2301 2302 2303 2304
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2305
	if (mode & EMIT_INVALIDATE)
2306 2307
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2308 2309
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2310
	if (INTEL_GEN(req->i915) >= 8) {
2311 2312
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2313
	} else  {
2314 2315
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2316
	}
2317
	intel_ring_advance(ring);
2318
	return 0;
2319 2320
}

2321
static int
2322 2323 2324
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2325
{
2326
	struct intel_ring *ring = req->ring;
2327
	bool ppgtt = USES_PPGTT(req->i915) &&
2328
			!(dispatch_flags & I915_DISPATCH_SECURE);
2329 2330
	int ret;

2331
	ret = intel_ring_begin(req, 4);
2332 2333 2334 2335
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2336
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2337 2338
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2339 2340 2341 2342
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2343 2344 2345 2346

	return 0;
}

2347
static int
2348 2349 2350
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2351
{
2352
	struct intel_ring *ring = req->ring;
2353 2354
	int ret;

2355
	ret = intel_ring_begin(req, 2);
2356 2357 2358
	if (ret)
		return ret;

2359
	intel_ring_emit(ring,
2360
			MI_BATCH_BUFFER_START |
2361
			(dispatch_flags & I915_DISPATCH_SECURE ?
2362 2363 2364
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2365
	/* bit0-7 is the length on GEN6+ */
2366 2367
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2368 2369 2370 2371

	return 0;
}

2372
static int
2373 2374 2375
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2376
{
2377
	struct intel_ring *ring = req->ring;
2378
	int ret;
2379

2380
	ret = intel_ring_begin(req, 2);
2381 2382
	if (ret)
		return ret;
2383

2384
	intel_ring_emit(ring,
2385
			MI_BATCH_BUFFER_START |
2386 2387
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2388
	/* bit0-7 is the length on GEN6+ */
2389 2390
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2391

2392
	return 0;
2393 2394
}

2395 2396
/* Blitter support (SandyBridge+) */

2397
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2398
{
2399
	struct intel_ring *ring = req->ring;
2400
	uint32_t cmd;
2401 2402
	int ret;

2403
	ret = intel_ring_begin(req, 4);
2404 2405 2406
	if (ret)
		return ret;

2407
	cmd = MI_FLUSH_DW;
2408
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2409
		cmd += 1;
2410 2411 2412 2413 2414 2415 2416 2417

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2418 2419 2420 2421 2422 2423
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2424
	if (mode & EMIT_INVALIDATE)
2425
		cmd |= MI_INVALIDATE_TLB;
2426 2427
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2428
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2429
	if (INTEL_GEN(req->i915) >= 8) {
2430 2431
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2432
	} else  {
2433 2434
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2435
	}
2436
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2437

2438
	return 0;
Z
Zou Nan hai 已提交
2439 2440
}

2441 2442 2443
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2444
	struct drm_i915_gem_object *obj;
2445
	int ret, i;
2446

2447
	if (!i915.semaphores)
2448 2449
		return;

2450 2451 2452
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

2453
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2454 2455
		if (IS_ERR(obj))
			goto err;
2456

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
2471 2472

	if (INTEL_GEN(dev_priv) >= 8) {
2473
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2474

2475
		engine->semaphore.sync_to = gen8_ring_sync_to;
2476
		engine->semaphore.signal = gen8_xcs_signal;
2477 2478

		for (i = 0; i < I915_NUM_ENGINES; i++) {
2479
			u32 ring_offset;
2480 2481 2482 2483 2484 2485 2486 2487

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2488
	} else if (INTEL_GEN(dev_priv) >= 6) {
2489
		engine->semaphore.sync_to = gen6_ring_sync_to;
2490
		engine->semaphore.signal = gen6_signal;
2491 2492 2493 2494 2495 2496 2497 2498

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
2499
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2500 2501 2502
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
2503 2504 2505 2506 2507
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2508
				},
2509 2510 2511 2512
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2513
				},
2514 2515 2516 2517
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2518
				},
2519 2520 2521 2522
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2523 2524 2525 2526 2527
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

2528
			if (i == engine->hw_id) {
2529 2530 2531
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2532 2533
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2534 2535 2536 2537 2538
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2539
	}
2540 2541 2542 2543 2544 2545 2546 2547

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2548 2549
}

2550 2551 2552
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2553 2554
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2555
	if (INTEL_GEN(dev_priv) >= 8) {
2556 2557
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2558 2559
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2560 2561
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2562 2563
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2564 2565
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2566
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2567
	} else if (INTEL_GEN(dev_priv) >= 3) {
2568 2569
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2570
	} else {
2571 2572
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2573 2574 2575
	}
}

2576 2577 2578
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2579 2580 2581
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2582
	engine->init_hw = init_ring_common;
2583
	engine->reset_hw = reset_ring_common;
2584

2585
	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2586 2587 2588 2589
	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
	if (i915.semaphores) {
		int num_rings;

2590
		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600

		num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
		if (INTEL_GEN(dev_priv) >= 8) {
			engine->emit_breadcrumb_sz += num_rings * 6;
		} else {
			engine->emit_breadcrumb_sz += num_rings * 3;
			if (num_rings & 1)
				engine->emit_breadcrumb_sz++;
		}
	}
2601
	engine->submit_request = i9xx_submit_request;
2602 2603

	if (INTEL_GEN(dev_priv) >= 8)
2604
		engine->emit_bb_start = gen8_emit_bb_start;
2605
	else if (INTEL_GEN(dev_priv) >= 6)
2606
		engine->emit_bb_start = gen6_emit_bb_start;
2607
	else if (INTEL_GEN(dev_priv) >= 4)
2608
		engine->emit_bb_start = i965_emit_bb_start;
2609
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2610
		engine->emit_bb_start = i830_emit_bb_start;
2611
	else
2612
		engine->emit_bb_start = i915_emit_bb_start;
2613 2614
}

2615
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2616
{
2617
	struct drm_i915_private *dev_priv = engine->i915;
2618
	int ret;
2619

2620 2621
	intel_ring_default_vfuncs(dev_priv, engine);

2622 2623
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2624

2625
	if (INTEL_GEN(dev_priv) >= 8) {
2626
		engine->init_context = intel_rcs_ctx_init;
2627
		engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2628
		engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2629
		engine->emit_flush = gen8_render_ring_flush;
2630 2631 2632
		if (i915.semaphores) {
			int num_rings;

2633
			engine->semaphore.signal = gen8_rcs_signal;
2634 2635 2636 2637 2638

			num_rings =
				hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
			engine->emit_breadcrumb_sz += num_rings * 6;
		}
2639
	} else if (INTEL_GEN(dev_priv) >= 6) {
2640
		engine->init_context = intel_rcs_ctx_init;
2641
		engine->emit_flush = gen7_render_ring_flush;
2642
		if (IS_GEN6(dev_priv))
2643
			engine->emit_flush = gen6_render_ring_flush;
2644
	} else if (IS_GEN5(dev_priv)) {
2645
		engine->emit_flush = gen4_render_ring_flush;
2646
	} else {
2647
		if (INTEL_GEN(dev_priv) < 4)
2648
			engine->emit_flush = gen2_render_ring_flush;
2649
		else
2650
			engine->emit_flush = gen4_render_ring_flush;
2651
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2652
	}
B
Ben Widawsky 已提交
2653

2654
	if (IS_HASWELL(dev_priv))
2655
		engine->emit_bb_start = hsw_emit_bb_start;
2656

2657 2658
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2659

2660
	ret = intel_init_ring_buffer(engine);
2661 2662 2663
	if (ret)
		return ret;

2664
	if (INTEL_GEN(dev_priv) >= 6) {
2665
		ret = intel_engine_create_scratch(engine, 4096);
2666 2667 2668
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2669
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2670 2671 2672 2673 2674
		if (ret)
			return ret;
	}

	return 0;
2675 2676
}

2677
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2678
{
2679
	struct drm_i915_private *dev_priv = engine->i915;
2680

2681 2682
	intel_ring_default_vfuncs(dev_priv, engine);

2683
	if (INTEL_GEN(dev_priv) >= 6) {
2684
		/* gen6 bsd needs a special wa for tail updates */
2685
		if (IS_GEN6(dev_priv))
2686
			engine->submit_request = gen6_bsd_submit_request;
2687
		engine->emit_flush = gen6_bsd_ring_flush;
2688
		if (INTEL_GEN(dev_priv) < 8)
2689
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2690
	} else {
2691
		engine->mmio_base = BSD_RING_BASE;
2692
		engine->emit_flush = bsd_ring_flush;
2693
		if (IS_GEN5(dev_priv))
2694
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2695
		else
2696
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2697 2698
	}

2699
	return intel_init_ring_buffer(engine);
2700
}
2701

2702
/**
2703
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2704
 */
2705
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2706
{
2707
	struct drm_i915_private *dev_priv = engine->i915;
2708 2709 2710

	intel_ring_default_vfuncs(dev_priv, engine);

2711
	engine->emit_flush = gen6_bsd_ring_flush;
2712

2713
	return intel_init_ring_buffer(engine);
2714 2715
}

2716
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2717
{
2718
	struct drm_i915_private *dev_priv = engine->i915;
2719 2720 2721

	intel_ring_default_vfuncs(dev_priv, engine);

2722
	engine->emit_flush = gen6_ring_flush;
2723
	if (INTEL_GEN(dev_priv) < 8)
2724
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2725

2726
	return intel_init_ring_buffer(engine);
2727
}
2728

2729
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2730
{
2731
	struct drm_i915_private *dev_priv = engine->i915;
2732 2733 2734

	intel_ring_default_vfuncs(dev_priv, engine);

2735
	engine->emit_flush = gen6_ring_flush;
2736

2737
	if (INTEL_GEN(dev_priv) < 8) {
2738
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2739 2740
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2741
	}
B
Ben Widawsky 已提交
2742

2743
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2744
}