intel_ringbuffer.c 74.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178
	u32 scratch_addr =
179
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214
	u32 scratch_addr =
215
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288
	u32 scratch_addr =
289
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr =
374
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375
	u32 flags = 0;
376
	int ret;
B
Ben Widawsky 已提交
377 378 379

	flags |= PIPE_CONTROL_CS_STALL;

380
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
381 382
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
385
	}
386
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
387 388 389 390 391 392 393 394
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 396

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397
		ret = gen8_emit_pipe_control(req,
398 399 400 401 402
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
403 404
	}

405
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
406 407
}

408
u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
409
{
410
	struct drm_i915_private *dev_priv = engine->i915;
411
	u64 acthd;
412

413
	if (INTEL_GEN(dev_priv) >= 8)
414 415
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
416
	else if (INTEL_GEN(dev_priv) >= 4)
417
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
418 419 420 421
	else
		acthd = I915_READ(ACTHD);

	return acthd;
422 423
}

424
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
425
{
426
	struct drm_i915_private *dev_priv = engine->i915;
427 428 429
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
430
	if (INTEL_GEN(dev_priv) >= 4)
431 432 433 434
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

435
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
436
{
437
	struct drm_i915_private *dev_priv = engine->i915;
438
	i915_reg_t mmio;
439 440 441 442

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
443
	if (IS_GEN7(dev_priv)) {
444
		switch (engine->id) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
463
	} else if (IS_GEN6(dev_priv)) {
464
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
465 466
	} else {
		/* XXX: gen8 returns to sanity */
467
		mmio = RING_HWS_PGA(engine->mmio_base);
468 469
	}

470
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
471 472 473 474 475 476 477 478 479
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
480
	if (IS_GEN(dev_priv, 6, 7)) {
481
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
482 483

		/* ring should be idle before issuing a sync flush*/
484
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
485 486 487 488

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
489 490 491
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
492
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
493
				  engine->name);
494 495 496
	}
}

497
static bool stop_ring(struct intel_engine_cs *engine)
498
{
499
	struct drm_i915_private *dev_priv = engine->i915;
500

501
	if (INTEL_GEN(dev_priv) > 2) {
502
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
503 504 505 506 507
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
508 509
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
510 511 512 513
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
514
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
515
				return false;
516 517
		}
	}
518

519 520
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
521
	I915_WRITE_TAIL(engine, 0);
522

523
	if (INTEL_GEN(dev_priv) > 2) {
524 525
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
526
	}
527

528
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
529
}
530

531
static int init_ring_common(struct intel_engine_cs *engine)
532
{
533
	struct drm_i915_private *dev_priv = engine->i915;
534
	struct intel_ring *ring = engine->buffer;
535 536
	int ret = 0;

537
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
538

539
	if (!stop_ring(engine)) {
540
		/* G45 ring initialization often fails to reset head to zero */
541 542
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
543 544 545 546 547
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
548

549
		if (!stop_ring(engine)) {
550 551
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
552 553 554 555 556
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
557 558
			ret = -EIO;
			goto out;
559
		}
560 561
	}

562
	if (HWS_NEEDS_PHYSICAL(dev_priv))
563
		ring_setup_phys_status_page(engine);
564 565
	else
		intel_ring_setup_status_page(engine);
566

567 568
	intel_engine_reset_irq(engine);

569
	/* Enforce ordering by reading HEAD register back */
570
	I915_READ_HEAD(engine);
571

572 573 574 575
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
576
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
577 578

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
579
	if (I915_READ_HEAD(engine))
580
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
581
			  engine->name, I915_READ_HEAD(engine));
582 583 584 585 586

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
587

588
	I915_WRITE_CTL(engine,
589
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
590
			| RING_VALID);
591 592

	/* If the head is still not zero, the ring is dead */
593 594 595
	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
				       RING_VALID, RING_VALID,
				       50)) {
596
		DRM_ERROR("%s initialization failed "
597
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
598 599 600
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
601 602
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
603
			  I915_READ_START(engine),
604
			  i915_ggtt_offset(ring->vma));
605 606
		ret = -EIO;
		goto out;
607 608
	}

609
	intel_engine_init_hangcheck(engine);
610

611
out:
612
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
613 614

	return ret;
615 616
}

617 618 619 620 621 622 623 624 625
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct intel_ring *ring = request->ring;

	ring->head = request->postfix;
	ring->last_retired_head = -1;
}

626
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
627
{
628
	struct intel_ring *ring = req->ring;
629 630
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
631

632
	if (w->count == 0)
633
		return 0;
634

635
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
636 637
	if (ret)
		return ret;
638

639
	ret = intel_ring_begin(req, (w->count * 2 + 2));
640 641 642
	if (ret)
		return ret;

643
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
644
	for (i = 0; i < w->count; i++) {
645 646
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
647
	}
648
	intel_ring_emit(ring, MI_NOOP);
649

650
	intel_ring_advance(ring);
651

652
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
653 654
	if (ret)
		return ret;
655

656
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
657

658
	return 0;
659 660
}

661
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
662 663 664
{
	int ret;

665
	ret = intel_ring_workarounds_emit(req);
666 667 668
	if (ret != 0)
		return ret;

669
	ret = i915_gem_render_state_init(req);
670
	if (ret)
671
		return ret;
672

673
	return 0;
674 675
}

676
static int wa_add(struct drm_i915_private *dev_priv,
677 678
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
679 680 681 682 683 684 685 686 687 688 689 690 691
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
692 693
}

694
#define WA_REG(addr, mask, val) do { \
695
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
696 697
		if (r) \
			return r; \
698
	} while (0)
699 700

#define WA_SET_BIT_MASKED(addr, mask) \
701
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
702 703

#define WA_CLR_BIT_MASKED(addr, mask) \
704
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
705

706
#define WA_SET_FIELD_MASKED(addr, mask, value) \
707
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
708

709 710
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
711

712
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
713

714 715
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
716
{
717
	struct drm_i915_private *dev_priv = engine->i915;
718
	struct i915_workarounds *wa = &dev_priv->workarounds;
719
	const uint32_t index = wa->hw_whitelist_count[engine->id];
720 721 722 723

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

724
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
725
		 i915_mmio_reg_offset(reg));
726
	wa->hw_whitelist_count[engine->id]++;
727 728 729 730

	return 0;
}

731
static int gen8_init_workarounds(struct intel_engine_cs *engine)
732
{
733
	struct drm_i915_private *dev_priv = engine->i915;
734 735

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
736

737 738 739
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

740 741 742 743
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

744 745 746 747 748
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
749
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
750
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
751
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
752 753
			  HDC_FORCE_NON_COHERENT);

754 755 756 757 758 759 760 761 762 763
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

764 765 766
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

767 768 769 770 771 772 773 774 775 776 777 778
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

779 780 781
	return 0;
}

782
static int bdw_init_workarounds(struct intel_engine_cs *engine)
783
{
784
	struct drm_i915_private *dev_priv = engine->i915;
785
	int ret;
786

787
	ret = gen8_init_workarounds(engine);
788 789 790
	if (ret)
		return ret;

791
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
792
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
793

794
	/* WaDisableDopClockGating:bdw */
795 796
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
797

798 799
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
800

801
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
802 803 804
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
805
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
806 807 808 809

	return 0;
}

810
static int chv_init_workarounds(struct intel_engine_cs *engine)
811
{
812
	struct drm_i915_private *dev_priv = engine->i915;
813
	int ret;
814

815
	ret = gen8_init_workarounds(engine);
816 817 818
	if (ret)
		return ret;

819
	/* WaDisableThreadStallDopClockGating:chv */
820
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
821

822 823 824
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

825 826 827
	return 0;
}

828
static int gen9_init_workarounds(struct intel_engine_cs *engine)
829
{
830
	struct drm_i915_private *dev_priv = engine->i915;
831
	int ret;
832

833 834 835
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

836
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
837 838 839
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

840
	/* WaDisableKillLogic:bxt,skl,kbl */
841 842 843
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

844 845
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
846
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
847
			  FLOW_CONTROL_ENABLE |
848 849
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

850
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
851 852 853
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

854 855
	/* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
856 857
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
858

859 860
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
861 862
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
863 864 865 866 867
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
868 869
	}

870 871
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
872 873 874
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
875

876 877
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
878 879
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
880

881
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
882 883 884
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

885
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
886 887
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
888 889 890
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

891 892 893 894
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
895

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

917 918 919 920
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
921 922 923
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

924
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
925 926
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

927
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
928 929 930
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

931 932 933 934 935
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

936
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
937
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
938 939 940
	if (ret)
		return ret;

941
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
942
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
943 944 945
	if (ret)
		return ret;

946 947 948
	return 0;
}

949
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
950
{
951
	struct drm_i915_private *dev_priv = engine->i915;
952 953 954 955 956 957 958 959 960 961
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
962
		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
963 964 965 966 967 968 969 970
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
971
		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

990
static int skl_init_workarounds(struct intel_engine_cs *engine)
991
{
992
	struct drm_i915_private *dev_priv = engine->i915;
993
	int ret;
994

995
	ret = gen9_init_workarounds(engine);
996 997
	if (ret)
		return ret;
998

999 1000 1001 1002 1003
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1004
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1005 1006 1007 1008
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1009
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1010 1011 1012 1013 1014 1015 1016 1017
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1018
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1019 1020 1021 1022 1023
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1024 1025
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));
1026

1027
	/* WaBarrierPerformanceFixDisable:skl */
1028
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1029 1030 1031 1032
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1033
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1034
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1035 1036 1037 1038
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1039 1040 1041
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1042 1043 1044 1045 1046
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1047
	/* WaDisableLSQCROPERFforOCL:skl */
1048
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1049 1050 1051
	if (ret)
		return ret;

1052
	return skl_tune_iz_hashing(engine);
1053 1054
}

1055
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1056
{
1057
	struct drm_i915_private *dev_priv = engine->i915;
1058
	int ret;
1059

1060
	ret = gen9_init_workarounds(engine);
1061 1062
	if (ret)
		return ret;
1063

1064 1065
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1066
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1067 1068 1069
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1070
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1071 1072 1073 1074
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1075 1076 1077 1078
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1079 1080 1081 1082 1083 1084
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1085
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1086
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1087 1088 1089 1090 1091
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1092 1093 1094
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1095
	/* WaDisableLSQCROPERFforOCL:bxt */
1096
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1097
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1098 1099
		if (ret)
			return ret;
1100

1101
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1102 1103
		if (ret)
			return ret;
1104 1105
	}

1106
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1107
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1108 1109
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1110

1111 1112
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1113 1114 1115
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1116 1117 1118 1119 1120
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1121 1122 1123
	return 0;
}

1124 1125
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1126
	struct drm_i915_private *dev_priv = engine->i915;
1127 1128 1129 1130 1131 1132
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1133 1134 1135 1136
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1137 1138 1139 1140 1141
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1142 1143 1144 1145 1146
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1147 1148 1149 1150 1151 1152 1153 1154
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1155 1156
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1157 1158 1159
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1160 1161 1162
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1163 1164 1165 1166 1167
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1168 1169 1170 1171
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1172 1173 1174 1175 1176
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1177 1178 1179
	return 0;
}

1180
int init_workarounds_ring(struct intel_engine_cs *engine)
1181
{
1182
	struct drm_i915_private *dev_priv = engine->i915;
1183

1184
	WARN_ON(engine->id != RCS);
1185 1186

	dev_priv->workarounds.count = 0;
1187
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1188

1189
	if (IS_BROADWELL(dev_priv))
1190
		return bdw_init_workarounds(engine);
1191

1192
	if (IS_CHERRYVIEW(dev_priv))
1193
		return chv_init_workarounds(engine);
1194

1195
	if (IS_SKYLAKE(dev_priv))
1196
		return skl_init_workarounds(engine);
1197

1198
	if (IS_BROXTON(dev_priv))
1199
		return bxt_init_workarounds(engine);
1200

1201 1202 1203
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1204 1205 1206
	return 0;
}

1207
static int init_render_ring(struct intel_engine_cs *engine)
1208
{
1209
	struct drm_i915_private *dev_priv = engine->i915;
1210
	int ret = init_ring_common(engine);
1211 1212
	if (ret)
		return ret;
1213

1214
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1215
	if (IS_GEN(dev_priv, 4, 6))
1216
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1217 1218 1219 1220

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1221
	 *
1222
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1223
	 */
1224
	if (IS_GEN(dev_priv, 6, 7))
1225 1226
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1227
	/* Required for the hardware to program scanline values for waiting */
1228
	/* WaEnableFlushTlbInvalidationMode:snb */
1229
	if (IS_GEN6(dev_priv))
1230
		I915_WRITE(GFX_MODE,
1231
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1232

1233
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1234
	if (IS_GEN7(dev_priv))
1235
		I915_WRITE(GFX_MODE_GEN7,
1236
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1237
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1238

1239
	if (IS_GEN6(dev_priv)) {
1240 1241 1242 1243 1244 1245
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1246
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1247 1248
	}

1249
	if (IS_GEN(dev_priv, 6, 7))
1250
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1251

1252 1253
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1254

1255
	return init_workarounds_ring(engine);
1256 1257
}

1258
static void render_ring_cleanup(struct intel_engine_cs *engine)
1259
{
1260
	struct drm_i915_private *dev_priv = engine->i915;
1261

1262
	i915_vma_unpin_and_release(&dev_priv->semaphore);
1263 1264
}

1265
static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1266
{
1267 1268
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1269
	struct intel_engine_cs *waiter;
1270 1271
	enum intel_engine_id id;
	int ret, num_rings;
1272

1273
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1274
	ret = intel_ring_begin(req, (num_rings-1) * 8);
1275 1276 1277
	if (ret)
		return ret;

1278
	for_each_engine_id(waiter, dev_priv, id) {
1279
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1280 1281 1282
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1283 1284
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring,
1285 1286 1287
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1288 1289 1290 1291 1292
		intel_ring_emit(ring, lower_32_bits(gtt_offset));
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring,
1293 1294
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1295
		intel_ring_emit(ring, 0);
1296
	}
1297
	intel_ring_advance(ring);
1298 1299 1300 1301

	return 0;
}

1302
static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1303
{
1304 1305
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1306
	struct intel_engine_cs *waiter;
1307 1308
	enum intel_engine_id id;
	int ret, num_rings;
1309

1310
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1311
	ret = intel_ring_begin(req, (num_rings-1) * 6);
1312 1313 1314
	if (ret)
		return ret;

1315
	for_each_engine_id(waiter, dev_priv, id) {
1316
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1317 1318 1319
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1320
		intel_ring_emit(ring,
1321
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1322
		intel_ring_emit(ring,
1323 1324
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1325 1326 1327
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring,
1328 1329
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1330
		intel_ring_emit(ring, 0);
1331
	}
1332
	intel_ring_advance(ring);
1333 1334 1335 1336

	return 0;
}

1337
static int gen6_signal(struct drm_i915_gem_request *req)
1338
{
1339 1340
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1341
	struct intel_engine_cs *engine;
1342
	int ret, num_rings;
1343

1344
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1345
	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1346 1347 1348
	if (ret)
		return ret;

1349 1350 1351 1352 1353
	for_each_engine(engine, dev_priv) {
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
1354

1355
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1356
		if (i915_mmio_reg_valid(mbox_reg)) {
1357 1358 1359
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit_reg(ring, mbox_reg);
			intel_ring_emit(ring, req->fence.seqno);
1360 1361
		}
	}
1362

1363 1364
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
1365 1366
		intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1367

1368
	return 0;
1369 1370
}

1371 1372 1373 1374 1375 1376 1377 1378 1379
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1380
{
1381
	struct intel_ring *ring = req->ring;
1382
	int ret;
1383

1384
	ret = intel_ring_begin(req, 4);
1385 1386 1387
	if (ret)
		return ret;

1388 1389 1390 1391
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1392 1393 1394
	intel_ring_advance(ring);

	req->tail = ring->tail;
1395 1396 1397 1398

	return 0;
}

1399
/**
1400
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1401 1402 1403 1404 1405 1406
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1407
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1408
{
1409
	int ret;
1410

1411 1412 1413
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1414 1415 1416 1417

	return i9xx_emit_request(req);
}

1418
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1419 1420
{
	struct intel_engine_cs *engine = req->engine;
1421
	struct intel_ring *ring = req->ring;
1422 1423
	int ret;

1424 1425 1426 1427 1428 1429 1430
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1431 1432 1433
	if (ret)
		return ret;

1434 1435 1436 1437 1438 1439 1440
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1441
	/* We're thrashing one dword of HWS. */
1442 1443 1444
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1445
	intel_ring_advance(ring);
1446 1447

	req->tail = ring->tail;
1448 1449 1450 1451

	return 0;
}

1452 1453 1454 1455 1456 1457 1458
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1459 1460

static int
1461 1462
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1463
{
1464 1465 1466
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1467
	struct i915_hw_ppgtt *ppgtt;
1468 1469
	int ret;

1470
	ret = intel_ring_begin(req, 4);
1471 1472 1473
	if (ret)
		return ret;

1474 1475 1476 1477 1478 1479 1480 1481
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(ring, signal->fence.seqno);
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1482 1483 1484 1485 1486 1487

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1488 1489 1490
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1491 1492 1493
	return 0;
}

1494
static int
1495 1496
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1497
{
1498
	struct intel_ring *ring = req->ring;
1499 1500 1501
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1502
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1503
	int ret;
1504

1505
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1506

1507
	ret = intel_ring_begin(req, 4);
1508 1509 1510
	if (ret)
		return ret;

1511
	intel_ring_emit(ring, dw1 | wait_mbox);
1512 1513 1514 1515
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1516 1517 1518 1519
	intel_ring_emit(ring, signal->fence.seqno - 1);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1520 1521 1522 1523

	return 0;
}

1524
static void
1525
gen5_seqno_barrier(struct intel_engine_cs *engine)
1526
{
1527 1528 1529
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1530
	 *
1531 1532 1533 1534 1535 1536 1537
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1538
	 */
1539
	usleep_range(125, 250);
1540 1541
}

1542 1543
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1544
{
1545
	struct drm_i915_private *dev_priv = engine->i915;
1546

1547 1548
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1549 1550 1551 1552 1553 1554 1555 1556 1557
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1558 1559 1560
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1561
	 */
1562
	spin_lock_irq(&dev_priv->uncore.lock);
1563
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1564
	spin_unlock_irq(&dev_priv->uncore.lock);
1565 1566
}

1567 1568
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1569
{
1570
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1571 1572 1573
}

static void
1574
gen5_irq_disable(struct intel_engine_cs *engine)
1575
{
1576
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1577 1578
}

1579 1580
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1581
{
1582
	struct drm_i915_private *dev_priv = engine->i915;
1583

1584 1585 1586
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1587 1588
}

1589
static void
1590
i9xx_irq_disable(struct intel_engine_cs *engine)
1591
{
1592
	struct drm_i915_private *dev_priv = engine->i915;
1593

1594 1595
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1596 1597
}

1598 1599
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1600
{
1601
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1602

1603 1604 1605
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1606 1607 1608
}

static void
1609
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1610
{
1611
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1612

1613 1614
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1615 1616
}

1617
static int
1618
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1619
{
1620
	struct intel_ring *ring = req->ring;
1621 1622
	int ret;

1623
	ret = intel_ring_begin(req, 2);
1624 1625 1626
	if (ret)
		return ret;

1627 1628 1629
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1630
	return 0;
1631 1632
}

1633 1634
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1635
{
1636
	struct drm_i915_private *dev_priv = engine->i915;
1637

1638 1639 1640
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1641
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1642 1643 1644
}

static void
1645
gen6_irq_disable(struct intel_engine_cs *engine)
1646
{
1647
	struct drm_i915_private *dev_priv = engine->i915;
1648

1649
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1650
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1651 1652
}

1653 1654
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1655
{
1656
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1657

1658 1659
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1660 1661 1662
}

static void
1663
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1664
{
1665
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1666

1667 1668
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1669 1670
}

1671 1672
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1673
{
1674
	struct drm_i915_private *dev_priv = engine->i915;
1675

1676 1677 1678
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1679
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1680 1681 1682
}

static void
1683
gen8_irq_disable(struct intel_engine_cs *engine)
1684
{
1685
	struct drm_i915_private *dev_priv = engine->i915;
1686

1687
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1688 1689
}

1690
static int
1691 1692 1693
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1694
{
1695
	struct intel_ring *ring = req->ring;
1696
	int ret;
1697

1698
	ret = intel_ring_begin(req, 2);
1699 1700 1701
	if (ret)
		return ret;

1702
	intel_ring_emit(ring,
1703 1704
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1705 1706
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1707 1708
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1709

1710 1711 1712
	return 0;
}

1713 1714
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1715 1716
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1717
static int
1718 1719 1720
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1721
{
1722
	struct intel_ring *ring = req->ring;
1723
	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1724
	int ret;
1725

1726
	ret = intel_ring_begin(req, 6);
1727 1728
	if (ret)
		return ret;
1729

1730
	/* Evict the invalid PTE TLBs */
1731 1732 1733 1734 1735 1736 1737
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1738

1739
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1740 1741 1742
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1743
		ret = intel_ring_begin(req, 6 + 2);
1744 1745
		if (ret)
			return ret;
1746 1747 1748 1749 1750

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1751 1752
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1753
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1754 1755 1756 1757
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1758

1759 1760 1761
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1762 1763

		/* ... and execute it. */
1764
		offset = cs_offset;
1765
	}
1766

1767
	ret = intel_ring_begin(req, 2);
1768 1769 1770
	if (ret)
		return ret;

1771 1772 1773 1774
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1775

1776 1777 1778 1779
	return 0;
}

static int
1780 1781 1782
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1783
{
1784
	struct intel_ring *ring = req->ring;
1785 1786
	int ret;

1787
	ret = intel_ring_begin(req, 2);
1788 1789 1790
	if (ret)
		return ret;

1791 1792 1793 1794
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1795 1796 1797 1798

	return 0;
}

1799
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1800
{
1801
	struct drm_i915_private *dev_priv = engine->i915;
1802 1803 1804 1805

	if (!dev_priv->status_page_dmah)
		return;

1806
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1807
	engine->status_page.page_addr = NULL;
1808 1809
}

1810
static void cleanup_status_page(struct intel_engine_cs *engine)
1811
{
1812
	struct i915_vma *vma;
1813

1814 1815
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1816 1817
		return;

1818 1819 1820
	i915_vma_unpin(vma);
	i915_gem_object_unpin_map(vma->obj);
	i915_vma_put(vma);
1821 1822
}

1823
static int init_status_page(struct intel_engine_cs *engine)
1824
{
1825 1826 1827 1828
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	int ret;
1829

1830 1831 1832 1833 1834
	obj = i915_gem_object_create(&engine->i915->drm, 4096);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1835

1836 1837 1838
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1839

1840 1841 1842 1843
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1844
	}
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1862

1863
	engine->status_page.vma = vma;
1864
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1865 1866
	engine->status_page.page_addr =
		i915_gem_object_pin_map(obj, I915_MAP_WB);
1867

1868 1869
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1870
	return 0;
1871 1872 1873 1874

err:
	i915_gem_object_put(obj);
	return ret;
1875 1876
}

1877
static int init_phys_status_page(struct intel_engine_cs *engine)
1878
{
1879
	struct drm_i915_private *dev_priv = engine->i915;
1880

1881 1882 1883 1884
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1885

1886 1887
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1888 1889 1890 1891

	return 0;
}

1892
int intel_ring_pin(struct intel_ring *ring)
1893
{
1894
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1895
	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1896
	enum i915_map_type map;
1897
	struct i915_vma *vma = ring->vma;
1898
	void *addr;
1899 1900
	int ret;

1901
	GEM_BUG_ON(ring->vaddr);
1902

1903 1904 1905
	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;

	if (vma->obj->stolen)
1906
		flags |= PIN_MAPPABLE;
1907

1908
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1909
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1910 1911 1912 1913
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1914
			return ret;
1915
	}
1916

1917 1918 1919
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1920

1921
	if (i915_vma_is_map_and_fenceable(vma))
1922 1923
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1924
		addr = i915_gem_object_pin_map(vma->obj, map);
1925 1926
	if (IS_ERR(addr))
		goto err;
1927

1928
	ring->vaddr = addr;
1929
	return 0;
1930

1931 1932 1933
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1934 1935
}

1936 1937 1938 1939 1940
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1941
	if (i915_vma_is_map_and_fenceable(ring->vma))
1942
		i915_vma_unpin_iomap(ring->vma);
1943 1944
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1945 1946
	ring->vaddr = NULL;

1947
	i915_vma_unpin(ring->vma);
1948 1949
}

1950 1951
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1952
{
1953
	struct drm_i915_gem_object *obj;
1954
	struct i915_vma *vma;
1955

1956 1957
	obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
	if (!obj)
1958 1959 1960
		obj = i915_gem_object_create(&dev_priv->drm, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1961

1962 1963 1964
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1965 1966 1967 1968 1969
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	return vma;
1970

1971 1972 1973
err:
	i915_gem_object_put(obj);
	return vma;
1974 1975
}

1976 1977
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1978
{
1979
	struct intel_ring *ring;
1980
	struct i915_vma *vma;
1981

1982 1983
	GEM_BUG_ON(!is_power_of_2(size));

1984
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1985
	if (!ring)
1986 1987
		return ERR_PTR(-ENOMEM);

1988
	ring->engine = engine;
1989

1990 1991
	INIT_LIST_HEAD(&ring->request_list);

1992 1993 1994 1995 1996 1997
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1998
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
1999 2000 2001 2002 2003
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2004 2005
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
2006
		kfree(ring);
2007
		return ERR_CAST(vma);
2008
	}
2009
	ring->vma = vma;
2010 2011 2012 2013 2014

	return ring;
}

void
2015
intel_ring_free(struct intel_ring *ring)
2016
{
2017
	i915_vma_put(ring->vma);
2018 2019 2020
	kfree(ring);
}

2021 2022 2023 2024 2025 2026
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2027
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2028 2029 2030 2031 2032

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
2033 2034 2035 2036
		ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
		if (ret)
			goto error;

2037 2038
		ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
				   PIN_GLOBAL | PIN_HIGH);
2039 2040 2041 2042
		if (ret)
			goto error;
	}

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2053
	i915_gem_context_get(ctx);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2066
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2067 2068 2069 2070 2071

	if (--ce->pin_count)
		return;

	if (ce->state)
2072
		i915_vma_unpin(ce->state);
2073

2074
	i915_gem_context_put(ctx);
2075 2076
}

2077
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2078
{
2079
	struct drm_i915_private *dev_priv = engine->i915;
2080
	struct intel_ring *ring;
2081 2082
	int ret;

2083
	WARN_ON(engine->buffer);
2084

2085 2086
	intel_engine_setup_common(engine);

2087 2088
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2089

2090
	ret = intel_engine_init_common(engine);
2091 2092
	if (ret)
		goto error;
2093

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2105 2106 2107
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2108 2109
		goto error;
	}
2110

2111 2112 2113
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2114
		if (ret)
2115
			goto error;
2116
	} else {
2117
		ret = init_status_page(engine);
2118
		if (ret)
2119
			goto error;
2120 2121
	}

2122
	ret = intel_ring_pin(ring);
2123
	if (ret) {
2124
		intel_ring_free(ring);
2125
		goto error;
2126
	}
2127
	engine->buffer = ring;
2128

2129
	return 0;
2130

2131
error:
2132
	intel_engine_cleanup(engine);
2133
	return ret;
2134 2135
}

2136
void intel_engine_cleanup(struct intel_engine_cs *engine)
2137
{
2138
	struct drm_i915_private *dev_priv;
2139

2140
	if (!intel_engine_initialized(engine))
2141 2142
		return;

2143
	dev_priv = engine->i915;
2144

2145
	if (engine->buffer) {
2146 2147
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2148

2149
		intel_ring_unpin(engine->buffer);
2150
		intel_ring_free(engine->buffer);
2151
		engine->buffer = NULL;
2152
	}
2153

2154 2155
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2156

2157
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2158 2159
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2160 2161
	} else {
		cleanup_status_page(engine);
2162
	}
2163

2164
	intel_engine_cleanup_common(engine);
2165 2166 2167

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2168
	engine->i915 = NULL;
2169 2170
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;

	for_each_engine(engine, dev_priv) {
		engine->buffer->head = engine->buffer->tail;
		engine->buffer->last_retired_head = -1;
	}
}

2181
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2182
{
2183 2184 2185 2186 2187 2188
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2189
	request->reserved_space += LEGACY_REQUEST_SIZE;
2190

2191
	request->ring = request->engine->buffer;
2192 2193 2194 2195 2196

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2197
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2198
	return 0;
2199 2200
}

2201 2202
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2203
	struct intel_ring *ring = req->ring;
2204
	struct drm_i915_gem_request *target;
2205
	int ret;
2206

2207 2208
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2220
	GEM_BUG_ON(!req->reserved_space);
2221

2222
	list_for_each_entry(target, &ring->request_list, ring_link) {
2223 2224 2225
		unsigned space;

		/* Would completion of this request free enough space? */
2226 2227
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2228 2229
		if (space >= bytes)
			break;
2230
	}
2231

2232
	if (WARN_ON(&target->ring_link == &ring->request_list))
2233 2234
		return -ENOSPC;

2235 2236
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2237
				NULL, NO_WAITBOOST);
2238 2239 2240 2241 2242 2243 2244 2245
	if (ret)
		return ret;

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2246 2247
}

2248
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2249
{
2250
	struct intel_ring *ring = req->ring;
2251 2252
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2253 2254
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2255
	bool need_wrap = false;
2256

2257
	total_bytes = bytes + req->reserved_space;
2258

2259 2260 2261 2262 2263 2264 2265
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2266 2267 2268 2269 2270 2271 2272
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2273
		wait_bytes = remain_actual + req->reserved_space;
2274
	} else {
2275 2276
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2277 2278
	}

2279
	if (wait_bytes > ring->space) {
2280
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2281 2282 2283 2284
		if (unlikely(ret))
			return ret;
	}

2285
	if (unlikely(need_wrap)) {
2286 2287
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2288

2289
		/* Fill the tail with MI_NOOP */
2290 2291 2292
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2293
	}
2294

2295 2296
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2297
	return 0;
2298
}
2299

2300
/* Align the ring tail to a cacheline boundary */
2301
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2302
{
2303
	struct intel_ring *ring = req->ring;
2304 2305
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2306 2307 2308 2309 2310
	int ret;

	if (num_dwords == 0)
		return 0;

2311
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2312
	ret = intel_ring_begin(req, num_dwords);
2313 2314 2315 2316
	if (ret)
		return ret;

	while (num_dwords--)
2317
		intel_ring_emit(ring, MI_NOOP);
2318

2319
	intel_ring_advance(ring);
2320 2321 2322 2323

	return 0;
}

2324
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2325
{
2326
	struct drm_i915_private *dev_priv = request->i915;
2327

2328 2329
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2330
       /* Every tail move must follow the sequence below */
2331 2332 2333 2334

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2335 2336
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2337 2338

	/* Clear the context id. Here be magic! */
2339
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2340

2341
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2342 2343 2344 2345 2346
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2347
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2348

2349
	/* Now that the ring is fully powered up, update the tail */
2350
	i9xx_submit_request(request);
2351 2352 2353 2354

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2355 2356 2357 2358
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2359 2360
}

2361
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2362
{
2363
	struct intel_ring *ring = req->ring;
2364
	uint32_t cmd;
2365 2366
	int ret;

2367
	ret = intel_ring_begin(req, 4);
2368 2369 2370
	if (ret)
		return ret;

2371
	cmd = MI_FLUSH_DW;
2372
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2373
		cmd += 1;
2374 2375 2376 2377 2378 2379 2380 2381

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2382 2383 2384 2385 2386 2387
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2388
	if (mode & EMIT_INVALIDATE)
2389 2390
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2391 2392
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2393
	if (INTEL_GEN(req->i915) >= 8) {
2394 2395
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2396
	} else  {
2397 2398
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2399
	}
2400
	intel_ring_advance(ring);
2401
	return 0;
2402 2403
}

2404
static int
2405 2406 2407
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2408
{
2409
	struct intel_ring *ring = req->ring;
2410
	bool ppgtt = USES_PPGTT(req->i915) &&
2411
			!(dispatch_flags & I915_DISPATCH_SECURE);
2412 2413
	int ret;

2414
	ret = intel_ring_begin(req, 4);
2415 2416 2417 2418
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2419
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2420 2421
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2422 2423 2424 2425
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2426 2427 2428 2429

	return 0;
}

2430
static int
2431 2432 2433
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2434
{
2435
	struct intel_ring *ring = req->ring;
2436 2437
	int ret;

2438
	ret = intel_ring_begin(req, 2);
2439 2440 2441
	if (ret)
		return ret;

2442
	intel_ring_emit(ring,
2443
			MI_BATCH_BUFFER_START |
2444
			(dispatch_flags & I915_DISPATCH_SECURE ?
2445 2446 2447
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2448
	/* bit0-7 is the length on GEN6+ */
2449 2450
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2451 2452 2453 2454

	return 0;
}

2455
static int
2456 2457 2458
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2459
{
2460
	struct intel_ring *ring = req->ring;
2461
	int ret;
2462

2463
	ret = intel_ring_begin(req, 2);
2464 2465
	if (ret)
		return ret;
2466

2467
	intel_ring_emit(ring,
2468
			MI_BATCH_BUFFER_START |
2469 2470
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2471
	/* bit0-7 is the length on GEN6+ */
2472 2473
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2474

2475
	return 0;
2476 2477
}

2478 2479
/* Blitter support (SandyBridge+) */

2480
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2481
{
2482
	struct intel_ring *ring = req->ring;
2483
	uint32_t cmd;
2484 2485
	int ret;

2486
	ret = intel_ring_begin(req, 4);
2487 2488 2489
	if (ret)
		return ret;

2490
	cmd = MI_FLUSH_DW;
2491
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2492
		cmd += 1;
2493 2494 2495 2496 2497 2498 2499 2500

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2501 2502 2503 2504 2505 2506
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2507
	if (mode & EMIT_INVALIDATE)
2508
		cmd |= MI_INVALIDATE_TLB;
2509 2510
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2511
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2512
	if (INTEL_GEN(req->i915) >= 8) {
2513 2514
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2515
	} else  {
2516 2517
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2518
	}
2519
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2520

2521
	return 0;
Z
Zou Nan hai 已提交
2522 2523
}

2524 2525 2526
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2527
	struct drm_i915_gem_object *obj;
2528
	int ret, i;
2529

2530
	if (!i915.semaphores)
2531 2532
		return;

2533 2534 2535
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

2536
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2537 2538
		if (IS_ERR(obj))
			goto err;
2539

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
2554 2555

	if (INTEL_GEN(dev_priv) >= 8) {
2556
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2557

2558
		engine->semaphore.sync_to = gen8_ring_sync_to;
2559
		engine->semaphore.signal = gen8_xcs_signal;
2560 2561

		for (i = 0; i < I915_NUM_ENGINES; i++) {
2562
			u32 ring_offset;
2563 2564 2565 2566 2567 2568 2569 2570

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2571
	} else if (INTEL_GEN(dev_priv) >= 6) {
2572
		engine->semaphore.sync_to = gen6_ring_sync_to;
2573
		engine->semaphore.signal = gen6_signal;
2574 2575 2576 2577 2578 2579 2580 2581

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
2582
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2583 2584 2585
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
2586 2587 2588 2589 2590
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2591
				},
2592 2593 2594 2595
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2596
				},
2597 2598 2599 2600
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2601
				},
2602 2603 2604 2605
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2606 2607 2608 2609 2610
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

2611
			if (i == engine->hw_id) {
2612 2613 2614
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2615 2616
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2617 2618 2619 2620 2621
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2622
	}
2623 2624 2625 2626 2627 2628 2629 2630

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2631 2632
}

2633 2634 2635
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2636 2637
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2638
	if (INTEL_GEN(dev_priv) >= 8) {
2639 2640
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2641 2642
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2643 2644
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2645 2646
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2647 2648
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2649
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2650
	} else if (INTEL_GEN(dev_priv) >= 3) {
2651 2652
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2653
	} else {
2654 2655
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2656 2657 2658
	}
}

2659 2660 2661
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2662 2663 2664
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2665
	engine->init_hw = init_ring_common;
2666
	engine->reset_hw = reset_ring_common;
2667

2668
	engine->emit_request = i9xx_emit_request;
2669 2670
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2671
	engine->submit_request = i9xx_submit_request;
2672 2673

	if (INTEL_GEN(dev_priv) >= 8)
2674
		engine->emit_bb_start = gen8_emit_bb_start;
2675
	else if (INTEL_GEN(dev_priv) >= 6)
2676
		engine->emit_bb_start = gen6_emit_bb_start;
2677
	else if (INTEL_GEN(dev_priv) >= 4)
2678
		engine->emit_bb_start = i965_emit_bb_start;
2679
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2680
		engine->emit_bb_start = i830_emit_bb_start;
2681
	else
2682
		engine->emit_bb_start = i915_emit_bb_start;
2683 2684
}

2685
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2686
{
2687
	struct drm_i915_private *dev_priv = engine->i915;
2688
	int ret;
2689

2690 2691
	intel_ring_default_vfuncs(dev_priv, engine);

2692 2693
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2694

2695
	if (INTEL_GEN(dev_priv) >= 8) {
2696
		engine->init_context = intel_rcs_ctx_init;
2697
		engine->emit_request = gen8_render_emit_request;
2698
		engine->emit_flush = gen8_render_ring_flush;
2699
		if (i915.semaphores)
2700
			engine->semaphore.signal = gen8_rcs_signal;
2701
	} else if (INTEL_GEN(dev_priv) >= 6) {
2702
		engine->init_context = intel_rcs_ctx_init;
2703
		engine->emit_flush = gen7_render_ring_flush;
2704
		if (IS_GEN6(dev_priv))
2705
			engine->emit_flush = gen6_render_ring_flush;
2706
	} else if (IS_GEN5(dev_priv)) {
2707
		engine->emit_flush = gen4_render_ring_flush;
2708
	} else {
2709
		if (INTEL_GEN(dev_priv) < 4)
2710
			engine->emit_flush = gen2_render_ring_flush;
2711
		else
2712
			engine->emit_flush = gen4_render_ring_flush;
2713
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2714
	}
B
Ben Widawsky 已提交
2715

2716
	if (IS_HASWELL(dev_priv))
2717
		engine->emit_bb_start = hsw_emit_bb_start;
2718

2719 2720
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2721

2722
	ret = intel_init_ring_buffer(engine);
2723 2724 2725
	if (ret)
		return ret;

2726
	if (INTEL_GEN(dev_priv) >= 6) {
2727
		ret = intel_engine_create_scratch(engine, 4096);
2728 2729 2730
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2731
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2732 2733 2734 2735 2736
		if (ret)
			return ret;
	}

	return 0;
2737 2738
}

2739
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2740
{
2741
	struct drm_i915_private *dev_priv = engine->i915;
2742

2743 2744
	intel_ring_default_vfuncs(dev_priv, engine);

2745
	if (INTEL_GEN(dev_priv) >= 6) {
2746
		/* gen6 bsd needs a special wa for tail updates */
2747
		if (IS_GEN6(dev_priv))
2748
			engine->submit_request = gen6_bsd_submit_request;
2749
		engine->emit_flush = gen6_bsd_ring_flush;
2750
		if (INTEL_GEN(dev_priv) < 8)
2751
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2752
	} else {
2753
		engine->mmio_base = BSD_RING_BASE;
2754
		engine->emit_flush = bsd_ring_flush;
2755
		if (IS_GEN5(dev_priv))
2756
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2757
		else
2758
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2759 2760
	}

2761
	return intel_init_ring_buffer(engine);
2762
}
2763

2764
/**
2765
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2766
 */
2767
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2768
{
2769
	struct drm_i915_private *dev_priv = engine->i915;
2770 2771 2772

	intel_ring_default_vfuncs(dev_priv, engine);

2773
	engine->emit_flush = gen6_bsd_ring_flush;
2774

2775
	return intel_init_ring_buffer(engine);
2776 2777
}

2778
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2779
{
2780
	struct drm_i915_private *dev_priv = engine->i915;
2781 2782 2783

	intel_ring_default_vfuncs(dev_priv, engine);

2784
	engine->emit_flush = gen6_ring_flush;
2785
	if (INTEL_GEN(dev_priv) < 8)
2786
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2787

2788
	return intel_init_ring_buffer(engine);
2789
}
2790

2791
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2792
{
2793
	struct drm_i915_private *dev_priv = engine->i915;
2794 2795 2796

	intel_ring_default_vfuncs(dev_priv, engine);

2797
	engine->emit_flush = gen6_ring_flush;
2798

2799
	if (INTEL_GEN(dev_priv) < 8) {
2800
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2801 2802
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2803
	}
B
Ben Widawsky 已提交
2804

2805
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2806
}