intel_ringbuffer.c 73.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178
	u32 scratch_addr =
179
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214
	u32 scratch_addr =
215
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288
	u32 scratch_addr =
289
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373
	u32 scratch_addr =
374
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375
	u32 flags = 0;
376
	int ret;
B
Ben Widawsky 已提交
377 378 379

	flags |= PIPE_CONTROL_CS_STALL;

380
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
381 382
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
385
	}
386
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
387 388 389 390 391 392 393 394
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 396

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397
		ret = gen8_emit_pipe_control(req,
398 399 400 401 402
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
403 404
	}

405
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
406 407
}

408
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
409
{
410
	struct drm_i915_private *dev_priv = engine->i915;
411 412 413
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
414
	if (INTEL_GEN(dev_priv) >= 4)
415 416 417 418
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

419
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
420
{
421
	struct drm_i915_private *dev_priv = engine->i915;
422
	i915_reg_t mmio;
423 424 425 426

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
427
	if (IS_GEN7(dev_priv)) {
428
		switch (engine->id) {
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
447
	} else if (IS_GEN6(dev_priv)) {
448
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
449 450
	} else {
		/* XXX: gen8 returns to sanity */
451
		mmio = RING_HWS_PGA(engine->mmio_base);
452 453
	}

454
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
455 456 457 458 459 460 461 462 463
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
464
	if (IS_GEN(dev_priv, 6, 7)) {
465
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
466 467

		/* ring should be idle before issuing a sync flush*/
468
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
469 470 471 472

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
473 474 475
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
476
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
477
				  engine->name);
478 479 480
	}
}

481
static bool stop_ring(struct intel_engine_cs *engine)
482
{
483
	struct drm_i915_private *dev_priv = engine->i915;
484

485
	if (INTEL_GEN(dev_priv) > 2) {
486
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487 488 489 490 491
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
492 493
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
494 495 496 497
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
498
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
499
				return false;
500 501
		}
	}
502

503 504
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
505
	I915_WRITE_TAIL(engine, 0);
506

507
	if (INTEL_GEN(dev_priv) > 2) {
508 509
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
510
	}
511

512
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
513
}
514

515
static int init_ring_common(struct intel_engine_cs *engine)
516
{
517
	struct drm_i915_private *dev_priv = engine->i915;
518
	struct intel_ring *ring = engine->buffer;
519 520
	int ret = 0;

521
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
522

523
	if (!stop_ring(engine)) {
524
		/* G45 ring initialization often fails to reset head to zero */
525 526
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
527 528 529 530 531
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
532

533
		if (!stop_ring(engine)) {
534 535
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
536 537 538 539 540
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
541 542
			ret = -EIO;
			goto out;
543
		}
544 545
	}

546
	if (HWS_NEEDS_PHYSICAL(dev_priv))
547
		ring_setup_phys_status_page(engine);
548 549
	else
		intel_ring_setup_status_page(engine);
550

551
	intel_engine_reset_breadcrumbs(engine);
552

553
	/* Enforce ordering by reading HEAD register back */
554
	I915_READ_HEAD(engine);
555

556 557 558 559
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
560
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
561 562

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
563
	if (I915_READ_HEAD(engine))
564
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565
			  engine->name, I915_READ_HEAD(engine));
566 567 568 569 570

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
571

572
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
573 574

	/* If the head is still not zero, the ring is dead */
575 576 577
	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
				       RING_VALID, RING_VALID,
				       50)) {
578
		DRM_ERROR("%s initialization failed "
579
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
580 581 582
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
583 584
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
585
			  I915_READ_START(engine),
586
			  i915_ggtt_offset(ring->vma));
587 588
		ret = -EIO;
		goto out;
589 590
	}

591
	intel_engine_init_hangcheck(engine);
592

593
out:
594
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
595 596

	return ret;
597 598
}

599 600 601 602 603 604 605 606 607
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct intel_ring *ring = request->ring;

	ring->head = request->postfix;
	ring->last_retired_head = -1;
}

608
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
609
{
610
	struct intel_ring *ring = req->ring;
611 612
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
613

614
	if (w->count == 0)
615
		return 0;
616

617
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
618 619
	if (ret)
		return ret;
620

621
	ret = intel_ring_begin(req, (w->count * 2 + 2));
622 623 624
	if (ret)
		return ret;

625
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
626
	for (i = 0; i < w->count; i++) {
627 628
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
629
	}
630
	intel_ring_emit(ring, MI_NOOP);
631

632
	intel_ring_advance(ring);
633

634
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
635 636
	if (ret)
		return ret;
637

638
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
639

640
	return 0;
641 642
}

643
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
644 645 646
{
	int ret;

647
	ret = intel_ring_workarounds_emit(req);
648 649 650
	if (ret != 0)
		return ret;

651
	ret = i915_gem_render_state_init(req);
652
	if (ret)
653
		return ret;
654

655
	return 0;
656 657
}

658
static int wa_add(struct drm_i915_private *dev_priv,
659 660
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
661 662 663 664 665 666 667 668 669 670 671 672 673
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
674 675
}

676
#define WA_REG(addr, mask, val) do { \
677
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
678 679
		if (r) \
			return r; \
680
	} while (0)
681 682

#define WA_SET_BIT_MASKED(addr, mask) \
683
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
684 685

#define WA_CLR_BIT_MASKED(addr, mask) \
686
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
687

688
#define WA_SET_FIELD_MASKED(addr, mask, value) \
689
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
690

691 692
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
693

694
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
695

696 697
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
698
{
699
	struct drm_i915_private *dev_priv = engine->i915;
700
	struct i915_workarounds *wa = &dev_priv->workarounds;
701
	const uint32_t index = wa->hw_whitelist_count[engine->id];
702 703 704 705

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

706
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
707
		 i915_mmio_reg_offset(reg));
708
	wa->hw_whitelist_count[engine->id]++;
709 710 711 712

	return 0;
}

713
static int gen8_init_workarounds(struct intel_engine_cs *engine)
714
{
715
	struct drm_i915_private *dev_priv = engine->i915;
716 717

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
718

719 720 721
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

722 723 724 725
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

726 727 728 729 730
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
731
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
732
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
733
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
734 735
			  HDC_FORCE_NON_COHERENT);

736 737 738 739 740 741 742 743 744 745
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

746 747 748
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

749 750 751 752 753 754 755 756 757 758 759 760
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

761 762 763
	return 0;
}

764
static int bdw_init_workarounds(struct intel_engine_cs *engine)
765
{
766
	struct drm_i915_private *dev_priv = engine->i915;
767
	int ret;
768

769
	ret = gen8_init_workarounds(engine);
770 771 772
	if (ret)
		return ret;

773
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
774
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
775

776
	/* WaDisableDopClockGating:bdw */
777 778
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
779

780 781
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
782

783
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
784 785 786
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
787
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
788 789 790 791

	return 0;
}

792
static int chv_init_workarounds(struct intel_engine_cs *engine)
793
{
794
	struct drm_i915_private *dev_priv = engine->i915;
795
	int ret;
796

797
	ret = gen8_init_workarounds(engine);
798 799 800
	if (ret)
		return ret;

801
	/* WaDisableThreadStallDopClockGating:chv */
802
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
803

804 805 806
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

807 808 809
	return 0;
}

810
static int gen9_init_workarounds(struct intel_engine_cs *engine)
811
{
812
	struct drm_i915_private *dev_priv = engine->i915;
813
	int ret;
814

815 816 817
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

818
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
819 820 821
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

822
	/* WaDisableKillLogic:bxt,skl,kbl */
823 824 825
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

826 827
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
828
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
829
			  FLOW_CONTROL_ENABLE |
830 831
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

832
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
833 834 835
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

836 837
	/* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
838 839
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
840

841 842
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
843 844
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
845 846 847 848 849
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
850 851
	}

852
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
853 854
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_GPGPU_PREEMPTION);
855

856 857
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
858 859
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
860

861
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
862 863 864
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

865 866
	/* WaDisableMaskBasedCammingInRCC:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
867 868 869
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

870 871 872 873
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
874

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

896 897 898 899
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
900 901 902
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

903
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
904 905
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

906
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
907 908 909
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

910 911 912 913 914
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

915
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
916
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
917 918 919
	if (ret)
		return ret;

920
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
921
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
922 923 924
	if (ret)
		return ret;

925 926 927
	return 0;
}

928
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
929
{
930
	struct drm_i915_private *dev_priv = engine->i915;
931 932 933 934 935 936 937 938 939 940
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
941
		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
942 943 944 945 946 947 948 949
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
950
		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

969
static int skl_init_workarounds(struct intel_engine_cs *engine)
970
{
971
	struct drm_i915_private *dev_priv = engine->i915;
972
	int ret;
973

974
	ret = gen9_init_workarounds(engine);
975 976
	if (ret)
		return ret;
977

978 979 980 981 982
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
983 984
	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
985

986
	/* WaEnableGapsTsvCreditFix:skl */
987 988
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));
989

990 991 992
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

993 994 995 996 997
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

998
	/* WaDisableLSQCROPERFforOCL:skl */
999
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1000 1001 1002
	if (ret)
		return ret;

1003
	return skl_tune_iz_hashing(engine);
1004 1005
}

1006
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1007
{
1008
	struct drm_i915_private *dev_priv = engine->i915;
1009
	int ret;
1010

1011
	ret = gen9_init_workarounds(engine);
1012 1013
	if (ret)
		return ret;
1014

1015 1016
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1017
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1018 1019 1020
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1021
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1022 1023 1024 1025
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1026 1027 1028 1029
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1030 1031 1032 1033 1034 1035
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1036
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1037
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1038 1039 1040 1041 1042
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1043 1044 1045
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1046
	/* WaDisableLSQCROPERFforOCL:bxt */
1047
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1048
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1049 1050
		if (ret)
			return ret;
1051

1052
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1053 1054
		if (ret)
			return ret;
1055 1056
	}

1057
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1058
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1059 1060
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1061

1062 1063
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1064 1065 1066
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1067 1068 1069 1070 1071
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1072 1073 1074
	return 0;
}

1075 1076
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1077
	struct drm_i915_private *dev_priv = engine->i915;
1078 1079 1080 1081 1082 1083
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1084 1085 1086 1087
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1088 1089 1090 1091 1092
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1093 1094 1095 1096 1097
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1098 1099 1100 1101 1102 1103 1104 1105
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1106 1107
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1108 1109 1110
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1111 1112 1113
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1114 1115 1116 1117 1118
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1119 1120 1121 1122
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1123 1124 1125 1126 1127
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1128 1129 1130
	return 0;
}

1131
int init_workarounds_ring(struct intel_engine_cs *engine)
1132
{
1133
	struct drm_i915_private *dev_priv = engine->i915;
1134

1135
	WARN_ON(engine->id != RCS);
1136 1137

	dev_priv->workarounds.count = 0;
1138
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1139

1140
	if (IS_BROADWELL(dev_priv))
1141
		return bdw_init_workarounds(engine);
1142

1143
	if (IS_CHERRYVIEW(dev_priv))
1144
		return chv_init_workarounds(engine);
1145

1146
	if (IS_SKYLAKE(dev_priv))
1147
		return skl_init_workarounds(engine);
1148

1149
	if (IS_BROXTON(dev_priv))
1150
		return bxt_init_workarounds(engine);
1151

1152 1153 1154
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1155 1156 1157
	return 0;
}

1158
static int init_render_ring(struct intel_engine_cs *engine)
1159
{
1160
	struct drm_i915_private *dev_priv = engine->i915;
1161
	int ret = init_ring_common(engine);
1162 1163
	if (ret)
		return ret;
1164

1165
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1166
	if (IS_GEN(dev_priv, 4, 6))
1167
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1168 1169 1170 1171

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1172
	 *
1173
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1174
	 */
1175
	if (IS_GEN(dev_priv, 6, 7))
1176 1177
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1178
	/* Required for the hardware to program scanline values for waiting */
1179
	/* WaEnableFlushTlbInvalidationMode:snb */
1180
	if (IS_GEN6(dev_priv))
1181
		I915_WRITE(GFX_MODE,
1182
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1183

1184
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1185
	if (IS_GEN7(dev_priv))
1186
		I915_WRITE(GFX_MODE_GEN7,
1187
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1188
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1189

1190
	if (IS_GEN6(dev_priv)) {
1191 1192 1193 1194 1195 1196
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1197
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1198 1199
	}

1200
	if (IS_GEN(dev_priv, 6, 7))
1201
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1202

1203 1204
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1205

1206
	return init_workarounds_ring(engine);
1207 1208
}

1209
static void render_ring_cleanup(struct intel_engine_cs *engine)
1210
{
1211
	struct drm_i915_private *dev_priv = engine->i915;
1212

1213
	i915_vma_unpin_and_release(&dev_priv->semaphore);
1214 1215
}

1216
static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1217
{
1218 1219
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1220
	struct intel_engine_cs *waiter;
1221 1222
	enum intel_engine_id id;
	int ret, num_rings;
1223

1224
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1225
	ret = intel_ring_begin(req, (num_rings-1) * 8);
1226 1227 1228
	if (ret)
		return ret;

1229
	for_each_engine(waiter, dev_priv, id) {
1230
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1231 1232 1233
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1234 1235
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring,
1236 1237 1238
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1239 1240 1241 1242 1243
		intel_ring_emit(ring, lower_32_bits(gtt_offset));
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring,
1244 1245
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1246
		intel_ring_emit(ring, 0);
1247
	}
1248
	intel_ring_advance(ring);
1249 1250 1251 1252

	return 0;
}

1253
static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1254
{
1255 1256
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1257
	struct intel_engine_cs *waiter;
1258 1259
	enum intel_engine_id id;
	int ret, num_rings;
1260

1261
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1262
	ret = intel_ring_begin(req, (num_rings-1) * 6);
1263 1264 1265
	if (ret)
		return ret;

1266
	for_each_engine(waiter, dev_priv, id) {
1267
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1268 1269 1270
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1271
		intel_ring_emit(ring,
1272
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1273
		intel_ring_emit(ring,
1274 1275
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1276 1277 1278
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring,
1279 1280
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1281
		intel_ring_emit(ring, 0);
1282
	}
1283
	intel_ring_advance(ring);
1284 1285 1286 1287

	return 0;
}

1288
static int gen6_signal(struct drm_i915_gem_request *req)
1289
{
1290 1291
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1292
	struct intel_engine_cs *engine;
1293
	enum intel_engine_id id;
1294
	int ret, num_rings;
1295

1296
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1297
	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1298 1299 1300
	if (ret)
		return ret;

1301
	for_each_engine(engine, dev_priv, id) {
1302 1303 1304 1305
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
1306

1307
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1308
		if (i915_mmio_reg_valid(mbox_reg)) {
1309 1310 1311
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit_reg(ring, mbox_reg);
			intel_ring_emit(ring, req->fence.seqno);
1312 1313
		}
	}
1314

1315 1316
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
1317 1318
		intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1319

1320
	return 0;
1321 1322
}

1323 1324 1325 1326 1327 1328 1329 1330 1331
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1332
{
1333
	struct intel_ring *ring = req->ring;
1334
	int ret;
1335

1336
	ret = intel_ring_begin(req, 4);
1337 1338 1339
	if (ret)
		return ret;

1340 1341 1342 1343
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1344 1345 1346
	intel_ring_advance(ring);

	req->tail = ring->tail;
1347 1348 1349 1350

	return 0;
}

1351
/**
1352
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1353 1354 1355 1356 1357 1358
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1359
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1360
{
1361
	int ret;
1362

1363 1364 1365
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1366 1367 1368 1369

	return i9xx_emit_request(req);
}

1370
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1371 1372
{
	struct intel_engine_cs *engine = req->engine;
1373
	struct intel_ring *ring = req->ring;
1374 1375
	int ret;

1376 1377 1378 1379 1380 1381 1382
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1383 1384 1385
	if (ret)
		return ret;

1386 1387 1388 1389 1390 1391 1392
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1393
	/* We're thrashing one dword of HWS. */
1394 1395 1396
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1397
	intel_ring_advance(ring);
1398 1399

	req->tail = ring->tail;
1400 1401 1402 1403

	return 0;
}

1404 1405 1406 1407 1408 1409 1410
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1411 1412

static int
1413 1414
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1415
{
1416 1417 1418
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1419
	struct i915_hw_ppgtt *ppgtt;
1420 1421
	int ret;

1422
	ret = intel_ring_begin(req, 4);
1423 1424 1425
	if (ret)
		return ret;

1426 1427 1428 1429 1430 1431 1432 1433
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(ring, signal->fence.seqno);
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1434 1435 1436 1437 1438 1439

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1440 1441 1442
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1443 1444 1445
	return 0;
}

1446
static int
1447 1448
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1449
{
1450
	struct intel_ring *ring = req->ring;
1451 1452 1453
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1454
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1455
	int ret;
1456

1457
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1458

1459
	ret = intel_ring_begin(req, 4);
1460 1461 1462
	if (ret)
		return ret;

1463
	intel_ring_emit(ring, dw1 | wait_mbox);
1464 1465 1466 1467
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1468 1469 1470 1471
	intel_ring_emit(ring, signal->fence.seqno - 1);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1472 1473 1474 1475

	return 0;
}

1476
static void
1477
gen5_seqno_barrier(struct intel_engine_cs *engine)
1478
{
1479 1480 1481
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1482
	 *
1483 1484 1485 1486 1487 1488 1489
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1490
	 */
1491
	usleep_range(125, 250);
1492 1493
}

1494 1495
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1496
{
1497
	struct drm_i915_private *dev_priv = engine->i915;
1498

1499 1500
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1501 1502 1503 1504 1505 1506 1507 1508 1509
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1510 1511 1512
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1513
	 */
1514
	spin_lock_irq(&dev_priv->uncore.lock);
1515
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1516
	spin_unlock_irq(&dev_priv->uncore.lock);
1517 1518
}

1519 1520
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1521
{
1522
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1523 1524 1525
}

static void
1526
gen5_irq_disable(struct intel_engine_cs *engine)
1527
{
1528
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1529 1530
}

1531 1532
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1533
{
1534
	struct drm_i915_private *dev_priv = engine->i915;
1535

1536 1537 1538
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1539 1540
}

1541
static void
1542
i9xx_irq_disable(struct intel_engine_cs *engine)
1543
{
1544
	struct drm_i915_private *dev_priv = engine->i915;
1545

1546 1547
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1548 1549
}

1550 1551
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1552
{
1553
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1554

1555 1556 1557
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1558 1559 1560
}

static void
1561
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1562
{
1563
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1564

1565 1566
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1567 1568
}

1569
static int
1570
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1571
{
1572
	struct intel_ring *ring = req->ring;
1573 1574
	int ret;

1575
	ret = intel_ring_begin(req, 2);
1576 1577 1578
	if (ret)
		return ret;

1579 1580 1581
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1582
	return 0;
1583 1584
}

1585 1586
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1587
{
1588
	struct drm_i915_private *dev_priv = engine->i915;
1589

1590 1591 1592
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1593
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1594 1595 1596
}

static void
1597
gen6_irq_disable(struct intel_engine_cs *engine)
1598
{
1599
	struct drm_i915_private *dev_priv = engine->i915;
1600

1601
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1602
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1603 1604
}

1605 1606
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1607
{
1608
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1609

1610
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1611
	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1612 1613 1614
}

static void
1615
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1616
{
1617
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1618

1619
	I915_WRITE_IMR(engine, ~0);
1620
	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1621 1622
}

1623 1624
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1625
{
1626
	struct drm_i915_private *dev_priv = engine->i915;
1627

1628 1629 1630
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1631
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1632 1633 1634
}

static void
1635
gen8_irq_disable(struct intel_engine_cs *engine)
1636
{
1637
	struct drm_i915_private *dev_priv = engine->i915;
1638

1639
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1640 1641
}

1642
static int
1643 1644 1645
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1646
{
1647
	struct intel_ring *ring = req->ring;
1648
	int ret;
1649

1650
	ret = intel_ring_begin(req, 2);
1651 1652 1653
	if (ret)
		return ret;

1654
	intel_ring_emit(ring,
1655 1656
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1657 1658
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1659 1660
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1661

1662 1663 1664
	return 0;
}

1665 1666
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1667 1668
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1669
static int
1670 1671 1672
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1673
{
1674
	struct intel_ring *ring = req->ring;
1675
	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1676
	int ret;
1677

1678
	ret = intel_ring_begin(req, 6);
1679 1680
	if (ret)
		return ret;
1681

1682
	/* Evict the invalid PTE TLBs */
1683 1684 1685 1686 1687 1688 1689
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1690

1691
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1692 1693 1694
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1695
		ret = intel_ring_begin(req, 6 + 2);
1696 1697
		if (ret)
			return ret;
1698 1699 1700 1701 1702

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1703 1704
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1705
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1706 1707 1708 1709
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1710

1711 1712 1713
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1714 1715

		/* ... and execute it. */
1716
		offset = cs_offset;
1717
	}
1718

1719
	ret = intel_ring_begin(req, 2);
1720 1721 1722
	if (ret)
		return ret;

1723 1724 1725 1726
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1727

1728 1729 1730 1731
	return 0;
}

static int
1732 1733 1734
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1735
{
1736
	struct intel_ring *ring = req->ring;
1737 1738
	int ret;

1739
	ret = intel_ring_begin(req, 2);
1740 1741 1742
	if (ret)
		return ret;

1743 1744 1745 1746
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1747 1748 1749 1750

	return 0;
}

1751
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1752
{
1753
	struct drm_i915_private *dev_priv = engine->i915;
1754 1755 1756 1757

	if (!dev_priv->status_page_dmah)
		return;

1758
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1759
	engine->status_page.page_addr = NULL;
1760 1761
}

1762
static void cleanup_status_page(struct intel_engine_cs *engine)
1763
{
1764
	struct i915_vma *vma;
1765
	struct drm_i915_gem_object *obj;
1766

1767 1768
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1769 1770
		return;

1771 1772
	obj = vma->obj;

1773
	i915_vma_unpin(vma);
1774 1775 1776 1777
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
1778 1779
}

1780
static int init_status_page(struct intel_engine_cs *engine)
1781
{
1782 1783 1784 1785
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	int ret;
1786

1787 1788 1789 1790 1791
	obj = i915_gem_object_create(&engine->i915->drm, 4096);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1792

1793 1794 1795
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1796

1797 1798 1799 1800
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1801
	}
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1819

1820
	engine->status_page.vma = vma;
1821
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1822 1823
	engine->status_page.page_addr =
		i915_gem_object_pin_map(obj, I915_MAP_WB);
1824

1825 1826
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1827
	return 0;
1828 1829 1830 1831

err:
	i915_gem_object_put(obj);
	return ret;
1832 1833
}

1834
static int init_phys_status_page(struct intel_engine_cs *engine)
1835
{
1836
	struct drm_i915_private *dev_priv = engine->i915;
1837

1838 1839 1840 1841
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1842

1843 1844
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1845 1846 1847 1848

	return 0;
}

1849
int intel_ring_pin(struct intel_ring *ring)
1850
{
1851
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1852
	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1853
	enum i915_map_type map;
1854
	struct i915_vma *vma = ring->vma;
1855
	void *addr;
1856 1857
	int ret;

1858
	GEM_BUG_ON(ring->vaddr);
1859

1860 1861 1862
	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;

	if (vma->obj->stolen)
1863
		flags |= PIN_MAPPABLE;
1864

1865
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1866
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1867 1868 1869 1870
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1871
			return ret;
1872
	}
1873

1874 1875 1876
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1877

1878
	if (i915_vma_is_map_and_fenceable(vma))
1879 1880
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1881
		addr = i915_gem_object_pin_map(vma->obj, map);
1882 1883
	if (IS_ERR(addr))
		goto err;
1884

1885
	ring->vaddr = addr;
1886
	return 0;
1887

1888 1889 1890
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1891 1892
}

1893 1894 1895 1896 1897
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1898
	if (i915_vma_is_map_and_fenceable(ring->vma))
1899
		i915_vma_unpin_iomap(ring->vma);
1900 1901
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1902 1903
	ring->vaddr = NULL;

1904
	i915_vma_unpin(ring->vma);
1905 1906
}

1907 1908
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1909
{
1910
	struct drm_i915_gem_object *obj;
1911
	struct i915_vma *vma;
1912

1913 1914
	obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
	if (!obj)
1915 1916 1917
		obj = i915_gem_object_create(&dev_priv->drm, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1918

1919 1920 1921
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1922 1923 1924 1925 1926
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	return vma;
1927

1928 1929 1930
err:
	i915_gem_object_put(obj);
	return vma;
1931 1932
}

1933 1934
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1935
{
1936
	struct intel_ring *ring;
1937
	struct i915_vma *vma;
1938

1939
	GEM_BUG_ON(!is_power_of_2(size));
1940
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1941

1942
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1943
	if (!ring)
1944 1945
		return ERR_PTR(-ENOMEM);

1946
	ring->engine = engine;
1947

1948 1949
	INIT_LIST_HEAD(&ring->request_list);

1950 1951 1952 1953 1954 1955
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1956
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
1957 1958 1959 1960 1961
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

1962 1963
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1964
		kfree(ring);
1965
		return ERR_CAST(vma);
1966
	}
1967
	ring->vma = vma;
1968 1969 1970 1971 1972

	return ring;
}

void
1973
intel_ring_free(struct intel_ring *ring)
1974
{
1975 1976 1977 1978 1979
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1980 1981 1982
	kfree(ring);
}

1983 1984 1985 1986 1987 1988
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

1989
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1990 1991 1992 1993 1994

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
1995 1996 1997 1998
		ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
		if (ret)
			goto error;

1999 2000
		ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
				   PIN_GLOBAL | PIN_HIGH);
2001 2002 2003 2004
		if (ret)
			goto error;
	}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2015
	i915_gem_context_get(ctx);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2028
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2029 2030 2031 2032 2033

	if (--ce->pin_count)
		return;

	if (ce->state)
2034
		i915_vma_unpin(ce->state);
2035

2036
	i915_gem_context_put(ctx);
2037 2038
}

2039
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2040
{
2041
	struct drm_i915_private *dev_priv = engine->i915;
2042
	struct intel_ring *ring;
2043 2044
	int ret;

2045
	WARN_ON(engine->buffer);
2046

2047 2048
	intel_engine_setup_common(engine);

2049 2050
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2051

2052
	ret = intel_engine_init_common(engine);
2053 2054
	if (ret)
		goto error;
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2067 2068 2069
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2070 2071
		goto error;
	}
2072

2073 2074 2075
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2076
		if (ret)
2077
			goto error;
2078
	} else {
2079
		ret = init_status_page(engine);
2080
		if (ret)
2081
			goto error;
2082 2083
	}

2084
	ret = intel_ring_pin(ring);
2085
	if (ret) {
2086
		intel_ring_free(ring);
2087
		goto error;
2088
	}
2089
	engine->buffer = ring;
2090

2091
	return 0;
2092

2093
error:
2094
	intel_engine_cleanup(engine);
2095
	return ret;
2096 2097
}

2098
void intel_engine_cleanup(struct intel_engine_cs *engine)
2099
{
2100
	struct drm_i915_private *dev_priv;
2101

2102
	dev_priv = engine->i915;
2103

2104
	if (engine->buffer) {
2105 2106
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2107

2108
		intel_ring_unpin(engine->buffer);
2109
		intel_ring_free(engine->buffer);
2110
		engine->buffer = NULL;
2111
	}
2112

2113 2114
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2115

2116
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2117 2118
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2119 2120
	} else {
		cleanup_status_page(engine);
2121
	}
2122

2123
	intel_engine_cleanup_common(engine);
2124 2125 2126

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2127
	engine->i915 = NULL;
2128 2129
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2130 2131
}

2132 2133 2134
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
2135
	enum intel_engine_id id;
2136

2137
	for_each_engine(engine, dev_priv, id) {
2138 2139 2140 2141 2142
		engine->buffer->head = engine->buffer->tail;
		engine->buffer->last_retired_head = -1;
	}
}

2143
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2144
{
2145 2146 2147 2148 2149 2150
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2151
	request->reserved_space += LEGACY_REQUEST_SIZE;
2152

2153
	request->ring = request->engine->buffer;
2154 2155 2156 2157 2158

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2159
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2160
	return 0;
2161 2162
}

2163 2164
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2165
	struct intel_ring *ring = req->ring;
2166
	struct drm_i915_gem_request *target;
2167 2168 2169
	long timeout;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
2170

2171 2172
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2184
	GEM_BUG_ON(!req->reserved_space);
2185

2186
	list_for_each_entry(target, &ring->request_list, ring_link) {
2187 2188 2189
		unsigned space;

		/* Would completion of this request free enough space? */
2190 2191
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2192 2193
		if (space >= bytes)
			break;
2194
	}
2195

2196
	if (WARN_ON(&target->ring_link == &ring->request_list))
2197 2198
		return -ENOSPC;

2199 2200 2201 2202 2203
	timeout = i915_wait_request(target,
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
2204 2205 2206 2207 2208 2209

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2210 2211
}

2212
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2213
{
2214
	struct intel_ring *ring = req->ring;
2215 2216
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2217 2218
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2219
	bool need_wrap = false;
2220

2221
	total_bytes = bytes + req->reserved_space;
2222

2223 2224 2225 2226 2227 2228 2229
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2230 2231 2232 2233 2234 2235 2236
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2237
		wait_bytes = remain_actual + req->reserved_space;
2238
	} else {
2239 2240
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2241 2242
	}

2243
	if (wait_bytes > ring->space) {
2244
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2245 2246 2247 2248
		if (unlikely(ret))
			return ret;
	}

2249
	if (unlikely(need_wrap)) {
2250 2251
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2252

2253
		/* Fill the tail with MI_NOOP */
2254 2255 2256
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2257
	}
2258

2259 2260
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2261
	return 0;
2262
}
2263

2264
/* Align the ring tail to a cacheline boundary */
2265
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2266
{
2267
	struct intel_ring *ring = req->ring;
2268 2269
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2270 2271 2272 2273 2274
	int ret;

	if (num_dwords == 0)
		return 0;

2275
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2276
	ret = intel_ring_begin(req, num_dwords);
2277 2278 2279 2280
	if (ret)
		return ret;

	while (num_dwords--)
2281
		intel_ring_emit(ring, MI_NOOP);
2282

2283
	intel_ring_advance(ring);
2284 2285 2286 2287

	return 0;
}

2288
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2289
{
2290
	struct drm_i915_private *dev_priv = request->i915;
2291

2292 2293
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2294
       /* Every tail move must follow the sequence below */
2295 2296 2297 2298

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2299 2300
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2301 2302

	/* Clear the context id. Here be magic! */
2303
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2304

2305
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2306 2307 2308 2309 2310
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2311
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2312

2313
	/* Now that the ring is fully powered up, update the tail */
2314
	i9xx_submit_request(request);
2315 2316 2317 2318

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2319 2320 2321 2322
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2323 2324
}

2325
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2326
{
2327
	struct intel_ring *ring = req->ring;
2328
	uint32_t cmd;
2329 2330
	int ret;

2331
	ret = intel_ring_begin(req, 4);
2332 2333 2334
	if (ret)
		return ret;

2335
	cmd = MI_FLUSH_DW;
2336
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2337
		cmd += 1;
2338 2339 2340 2341 2342 2343 2344 2345

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2346 2347 2348 2349 2350 2351
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2352
	if (mode & EMIT_INVALIDATE)
2353 2354
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2355 2356
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2357
	if (INTEL_GEN(req->i915) >= 8) {
2358 2359
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2360
	} else  {
2361 2362
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2363
	}
2364
	intel_ring_advance(ring);
2365
	return 0;
2366 2367
}

2368
static int
2369 2370 2371
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2372
{
2373
	struct intel_ring *ring = req->ring;
2374
	bool ppgtt = USES_PPGTT(req->i915) &&
2375
			!(dispatch_flags & I915_DISPATCH_SECURE);
2376 2377
	int ret;

2378
	ret = intel_ring_begin(req, 4);
2379 2380 2381 2382
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2383
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2384 2385
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2386 2387 2388 2389
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2390 2391 2392 2393

	return 0;
}

2394
static int
2395 2396 2397
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2398
{
2399
	struct intel_ring *ring = req->ring;
2400 2401
	int ret;

2402
	ret = intel_ring_begin(req, 2);
2403 2404 2405
	if (ret)
		return ret;

2406
	intel_ring_emit(ring,
2407
			MI_BATCH_BUFFER_START |
2408
			(dispatch_flags & I915_DISPATCH_SECURE ?
2409 2410 2411
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2412
	/* bit0-7 is the length on GEN6+ */
2413 2414
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2415 2416 2417 2418

	return 0;
}

2419
static int
2420 2421 2422
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2423
{
2424
	struct intel_ring *ring = req->ring;
2425
	int ret;
2426

2427
	ret = intel_ring_begin(req, 2);
2428 2429
	if (ret)
		return ret;
2430

2431
	intel_ring_emit(ring,
2432
			MI_BATCH_BUFFER_START |
2433 2434
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2435
	/* bit0-7 is the length on GEN6+ */
2436 2437
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2438

2439
	return 0;
2440 2441
}

2442 2443
/* Blitter support (SandyBridge+) */

2444
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2445
{
2446
	struct intel_ring *ring = req->ring;
2447
	uint32_t cmd;
2448 2449
	int ret;

2450
	ret = intel_ring_begin(req, 4);
2451 2452 2453
	if (ret)
		return ret;

2454
	cmd = MI_FLUSH_DW;
2455
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2456
		cmd += 1;
2457 2458 2459 2460 2461 2462 2463 2464

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2465 2466 2467 2468 2469 2470
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2471
	if (mode & EMIT_INVALIDATE)
2472
		cmd |= MI_INVALIDATE_TLB;
2473 2474
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2475
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2476
	if (INTEL_GEN(req->i915) >= 8) {
2477 2478
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2479
	} else  {
2480 2481
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2482
	}
2483
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2484

2485
	return 0;
Z
Zou Nan hai 已提交
2486 2487
}

2488 2489 2490
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2491
	struct drm_i915_gem_object *obj;
2492
	int ret, i;
2493

2494
	if (!i915.semaphores)
2495 2496
		return;

2497 2498 2499
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

2500
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2501 2502
		if (IS_ERR(obj))
			goto err;
2503

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
2518 2519

	if (INTEL_GEN(dev_priv) >= 8) {
2520
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2521

2522
		engine->semaphore.sync_to = gen8_ring_sync_to;
2523
		engine->semaphore.signal = gen8_xcs_signal;
2524 2525

		for (i = 0; i < I915_NUM_ENGINES; i++) {
2526
			u32 ring_offset;
2527 2528 2529 2530 2531 2532 2533 2534

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2535
	} else if (INTEL_GEN(dev_priv) >= 6) {
2536
		engine->semaphore.sync_to = gen6_ring_sync_to;
2537
		engine->semaphore.signal = gen6_signal;
2538 2539 2540 2541 2542 2543 2544 2545

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
2546
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2547 2548 2549
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
2550 2551 2552 2553 2554
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2555
				},
2556 2557 2558 2559
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2560
				},
2561 2562 2563 2564
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2565
				},
2566 2567 2568 2569
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2570 2571 2572 2573 2574
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

2575
			if (i == engine->hw_id) {
2576 2577 2578
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2579 2580
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2581 2582 2583 2584 2585
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2586
	}
2587 2588 2589 2590 2591 2592 2593 2594

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2595 2596
}

2597 2598 2599
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2600 2601
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2602
	if (INTEL_GEN(dev_priv) >= 8) {
2603 2604
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2605 2606
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2607 2608
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2609 2610
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2611 2612
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2613
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2614
	} else if (INTEL_GEN(dev_priv) >= 3) {
2615 2616
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2617
	} else {
2618 2619
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2620 2621 2622
	}
}

2623 2624 2625
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2626 2627 2628
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2629
	engine->init_hw = init_ring_common;
2630
	engine->reset_hw = reset_ring_common;
2631

2632
	engine->emit_request = i9xx_emit_request;
2633 2634
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2635
	engine->submit_request = i9xx_submit_request;
2636 2637

	if (INTEL_GEN(dev_priv) >= 8)
2638
		engine->emit_bb_start = gen8_emit_bb_start;
2639
	else if (INTEL_GEN(dev_priv) >= 6)
2640
		engine->emit_bb_start = gen6_emit_bb_start;
2641
	else if (INTEL_GEN(dev_priv) >= 4)
2642
		engine->emit_bb_start = i965_emit_bb_start;
2643
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2644
		engine->emit_bb_start = i830_emit_bb_start;
2645
	else
2646
		engine->emit_bb_start = i915_emit_bb_start;
2647 2648
}

2649
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2650
{
2651
	struct drm_i915_private *dev_priv = engine->i915;
2652
	int ret;
2653

2654 2655
	intel_ring_default_vfuncs(dev_priv, engine);

2656 2657
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2658

2659
	if (INTEL_GEN(dev_priv) >= 8) {
2660
		engine->init_context = intel_rcs_ctx_init;
2661
		engine->emit_request = gen8_render_emit_request;
2662
		engine->emit_flush = gen8_render_ring_flush;
2663
		if (i915.semaphores)
2664
			engine->semaphore.signal = gen8_rcs_signal;
2665
	} else if (INTEL_GEN(dev_priv) >= 6) {
2666
		engine->init_context = intel_rcs_ctx_init;
2667
		engine->emit_flush = gen7_render_ring_flush;
2668
		if (IS_GEN6(dev_priv))
2669
			engine->emit_flush = gen6_render_ring_flush;
2670
	} else if (IS_GEN5(dev_priv)) {
2671
		engine->emit_flush = gen4_render_ring_flush;
2672
	} else {
2673
		if (INTEL_GEN(dev_priv) < 4)
2674
			engine->emit_flush = gen2_render_ring_flush;
2675
		else
2676
			engine->emit_flush = gen4_render_ring_flush;
2677
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2678
	}
B
Ben Widawsky 已提交
2679

2680
	if (IS_HASWELL(dev_priv))
2681
		engine->emit_bb_start = hsw_emit_bb_start;
2682

2683 2684
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2685

2686
	ret = intel_init_ring_buffer(engine);
2687 2688 2689
	if (ret)
		return ret;

2690
	if (INTEL_GEN(dev_priv) >= 6) {
2691
		ret = intel_engine_create_scratch(engine, 4096);
2692 2693 2694
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2695
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2696 2697 2698 2699 2700
		if (ret)
			return ret;
	}

	return 0;
2701 2702
}

2703
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2704
{
2705
	struct drm_i915_private *dev_priv = engine->i915;
2706

2707 2708
	intel_ring_default_vfuncs(dev_priv, engine);

2709
	if (INTEL_GEN(dev_priv) >= 6) {
2710
		/* gen6 bsd needs a special wa for tail updates */
2711
		if (IS_GEN6(dev_priv))
2712
			engine->submit_request = gen6_bsd_submit_request;
2713
		engine->emit_flush = gen6_bsd_ring_flush;
2714
		if (INTEL_GEN(dev_priv) < 8)
2715
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2716
	} else {
2717
		engine->mmio_base = BSD_RING_BASE;
2718
		engine->emit_flush = bsd_ring_flush;
2719
		if (IS_GEN5(dev_priv))
2720
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2721
		else
2722
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2723 2724
	}

2725
	return intel_init_ring_buffer(engine);
2726
}
2727

2728
/**
2729
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2730
 */
2731
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2732
{
2733
	struct drm_i915_private *dev_priv = engine->i915;
2734 2735 2736

	intel_ring_default_vfuncs(dev_priv, engine);

2737
	engine->emit_flush = gen6_bsd_ring_flush;
2738

2739
	return intel_init_ring_buffer(engine);
2740 2741
}

2742
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2743
{
2744
	struct drm_i915_private *dev_priv = engine->i915;
2745 2746 2747

	intel_ring_default_vfuncs(dev_priv, engine);

2748
	engine->emit_flush = gen6_ring_flush;
2749
	if (INTEL_GEN(dev_priv) < 8)
2750
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2751

2752
	return intel_init_ring_buffer(engine);
2753
}
2754

2755
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2756
{
2757
	struct drm_i915_private *dev_priv = engine->i915;
2758 2759 2760

	intel_ring_default_vfuncs(dev_priv, engine);

2761
	engine->emit_flush = gen6_ring_flush;
2762

2763
	if (INTEL_GEN(dev_priv) < 8) {
2764
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2765 2766
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2767
	}
B
Ben Widawsky 已提交
2768

2769
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2770
}