compression.c 41.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30 31
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

32 33 34 35 36 37 38 39 40 41
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
42 43
	default:
		break;
44 45 46 47 48
	}

	return NULL;
}

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

65
static int btrfs_decompress_bio(struct compressed_bio *cb);
66

67
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
68 69
				      unsigned long disk_size)
{
70
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
71

72
	return sizeof(struct compressed_bio) +
73
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
74 75
}

76
static int check_compressed_csum(struct btrfs_inode *inode,
77 78 79
				 struct compressed_bio *cb,
				 u64 disk_start)
{
80
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
81
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
82
	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
83 84 85 86
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
87
	u8 csum[BTRFS_CSUM_SIZE];
88
	u8 *cb_sum = cb->sums;
89

90
	if (inode->flags & BTRFS_INODE_NODATASUM)
91 92
		return 0;

93 94
	shash->tfm = fs_info->csum_shash;

95 96 97
	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];

98
		crypto_shash_init(shash);
99
		kaddr = kmap_atomic(page);
100
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
101
		kunmap_atomic(kaddr);
102
		crypto_shash_final(shash, (u8 *)&csum);
103

104
		if (memcmp(&csum, cb_sum, csum_size)) {
105
			btrfs_print_data_csum_error(inode, disk_start,
106
					csum, cb_sum, cb->mirror_num);
107 108 109
			ret = -EIO;
			goto fail;
		}
110
		cb_sum += csum_size;
111 112 113 114 115 116 117

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
118 119 120 121 122 123 124 125 126 127
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
128
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
129 130 131 132 133
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
134
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
135
	int ret = 0;
C
Chris Mason 已提交
136

137
	if (bio->bi_status)
C
Chris Mason 已提交
138 139 140 141 142
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
143
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
144 145
		goto out;

146 147 148 149 150 151 152 153
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

154 155 156 157 158 159 160
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

161
	inode = cb->inode;
162
	ret = check_compressed_csum(BTRFS_I(inode), cb,
163
				    (u64)bio->bi_iter.bi_sector << 9);
164 165 166
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
167 168 169
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
170 171
	ret = btrfs_decompress_bio(cb);

172
csum_failed:
C
Chris Mason 已提交
173 174 175 176 177 178 179 180
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
181
		put_page(page);
C
Chris Mason 已提交
182 183 184
	}

	/* do io completion on the original bio */
185
	if (cb->errors) {
C
Chris Mason 已提交
186
		bio_io_error(cb->orig_bio);
187
	} else {
188
		struct bio_vec *bvec;
189
		struct bvec_iter_all iter_all;
190 191 192 193 194

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
195
		ASSERT(!bio_flagged(bio, BIO_CLONED));
196
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
197
			SetPageChecked(bvec->bv_page);
198

199
		bio_endio(cb->orig_bio);
200
	}
C
Chris Mason 已提交
201 202 203 204 205 206 207 208 209 210 211 212

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
213 214
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
215
{
216 217
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
218 219 220 221 222
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

223 224 225
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
226
	while (nr_pages > 0) {
C
Chris Mason 已提交
227
		ret = find_get_pages_contig(inode->i_mapping, index,
228 229
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
230 231 232 233 234 235
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
236 237
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
238
			end_page_writeback(pages[i]);
239
			put_page(pages[i]);
C
Chris Mason 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
255
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
256 257 258 259 260 261
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

262
	if (bio->bi_status)
C
Chris Mason 已提交
263 264 265 266 267
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
268
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
269 270 271 272 273 274
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
275
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
276
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
277
			cb->start, cb->start + cb->len - 1,
278
			bio->bi_status == BLK_STS_OK);
C
Chris Mason 已提交
279
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
280

281
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
282 283 284 285 286 287 288 289 290 291
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
292
		put_page(page);
C
Chris Mason 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
311
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
312 313 314
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
315
				 unsigned long nr_pages,
316 317
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
318
{
319
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
320 321 322
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
323
	int pg_index = 0;
C
Chris Mason 已提交
324 325 326
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
327
	blk_status_t ret;
328
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
329

330
	WARN_ON(!PAGE_ALIGNED(start));
331
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
332
	if (!cb)
333
		return BLK_STS_RESOURCE;
334
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
335 336 337 338
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
339
	cb->mirror_num = 0;
C
Chris Mason 已提交
340 341 342 343 344
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

345
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
346

347 348
	bio = btrfs_bio_alloc(first_byte);
	bio_set_dev(bio, bdev);
349
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
350 351
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
352 353 354 355 356

	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
		bio_associate_blkg_from_css(bio, blkcg_css);
	}
357
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
358 359 360

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
361
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
362 363
		int submit = 0;

364
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
365
		page->mapping = inode->i_mapping;
366
		if (bio->bi_iter.bi_size)
367 368
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
369

C
Chris Mason 已提交
370
		page->mapping = NULL;
371
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
372
		    PAGE_SIZE) {
373 374 375 376 377 378
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
379
			refcount_inc(&cb->pending_bios);
380 381
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
382
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
383

384
			if (!skip_sum) {
385
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
386
				BUG_ON(ret); /* -ENOMEM */
387
			}
388

389
			ret = btrfs_map_bio(fs_info, bio, 0);
390
			if (ret) {
391
				bio->bi_status = ret;
392 393
				bio_endio(bio);
			}
C
Chris Mason 已提交
394

395 396
			bio = btrfs_bio_alloc(first_byte);
			bio_set_dev(bio, bdev);
397
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
398 399
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
400
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
401
		}
402
		if (bytes_left < PAGE_SIZE) {
403
			btrfs_info(fs_info,
404
					"bytes left %lu compress len %lu nr %lu",
405 406
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
407 408
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
409
		cond_resched();
C
Chris Mason 已提交
410 411
	}

412
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
413
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
414

415
	if (!skip_sum) {
416
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
417
		BUG_ON(ret); /* -ENOMEM */
418
	}
419

420
	ret = btrfs_map_bio(fs_info, bio, 0);
421
	if (ret) {
422
		bio->bi_status = ret;
423 424
		bio_endio(bio);
	}
C
Chris Mason 已提交
425 426 427 428

	return 0;
}

429 430
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
431
	struct bio_vec *last = bio_last_bvec_all(bio);
432 433 434 435

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

436 437 438 439 440
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
441
	unsigned long pg_index;
442 443 444 445 446 447 448 449 450 451 452 453
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

454
	last_offset = bio_end_offset(cb->orig_bio);
455 456 457 458 459 460
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

461
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
462

C
Chris Mason 已提交
463
	while (last_offset < compressed_end) {
464
		pg_index = last_offset >> PAGE_SHIFT;
465

466
		if (pg_index > end_index)
467 468
			break;

469
		page = xa_load(&mapping->i_pages, pg_index);
470
		if (page && !xa_is_value(page)) {
471 472 473 474 475 476
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

477 478
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
479 480 481
		if (!page)
			break;

482
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
483
			put_page(page);
484 485 486
			goto next;
		}

487
		end = last_offset + PAGE_SIZE - 1;
488 489 490 491 492 493
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
494
		lock_extent(tree, last_offset, end);
495
		read_lock(&em_tree->lock);
496
		em = lookup_extent_mapping(em_tree, last_offset,
497
					   PAGE_SIZE);
498
		read_unlock(&em_tree->lock);
499 500

		if (!em || last_offset < em->start ||
501
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
502
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
503
			free_extent_map(em);
504
			unlock_extent(tree, last_offset, end);
505
			unlock_page(page);
506
			put_page(page);
507 508 509 510 511 512
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
513
			size_t zero_offset = offset_in_page(isize);
514 515 516

			if (zero_offset) {
				int zeros;
517
				zeros = PAGE_SIZE - zero_offset;
518
				userpage = kmap_atomic(page);
519 520
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
521
				kunmap_atomic(userpage);
522 523 524 525
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
526
				   PAGE_SIZE, 0);
527

528
		if (ret == PAGE_SIZE) {
529
			nr_pages++;
530
			put_page(page);
531
		} else {
532
			unlock_extent(tree, last_offset, end);
533
			unlock_page(page);
534
			put_page(page);
535 536 537
			break;
		}
next:
538
		last_offset += PAGE_SIZE;
539 540 541 542
	}
	return 0;
}

C
Chris Mason 已提交
543 544 545 546 547
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
548
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
549 550 551 552 553
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
554
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
555 556
				 int mirror_num, unsigned long bio_flags)
{
557
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
558 559 560 561
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
562
	unsigned long pg_index;
C
Chris Mason 已提交
563 564 565
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
566
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
567 568
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
569
	struct extent_map *em;
570
	blk_status_t ret = BLK_STS_RESOURCE;
571
	int faili = 0;
572 573
	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
	u8 *sums;
C
Chris Mason 已提交
574 575 576 577

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
578
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
579
	em = lookup_extent_mapping(em_tree,
580
				   page_offset(bio_first_page_all(bio)),
581
				   PAGE_SIZE);
582
	read_unlock(&em_tree->lock);
583
	if (!em)
584
		return BLK_STS_IOERR;
C
Chris Mason 已提交
585

586
	compressed_len = em->block_len;
587
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
588 589 590
	if (!cb)
		goto out;

591
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
592 593
	cb->errors = 0;
	cb->inode = inode;
594
	cb->mirror_num = mirror_num;
595
	sums = cb->sums;
C
Chris Mason 已提交
596

597
	cb->start = em->orig_start;
598 599
	em_len = em->len;
	em_start = em->start;
600

C
Chris Mason 已提交
601
	free_extent_map(em);
602
	em = NULL;
C
Chris Mason 已提交
603

C
Christoph Hellwig 已提交
604
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
605
	cb->compressed_len = compressed_len;
606
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
607 608
	cb->orig_bio = bio;

609
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
610
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
611
				       GFP_NOFS);
612 613 614
	if (!cb->compressed_pages)
		goto fail1;

615
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
616

617 618
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
619
							      __GFP_HIGHMEM);
620 621
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
622
			ret = BLK_STS_RESOURCE;
623
			goto fail2;
624
		}
C
Chris Mason 已提交
625
	}
626
	faili = nr_pages - 1;
C
Chris Mason 已提交
627 628
	cb->nr_pages = nr_pages;

629
	add_ra_bio_pages(inode, em_start + em_len, cb);
630 631

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
632
	cb->len = bio->bi_iter.bi_size;
633

634 635
	comp_bio = btrfs_bio_alloc(cur_disk_byte);
	bio_set_dev(comp_bio, bdev);
D
David Sterba 已提交
636
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
637 638
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
639
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
640

641
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
642 643
		int submit = 0;

644
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
645
		page->mapping = inode->i_mapping;
646
		page->index = em_start >> PAGE_SHIFT;
647

648
		if (comp_bio->bi_iter.bi_size)
649 650
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
							  comp_bio, 0);
C
Chris Mason 已提交
651

C
Chris Mason 已提交
652
		page->mapping = NULL;
653
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
654
		    PAGE_SIZE) {
655 656
			unsigned int nr_sectors;

657 658
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
659
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
660

661 662 663 664 665 666
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
667
			refcount_inc(&cb->pending_bios);
668

669
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
670
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
671
							    sums);
672
				BUG_ON(ret); /* -ENOMEM */
673
			}
674 675 676 677

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
			sums += csum_size * nr_sectors;
678

679
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
680
			if (ret) {
681
				comp_bio->bi_status = ret;
682 683
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
684

685 686
			comp_bio = btrfs_bio_alloc(cur_disk_byte);
			bio_set_dev(comp_bio, bdev);
D
David Sterba 已提交
687
			comp_bio->bi_opf = REQ_OP_READ;
688 689 690
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

691
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
692
		}
693
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
694 695
	}

696
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
697
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
698

699
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
700
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
701
		BUG_ON(ret); /* -ENOMEM */
702
	}
703

704
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
705
	if (ret) {
706
		comp_bio->bi_status = ret;
707 708
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
709 710

	return 0;
711 712

fail2:
713 714 715 716
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
717 718 719 720 721 722 723

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
724
}
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
761 762

struct heuristic_ws {
763 764
	/* Partial copy of input data */
	u8 *sample;
765
	u32 sample_size;
766 767
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
768 769
	/* Sorting buffer */
	struct bucket_item *bucket_b;
770 771 772
	struct list_head list;
};

773 774 775 776 777 778 779 780 781 782 783 784
static struct workspace_manager heuristic_wsm;

static void heuristic_init_workspace_manager(void)
{
	btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
}

static void heuristic_cleanup_workspace_manager(void)
{
	btrfs_cleanup_workspace_manager(&heuristic_wsm);
}

785
static struct list_head *heuristic_get_workspace(unsigned int level)
786
{
787
	return btrfs_get_workspace(&heuristic_wsm, level);
788 789 790 791 792 793 794
}

static void heuristic_put_workspace(struct list_head *ws)
{
	btrfs_put_workspace(&heuristic_wsm, ws);
}

795 796 797 798 799 800
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

801 802
	kvfree(workspace->sample);
	kfree(workspace->bucket);
803
	kfree(workspace->bucket_b);
804 805 806
	kfree(workspace);
}

807
static struct list_head *alloc_heuristic_ws(unsigned int level)
808 809 810 811 812 813 814
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

815 816 817 818 819 820 821
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
822

823 824 825 826
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

827
	INIT_LIST_HEAD(&ws->list);
828
	return &ws->list;
829 830 831
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
832 833
}

834
const struct btrfs_compress_op btrfs_heuristic_compress = {
835 836 837 838
	.init_workspace_manager = heuristic_init_workspace_manager,
	.cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
	.get_workspace = heuristic_get_workspace,
	.put_workspace = heuristic_put_workspace,
839 840 841 842
	.alloc_workspace = alloc_heuristic_ws,
	.free_workspace = free_heuristic_ws,
};

843
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
844 845
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
846
	&btrfs_zlib_compress,
L
Li Zefan 已提交
847
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
848
	&btrfs_zstd_compress,
849 850
};

851 852
void btrfs_init_workspace_manager(struct workspace_manager *wsm,
				  const struct btrfs_compress_op *ops)
853
{
854
	struct list_head *workspace;
855

856
	wsm->ops = ops;
857

858 859 860 861
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
862

863 864 865 866
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
867
	workspace = wsm->ops->alloc_workspace(0);
868 869 870 871
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
872 873 874
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
875 876 877
	}
}

878
void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
879 880 881 882 883 884 885 886
{
	struct list_head *ws;

	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
		wsman->ops->free_workspace(ws);
		atomic_dec(&wsman->total_ws);
887 888 889 890
	}
}

/*
891 892 893 894
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
895
 */
896 897
struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
				      unsigned int level)
898 899 900
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
901
	unsigned nofs_flag;
902 903 904 905 906 907
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

908 909 910 911 912
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
913 914

again:
915 916 917
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
918
		list_del(workspace);
919
		(*free_ws)--;
920
		spin_unlock(ws_lock);
921 922 923
		return workspace;

	}
924
	if (atomic_read(total_ws) > cpus) {
925 926
		DEFINE_WAIT(wait);

927 928
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
929
		if (atomic_read(total_ws) > cpus && !*free_ws)
930
			schedule();
931
		finish_wait(ws_wait, &wait);
932 933
		goto again;
	}
934
	atomic_inc(total_ws);
935
	spin_unlock(ws_lock);
936

937 938 939 940 941 942
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
943
	workspace = wsm->ops->alloc_workspace(level);
944 945
	memalloc_nofs_restore(nofs_flag);

946
	if (IS_ERR(workspace)) {
947
		atomic_dec(total_ws);
948
		wake_up(ws_wait);
949 950 951 952 953 954

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
955 956 957 958
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
959
		 */
960 961 962 963 964 965
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
966
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
967 968
			}
		}
969
		goto again;
970 971 972 973
	}
	return workspace;
}

974
static struct list_head *get_workspace(int type, int level)
975
{
976
	return btrfs_compress_op[type]->get_workspace(level);
977 978
}

979 980 981 982
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
983
void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
984
{
985 986 987 988 989 990
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

991 992 993 994 995
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
996 997

	spin_lock(ws_lock);
998
	if (*free_ws <= num_online_cpus()) {
999
		list_add(ws, idle_ws);
1000
		(*free_ws)++;
1001
		spin_unlock(ws_lock);
1002 1003
		goto wake;
	}
1004
	spin_unlock(ws_lock);
1005

1006
	wsm->ops->free_workspace(ws);
1007
	atomic_dec(total_ws);
1008
wake:
1009
	cond_wake_up(ws_wait);
1010 1011
}

1012 1013
static void put_workspace(int type, struct list_head *ws)
{
1014
	return btrfs_compress_op[type]->put_workspace(ws);
1015 1016
}

1017
/*
1018 1019
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1020
 *
1021 1022 1023 1024 1025
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1026 1027
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1028
 *
1029 1030
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1031 1032 1033
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1034 1035
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1036
 *
1037
 * @max_out tells us the max number of bytes that we're allowed to
1038 1039
 * stuff into pages
 */
1040
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1041
			 u64 start, struct page **pages,
1042 1043
			 unsigned long *out_pages,
			 unsigned long *total_in,
1044
			 unsigned long *total_out)
1045
{
1046
	int type = btrfs_compress_type(type_level);
1047
	int level = btrfs_compress_level(type_level);
1048 1049 1050
	struct list_head *workspace;
	int ret;

1051
	level = btrfs_compress_set_level(type, level);
1052
	workspace = get_workspace(type, level);
1053
	ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1054
						      start, pages,
1055
						      out_pages,
1056
						      total_in, total_out);
1057
	put_workspace(type, workspace);
1058 1059 1060 1061 1062 1063 1064 1065
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1066
 * orig_bio contains the pages from the file that we want to decompress into
1067 1068 1069 1070 1071 1072 1073 1074
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1075
static int btrfs_decompress_bio(struct compressed_bio *cb)
1076 1077 1078
{
	struct list_head *workspace;
	int ret;
1079
	int type = cb->compress_type;
1080

1081
	workspace = get_workspace(type, 0);
1082
	ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1083
	put_workspace(type, workspace);
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1099
	workspace = get_workspace(type, 0);
1100
	ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1101 1102
						  dest_page, start_byte,
						  srclen, destlen);
1103
	put_workspace(type, workspace);
1104

1105 1106 1107
	return ret;
}

1108 1109 1110 1111 1112
void __init btrfs_init_compress(void)
{
	int i;

	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1113
		btrfs_compress_op[i]->init_workspace_manager();
1114 1115
}

1116
void __cold btrfs_exit_compress(void)
1117
{
1118 1119 1120
	int i;

	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1121
		btrfs_compress_op[i]->cleanup_workspace_manager();
1122
}
1123 1124 1125 1126 1127 1128 1129 1130

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1131
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1132
			      unsigned long total_out, u64 disk_start,
1133
			      struct bio *bio)
1134 1135 1136 1137
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1138
	unsigned long prev_start_byte;
1139 1140 1141
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1142
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1143 1144 1145 1146 1147

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1148
	start_byte = page_offset(bvec.bv_page) - disk_start;
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1168 1169
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1170
		bytes = min(bytes, working_bytes);
1171 1172 1173

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1174
		kunmap_atomic(kaddr);
1175
		flush_dcache_page(bvec.bv_page);
1176 1177 1178 1179 1180 1181

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1182 1183 1184 1185
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1186
		prev_start_byte = start_byte;
1187
		start_byte = page_offset(bvec.bv_page) - disk_start;
1188

1189
		/*
1190 1191 1192 1193
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1194
		 */
1195 1196 1197 1198 1199 1200 1201
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1214 1215 1216 1217 1218
		}
	}

	return 1;
}
1219

1220 1221 1222
/*
 * Shannon Entropy calculation
 *
1223
 * Pure byte distribution analysis fails to determine compressibility of data.
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1287
 * Use 16 u32 counters for calculating new position in buf array
1288 1289 1290 1291 1292 1293
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1294
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1295
		       int num)
1296
{
1297 1298 1299 1300 1301 1302 1303 1304
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1305

1306 1307 1308 1309
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1310
	max_num = array[0].count;
1311
	for (i = 1; i < num; i++) {
1312
		buf_num = array[i].count;
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1325
			buf_num = array[i].count;
1326 1327 1328 1329 1330 1331 1332 1333
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1334
			buf_num = array[i].count;
1335 1336 1337
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1338
			array_buf[new_addr] = array[i];
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1352
			buf_num = array_buf[i].count;
1353 1354 1355 1356 1357 1358 1359 1360
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1361
			buf_num = array_buf[i].count;
1362 1363 1364
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1365
			array[new_addr] = array_buf[i];
1366 1367 1368 1369
		}

		shift += RADIX_BASE;
	}
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1399
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1455 1456 1457 1458 1459 1460 1461 1462
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1532
	struct list_head *ws_list = get_workspace(0, 0);
1533
	struct heuristic_ws *ws;
1534 1535
	u32 i;
	u8 byte;
1536
	int ret = 0;
1537

1538 1539
	ws = list_entry(ws_list, struct heuristic_ws, list);

1540 1541
	heuristic_collect_sample(inode, start, end, ws);

1542 1543 1544 1545 1546
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1547 1548 1549 1550 1551
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1552 1553
	}

1554 1555 1556 1557 1558 1559
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1600
out:
1601
	put_workspace(0, ws_list);
1602 1603
	return ret;
}
1604

1605 1606 1607 1608 1609
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1610
{
1611 1612 1613 1614
	unsigned int level = 0;
	int ret;

	if (!type)
1615 1616
		return 0;

1617 1618 1619 1620 1621 1622
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	level = btrfs_compress_set_level(type, level);

	return level;
}

/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);
1640

1641
	return level;
1642
}