dma.c 13.0 KB
Newer Older
1
// SPDX-License-Identifier: ISC
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
 */

#include <linux/dma-mapping.h>
#include "mt76.h"
#include "dma.h"

static int
11 12 13
mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
		     int idx, int n_desc, int bufsize,
		     u32 ring_base)
14 15 16 17 18 19
{
	int size;
	int i;

	spin_lock_init(&q->lock);

20 21 22 23 24
	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
	q->ndesc = n_desc;
	q->buf_size = bufsize;
	q->hw_idx = idx;

25 26 27 28 29 30 31 32 33 34 35 36 37 38
	size = q->ndesc * sizeof(struct mt76_desc);
	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
	if (!q->desc)
		return -ENOMEM;

	size = q->ndesc * sizeof(*q->entry);
	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
	if (!q->entry)
		return -ENOMEM;

	/* clear descriptors */
	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);

39 40 41 42
	writel(q->desc_dma, &q->regs->desc_base);
	writel(0, &q->regs->cpu_idx);
	writel(0, &q->regs->dma_idx);
	writel(q->ndesc, &q->regs->ring_size);
43 44 45 46 47 48 49 50 51 52 53 54 55

	return 0;
}

static int
mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
		 struct mt76_queue_buf *buf, int nbufs, u32 info,
		 struct sk_buff *skb, void *txwi)
{
	struct mt76_desc *desc;
	u32 ctrl;
	int i, idx = -1;

56
	if (txwi) {
57
		q->entry[q->head].txwi = DMA_DUMMY_DATA;
58 59
		q->entry[q->head].skip_buf0 = true;
	}
60 61 62 63

	for (i = 0; i < nbufs; i += 2, buf += 2) {
		u32 buf0 = buf[0].addr, buf1 = 0;

64 65 66 67
		if (buf[0].skip_unmap)
			q->entry[q->head].skip_buf0 = true;
		q->entry[q->head].skip_buf1 = i == nbufs - 1;

68 69 70 71
		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
		if (i < nbufs - 1) {
			buf1 = buf[1].addr;
			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
72 73
			if (buf[1].skip_unmap)
				q->entry[q->head].skip_buf1 = true;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
		}

		if (i == nbufs - 1)
			ctrl |= MT_DMA_CTL_LAST_SEC0;
		else if (i == nbufs - 2)
			ctrl |= MT_DMA_CTL_LAST_SEC1;

		idx = q->head;
		q->head = (q->head + 1) % q->ndesc;

		desc = &q->desc[idx];

		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
		WRITE_ONCE(desc->info, cpu_to_le32(info));
		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));

		q->queued++;
	}

	q->entry[idx].txwi = txwi;
	q->entry[idx].skb = skb;

	return idx;
}

static void
mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
			struct mt76_queue_entry *prev_e)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
	u32 ctrl = le32_to_cpu(__ctrl);

108
	if (!e->skip_buf0) {
109 110 111 112 113 114 115
		__le32 addr = READ_ONCE(q->desc[idx].buf0);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

116
	if (!e->skip_buf1) {
117 118 119 120 121 122 123
		__le32 addr = READ_ONCE(q->desc[idx].buf1);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

124
	if (e->txwi == DMA_DUMMY_DATA)
125 126
		e->txwi = NULL;

127 128 129
	if (e->skb == DMA_DUMMY_DATA)
		e->skb = NULL;

130 131 132 133 134 135 136
	*prev_e = *e;
	memset(e, 0, sizeof(*e));
}

static void
mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
{
137 138 139
	writel(q->desc_dma, &q->regs->desc_base);
	writel(q->ndesc, &q->regs->ring_size);
	q->head = readl(&q->regs->dma_idx);
140
	q->tail = q->head;
141 142 143 144 145
}

static void
mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
{
146
	writel(q->head, &q->regs->cpu_idx);
147 148 149 150 151
}

static void
mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
{
152 153
	struct mt76_sw_queue *sq = &dev->q_tx[qid];
	struct mt76_queue *q = sq->q;
154 155
	struct mt76_queue_entry entry;
	bool wake = false;
156
	int last;
157

158
	if (!q)
159 160 161 162 163
		return;

	if (flush)
		last = -1;
	else
164
		last = readl(&q->regs->dma_idx);
165

166 167 168
	while (q->queued > 0 && q->tail != last) {
		int swq_qid = -1;

169 170
		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
		if (entry.schedule)
171
			swq_qid = entry.qid;
172

173 174
		q->tail = (q->tail + 1) % q->ndesc;

175
		if (entry.skb)
176
			dev->drv->tx_complete_skb(dev, qid, &entry);
177 178

		if (entry.txwi) {
179
			if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
180
				mt76_put_txwi(dev, entry.txwi);
181
			wake = !flush;
182 183 184
		}

		if (!flush && q->tail == last)
185
			last = readl(&q->regs->dma_idx);
186

187 188 189 190 191 192 193
		spin_lock_bh(&q->lock);
		if (swq_qid >= 4)
			dev->q_tx[__MT_TXQ_MAX + swq_qid - 4].swq_queued--;
		else if (swq_qid >= 0)
			dev->q_tx[swq_qid].swq_queued--;
		q->queued--;
		spin_unlock_bh(&q->lock);
194 195
	}

196
	if (flush) {
197
		spin_lock_bh(&q->lock);
198
		mt76_dma_sync_idx(dev, q);
199
		mt76_dma_kick_queue(dev, q);
200
		spin_unlock_bh(&q->lock);
201
	}
202

203 204 205 206
	wake = wake && q->stopped &&
	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
	if (wake)
		q->stopped = false;
207 208 209 210

	if (!q->queued)
		wake_up(&dev->tx_wait);

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	if (wake)
		ieee80211_wake_queue(dev->hw, qid);
}

static void *
mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
		 int *len, u32 *info, bool *more)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	struct mt76_desc *desc = &q->desc[idx];
	dma_addr_t buf_addr;
	void *buf = e->buf;
	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);

	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
	if (len) {
		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
	}

	if (info)
		*info = le32_to_cpu(desc->info);

	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
	e->buf = NULL;

	return buf;
}

static void *
mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
		 int *len, u32 *info, bool *more)
{
	int idx = q->tail;

	*more = false;
	if (!q->queued)
		return NULL;

251 252 253
	if (flush)
		q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
	else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
254 255 256 257 258 259 260 261
		return NULL;

	q->tail = (q->tail + 1) % q->ndesc;
	q->queued--;

	return mt76_dma_get_buf(dev, q, idx, len, info, more);
}

262 263 264 265
static int
mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
			  struct sk_buff *skb, u32 tx_info)
{
266
	struct mt76_queue *q = dev->q_tx[qid].q;
267 268 269
	struct mt76_queue_buf buf;
	dma_addr_t addr;

270 271 272
	if (q->queued + 1 >= q->ndesc - 1)
		goto error;

273 274
	addr = dma_map_single(dev->dev, skb->data, skb->len,
			      DMA_TO_DEVICE);
275
	if (unlikely(dma_mapping_error(dev->dev, addr)))
276
		goto error;
277 278 279 280 281 282 283 284 285 286

	buf.addr = addr;
	buf.len = skb->len;

	spin_lock_bh(&q->lock);
	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
	mt76_dma_kick_queue(dev, q);
	spin_unlock_bh(&q->lock);

	return 0;
287 288 289 290

error:
	dev_kfree_skb(skb);
	return -ENOMEM;
291 292
}

293 294 295 296
static int
mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
		      struct sk_buff *skb, struct mt76_wcid *wcid,
		      struct ieee80211_sta *sta)
297
{
298
	struct mt76_queue *q = dev->q_tx[qid].q;
299 300 301
	struct mt76_tx_info tx_info = {
		.skb = skb,
	};
302
	struct ieee80211_hw *hw;
303
	int len, n = 0, ret = -ENOMEM;
304 305 306 307
	struct mt76_queue_entry e;
	struct mt76_txwi_cache *t;
	struct sk_buff *iter;
	dma_addr_t addr;
308
	u8 *txwi;
309 310 311

	t = mt76_get_txwi(dev);
	if (!t) {
312 313
		hw = mt76_tx_status_get_hw(dev, skb);
		ieee80211_free_txskb(hw, skb);
314 315
		return -ENOMEM;
	}
316
	txwi = mt76_get_txwi_ptr(dev, t);
317

318
	skb->prev = skb->next = NULL;
319
	if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
320 321
		mt76_insert_hdr_pad(skb);

322
	len = skb_headlen(skb);
323
	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
324
	if (unlikely(dma_mapping_error(dev->dev, addr)))
325 326
		goto free;

327 328 329 330
	tx_info.buf[n].addr = t->dma_addr;
	tx_info.buf[n++].len = dev->drv->txwi_size;
	tx_info.buf[n].addr = addr;
	tx_info.buf[n++].len = len;
331 332

	skb_walk_frags(skb, iter) {
333
		if (n == ARRAY_SIZE(tx_info.buf))
334 335 336 337
			goto unmap;

		addr = dma_map_single(dev->dev, iter->data, iter->len,
				      DMA_TO_DEVICE);
338
		if (unlikely(dma_mapping_error(dev->dev, addr)))
339 340
			goto unmap;

341 342
		tx_info.buf[n].addr = addr;
		tx_info.buf[n++].len = iter->len;
343
	}
344
	tx_info.nbuf = n;
345

346
	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
347
				DMA_TO_DEVICE);
348
	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
349
	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
350 351
				   DMA_TO_DEVICE);
	if (ret < 0)
352 353
		goto unmap;

354
	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
355 356 357 358
		ret = -ENOMEM;
		goto unmap;
	}

359
	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
360
				tx_info.info, tx_info.skb, t);
361 362 363

unmap:
	for (n--; n > 0; n--)
364 365
		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
				 tx_info.buf[n].len, DMA_TO_DEVICE);
366 367

free:
368 369 370 371 372 373
#ifdef CONFIG_NL80211_TESTMODE
	/* fix tx_done accounting on queue overflow */
	if (tx_info.skb == dev->test.tx_skb)
		dev->test.tx_done--;
#endif

374
	e.skb = tx_info.skb;
375
	e.txwi = t;
376
	dev->drv->tx_complete_skb(dev, qid, &e);
377 378 379 380
	mt76_put_txwi(dev, t);
	return ret;
}

381
static int
382
mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
383 384 385 386 387 388 389 390 391 392 393 394
{
	dma_addr_t addr;
	void *buf;
	int frames = 0;
	int len = SKB_WITH_OVERHEAD(q->buf_size);
	int offset = q->buf_offset;

	spin_lock_bh(&q->lock);

	while (q->queued < q->ndesc - 1) {
		struct mt76_queue_buf qbuf;

395
		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
396 397 398 399
		if (!buf)
			break;

		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
400
		if (unlikely(dma_mapping_error(dev->dev, addr))) {
401 402 403 404 405 406
			skb_free_frag(buf);
			break;
		}

		qbuf.addr = addr + offset;
		qbuf.len = len - offset;
407
		mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
408 409 410 411 412 413 414 415 416 417 418 419 420 421
		frames++;
	}

	if (frames)
		mt76_dma_kick_queue(dev, q);

	spin_unlock_bh(&q->lock);

	return frames;
}

static void
mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
{
422
	struct page *page;
423 424 425 426 427 428 429 430 431 432 433 434
	void *buf;
	bool more;

	spin_lock_bh(&q->lock);
	do {
		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
		if (!buf)
			break;

		skb_free_frag(buf);
	} while (1);
	spin_unlock_bh(&q->lock);
435 436 437 438 439 440 441

	if (!q->rx_page.va)
		return;

	page = virt_to_page(q->rx_page.va);
	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
	memset(&q->rx_page, 0, sizeof(q->rx_page));
442 443 444 445 446 447 448 449 450
}

static void
mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
{
	struct mt76_queue *q = &dev->q_rx[qid];
	int i;

	for (i = 0; i < q->ndesc; i++)
451
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
452 453 454

	mt76_dma_rx_cleanup(dev, q);
	mt76_dma_sync_idx(dev, q);
455
	mt76_dma_rx_fill(dev, q);
456 457 458 459 460 461

	if (!q->rx_head)
		return;

	dev_kfree_skb(q->rx_head);
	q->rx_head = NULL;
462 463 464 465 466 467 468 469 470
}

static void
mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
		  int len, bool more)
{
	struct page *page = virt_to_head_page(data);
	int offset = data - page_address(page);
	struct sk_buff *skb = q->rx_head;
471
	struct skb_shared_info *shinfo = skb_shinfo(skb);
472

473 474 475 476 477
	if (shinfo->nr_frags < ARRAY_SIZE(shinfo->frags)) {
		offset += q->buf_offset;
		skb_add_rx_frag(skb, shinfo->nr_frags, page, offset, len,
				q->buf_size);
	}
478 479 480 481 482 483 484 485 486 487 488

	if (more)
		return;

	q->rx_head = NULL;
	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
}

static int
mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
{
489
	int len, data_len, done = 0;
490 491 492 493 494 495 496 497 498 499 500
	struct sk_buff *skb;
	unsigned char *data;
	bool more;

	while (done < budget) {
		u32 info;

		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
		if (!data)
			break;

501 502 503 504 505 506
		if (q->rx_head)
			data_len = q->buf_size;
		else
			data_len = SKB_WITH_OVERHEAD(q->buf_size);

		if (data_len < len + q->buf_offset) {
507 508 509 510 511 512 513
			dev_kfree_skb(q->rx_head);
			q->rx_head = NULL;

			skb_free_frag(data);
			continue;
		}

514 515 516 517 518 519 520 521 522 523 524 525 526
		if (q->rx_head) {
			mt76_add_fragment(dev, q, data, len, more);
			continue;
		}

		skb = build_skb(data, q->buf_size);
		if (!skb) {
			skb_free_frag(data);
			continue;
		}
		skb_reserve(skb, q->buf_offset);

		if (q == &dev->q_rx[MT_RXQ_MCU]) {
R
Ryder Lee 已提交
527
			u32 *rxfce = (u32 *)skb->cb;
528 529 530 531 532 533 534 535 536 537 538 539 540 541
			*rxfce = info;
		}

		__skb_put(skb, len);
		done++;

		if (more) {
			q->rx_head = skb;
			continue;
		}

		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
	}

542
	mt76_dma_rx_fill(dev, q);
543 544 545 546 547 548 549
	return done;
}

static int
mt76_dma_rx_poll(struct napi_struct *napi, int budget)
{
	struct mt76_dev *dev;
550
	int qid, done = 0, cur;
551 552 553 554

	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
	qid = napi - dev->napi;

555
	local_bh_disable();
556 557
	rcu_read_lock();

558 559
	do {
		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
560
		mt76_rx_poll_complete(dev, qid, napi);
561 562 563
		done += cur;
	} while (cur && done < budget);

564
	rcu_read_unlock();
565
	local_bh_enable();
566

567
	if (done < budget && napi_complete(napi))
568 569 570 571 572 573 574 575 576 577 578 579
		dev->drv->rx_poll_complete(dev, qid);

	return done;
}

static int
mt76_dma_init(struct mt76_dev *dev)
{
	int i;

	init_dummy_netdev(&dev->napi_dev);

580
	mt76_for_each_q_rx(dev, i) {
581 582
		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
			       64);
583
		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
584 585 586 587 588 589 590 591 592
		napi_enable(&dev->napi[i]);
	}

	return 0;
}

static const struct mt76_queue_ops mt76_dma_ops = {
	.init = mt76_dma_init,
	.alloc = mt76_dma_alloc_queue,
593
	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
594
	.tx_queue_skb = mt76_dma_tx_queue_skb,
595 596 597 598 599
	.tx_cleanup = mt76_dma_tx_cleanup,
	.rx_reset = mt76_dma_rx_reset,
	.kick = mt76_dma_kick_queue,
};

600
void mt76_dma_attach(struct mt76_dev *dev)
601 602 603 604 605 606 607 608 609
{
	dev->queue_ops = &mt76_dma_ops;
}
EXPORT_SYMBOL_GPL(mt76_dma_attach);

void mt76_dma_cleanup(struct mt76_dev *dev)
{
	int i;

610
	netif_napi_del(&dev->tx_napi);
611 612 613
	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
		mt76_dma_tx_cleanup(dev, i, true);

614
	mt76_for_each_q_rx(dev, i) {
615 616 617 618 619
		netif_napi_del(&dev->napi[i]);
		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
	}
}
EXPORT_SYMBOL_GPL(mt76_dma_cleanup);