dma.c 12.5 KB
Newer Older
1
// SPDX-License-Identifier: ISC
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
 */

#include <linux/dma-mapping.h>
#include "mt76.h"
#include "dma.h"

static int
11 12 13
mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
		     int idx, int n_desc, int bufsize,
		     u32 ring_base)
14 15 16 17 18 19
{
	int size;
	int i;

	spin_lock_init(&q->lock);

20 21 22 23 24
	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
	q->ndesc = n_desc;
	q->buf_size = bufsize;
	q->hw_idx = idx;

25 26 27 28 29 30 31 32 33 34 35 36 37 38
	size = q->ndesc * sizeof(struct mt76_desc);
	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
	if (!q->desc)
		return -ENOMEM;

	size = q->ndesc * sizeof(*q->entry);
	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
	if (!q->entry)
		return -ENOMEM;

	/* clear descriptors */
	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);

39 40 41 42
	writel(q->desc_dma, &q->regs->desc_base);
	writel(0, &q->regs->cpu_idx);
	writel(0, &q->regs->dma_idx);
	writel(q->ndesc, &q->regs->ring_size);
43 44 45 46 47 48 49 50 51 52 53 54 55

	return 0;
}

static int
mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
		 struct mt76_queue_buf *buf, int nbufs, u32 info,
		 struct sk_buff *skb, void *txwi)
{
	struct mt76_desc *desc;
	u32 ctrl;
	int i, idx = -1;

56
	if (txwi) {
57
		q->entry[q->head].txwi = DMA_DUMMY_DATA;
58 59
		q->entry[q->head].skip_buf0 = true;
	}
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

	for (i = 0; i < nbufs; i += 2, buf += 2) {
		u32 buf0 = buf[0].addr, buf1 = 0;

		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
		if (i < nbufs - 1) {
			buf1 = buf[1].addr;
			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
		}

		if (i == nbufs - 1)
			ctrl |= MT_DMA_CTL_LAST_SEC0;
		else if (i == nbufs - 2)
			ctrl |= MT_DMA_CTL_LAST_SEC1;

		idx = q->head;
		q->head = (q->head + 1) % q->ndesc;

		desc = &q->desc[idx];

		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
		WRITE_ONCE(desc->info, cpu_to_le32(info));
		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));

		q->queued++;
	}

	q->entry[idx].txwi = txwi;
	q->entry[idx].skb = skb;

	return idx;
}

static void
mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
			struct mt76_queue_entry *prev_e)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
	u32 ctrl = le32_to_cpu(__ctrl);

102
	if (!e->skip_buf0) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
		__le32 addr = READ_ONCE(q->desc[idx].buf0);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
		__le32 addr = READ_ONCE(q->desc[idx].buf1);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

118
	if (e->txwi == DMA_DUMMY_DATA)
119 120
		e->txwi = NULL;

121 122 123
	if (e->skb == DMA_DUMMY_DATA)
		e->skb = NULL;

124 125 126 127 128 129 130
	*prev_e = *e;
	memset(e, 0, sizeof(*e));
}

static void
mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
{
131 132 133
	writel(q->desc_dma, &q->regs->desc_base);
	writel(q->ndesc, &q->regs->ring_size);
	q->head = readl(&q->regs->dma_idx);
134
	q->tail = q->head;
135
	writel(q->head, &q->regs->cpu_idx);
136 137 138 139 140
}

static void
mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
{
141 142
	struct mt76_sw_queue *sq = &dev->q_tx[qid];
	struct mt76_queue *q = sq->q;
143
	struct mt76_queue_entry entry;
144 145
	unsigned int n_swq_queued[4] = {};
	unsigned int n_queued = 0;
146
	bool wake = false;
147
	int i, last;
148

149
	if (!q)
150 151 152 153 154
		return;

	if (flush)
		last = -1;
	else
155
		last = readl(&q->regs->dma_idx);
156

157
	while ((q->queued > n_queued) && q->tail != last) {
158 159
		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
		if (entry.schedule)
160
			n_swq_queued[entry.qid]++;
161

162
		q->tail = (q->tail + 1) % q->ndesc;
163
		n_queued++;
164

165
		if (entry.skb)
166
			dev->drv->tx_complete_skb(dev, qid, &entry);
167 168

		if (entry.txwi) {
169
			if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
170
				mt76_put_txwi(dev, entry.txwi);
171
			wake = !flush;
172 173 174
		}

		if (!flush && q->tail == last)
175
			last = readl(&q->regs->dma_idx);
176 177
	}

178 179 180 181 182 183 184 185 186 187
	spin_lock_bh(&q->lock);

	q->queued -= n_queued;
	for (i = 0; i < ARRAY_SIZE(n_swq_queued); i++) {
		if (!n_swq_queued[i])
			continue;

		dev->q_tx[i].swq_queued -= n_swq_queued[i];
	}

188
	if (flush)
189 190
		mt76_dma_sync_idx(dev, q);

191 192 193 194
	wake = wake && q->stopped &&
	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
	if (wake)
		q->stopped = false;
195 196 197 198

	if (!q->queued)
		wake_up(&dev->tx_wait);

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	spin_unlock_bh(&q->lock);

	if (wake)
		ieee80211_wake_queue(dev->hw, qid);
}

static void *
mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
		 int *len, u32 *info, bool *more)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	struct mt76_desc *desc = &q->desc[idx];
	dma_addr_t buf_addr;
	void *buf = e->buf;
	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);

	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
	if (len) {
		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
	}

	if (info)
		*info = le32_to_cpu(desc->info);

	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
	e->buf = NULL;

	return buf;
}

static void *
mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
		 int *len, u32 *info, bool *more)
{
	int idx = q->tail;

	*more = false;
	if (!q->queued)
		return NULL;

	if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
		return NULL;

	q->tail = (q->tail + 1) % q->ndesc;
	q->queued--;

	return mt76_dma_get_buf(dev, q, idx, len, info, more);
}

static void
mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
{
253
	writel(q->head, &q->regs->cpu_idx);
254 255
}

256 257 258 259
static int
mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
			  struct sk_buff *skb, u32 tx_info)
{
260
	struct mt76_queue *q = dev->q_tx[qid].q;
261 262 263 264 265
	struct mt76_queue_buf buf;
	dma_addr_t addr;

	addr = dma_map_single(dev->dev, skb->data, skb->len,
			      DMA_TO_DEVICE);
266
	if (unlikely(dma_mapping_error(dev->dev, addr)))
267 268 269 270 271 272 273 274 275 276 277 278 279
		return -ENOMEM;

	buf.addr = addr;
	buf.len = skb->len;

	spin_lock_bh(&q->lock);
	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
	mt76_dma_kick_queue(dev, q);
	spin_unlock_bh(&q->lock);

	return 0;
}

280 281 282 283
static int
mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
		      struct sk_buff *skb, struct mt76_wcid *wcid,
		      struct ieee80211_sta *sta)
284
{
285
	struct mt76_queue *q = dev->q_tx[qid].q;
286 287 288
	struct mt76_tx_info tx_info = {
		.skb = skb,
	};
289
	struct ieee80211_hw *hw;
290
	int len, n = 0, ret = -ENOMEM;
291 292 293 294
	struct mt76_queue_entry e;
	struct mt76_txwi_cache *t;
	struct sk_buff *iter;
	dma_addr_t addr;
295
	u8 *txwi;
296 297 298

	t = mt76_get_txwi(dev);
	if (!t) {
299 300
		hw = mt76_tx_status_get_hw(dev, skb);
		ieee80211_free_txskb(hw, skb);
301 302
		return -ENOMEM;
	}
303
	txwi = mt76_get_txwi_ptr(dev, t);
304

305
	skb->prev = skb->next = NULL;
306
	if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
307 308
		mt76_insert_hdr_pad(skb);

309
	len = skb_headlen(skb);
310
	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
311
	if (unlikely(dma_mapping_error(dev->dev, addr)))
312 313
		goto free;

314 315 316 317
	tx_info.buf[n].addr = t->dma_addr;
	tx_info.buf[n++].len = dev->drv->txwi_size;
	tx_info.buf[n].addr = addr;
	tx_info.buf[n++].len = len;
318 319

	skb_walk_frags(skb, iter) {
320
		if (n == ARRAY_SIZE(tx_info.buf))
321 322 323 324
			goto unmap;

		addr = dma_map_single(dev->dev, iter->data, iter->len,
				      DMA_TO_DEVICE);
325
		if (unlikely(dma_mapping_error(dev->dev, addr)))
326 327
			goto unmap;

328 329
		tx_info.buf[n].addr = addr;
		tx_info.buf[n++].len = iter->len;
330
	}
331
	tx_info.nbuf = n;
332

333
	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
334
				DMA_TO_DEVICE);
335
	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
336
	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
337 338
				   DMA_TO_DEVICE);
	if (ret < 0)
339 340
		goto unmap;

341
	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
342 343 344 345
		ret = -ENOMEM;
		goto unmap;
	}

346
	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
347
				tx_info.info, tx_info.skb, t);
348 349 350

unmap:
	for (n--; n > 0; n--)
351 352
		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
				 tx_info.buf[n].len, DMA_TO_DEVICE);
353 354

free:
355
	e.skb = tx_info.skb;
356
	e.txwi = t;
357
	dev->drv->tx_complete_skb(dev, qid, &e);
358 359 360 361
	mt76_put_txwi(dev, t);
	return ret;
}

362
static int
363
mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
364 365 366 367 368 369 370 371 372 373 374 375
{
	dma_addr_t addr;
	void *buf;
	int frames = 0;
	int len = SKB_WITH_OVERHEAD(q->buf_size);
	int offset = q->buf_offset;

	spin_lock_bh(&q->lock);

	while (q->queued < q->ndesc - 1) {
		struct mt76_queue_buf qbuf;

376
		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
377 378 379 380
		if (!buf)
			break;

		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
381
		if (unlikely(dma_mapping_error(dev->dev, addr))) {
382 383 384 385 386 387
			skb_free_frag(buf);
			break;
		}

		qbuf.addr = addr + offset;
		qbuf.len = len - offset;
388
		mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
389 390 391 392 393 394 395 396 397 398 399 400 401 402
		frames++;
	}

	if (frames)
		mt76_dma_kick_queue(dev, q);

	spin_unlock_bh(&q->lock);

	return frames;
}

static void
mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
{
403
	struct page *page;
404 405 406 407 408 409 410 411 412 413 414 415
	void *buf;
	bool more;

	spin_lock_bh(&q->lock);
	do {
		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
		if (!buf)
			break;

		skb_free_frag(buf);
	} while (1);
	spin_unlock_bh(&q->lock);
416 417 418 419 420 421 422

	if (!q->rx_page.va)
		return;

	page = virt_to_page(q->rx_page.va);
	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
	memset(&q->rx_page, 0, sizeof(q->rx_page));
423 424 425 426 427 428 429 430 431 432 433 434 435
}

static void
mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
{
	struct mt76_queue *q = &dev->q_rx[qid];
	int i;

	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);

	mt76_dma_rx_cleanup(dev, q);
	mt76_dma_sync_idx(dev, q);
436
	mt76_dma_rx_fill(dev, q);
437 438 439 440 441 442

	if (!q->rx_head)
		return;

	dev_kfree_skb(q->rx_head);
	q->rx_head = NULL;
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
}

static void
mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
		  int len, bool more)
{
	struct page *page = virt_to_head_page(data);
	int offset = data - page_address(page);
	struct sk_buff *skb = q->rx_head;

	offset += q->buf_offset;
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
			q->buf_size);

	if (more)
		return;

	q->rx_head = NULL;
	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
}

static int
mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
{
467
	int len, data_len, done = 0;
468 469 470 471 472 473 474 475 476 477 478
	struct sk_buff *skb;
	unsigned char *data;
	bool more;

	while (done < budget) {
		u32 info;

		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
		if (!data)
			break;

479 480 481 482 483 484
		if (q->rx_head)
			data_len = q->buf_size;
		else
			data_len = SKB_WITH_OVERHEAD(q->buf_size);

		if (data_len < len + q->buf_offset) {
485 486 487 488 489 490 491
			dev_kfree_skb(q->rx_head);
			q->rx_head = NULL;

			skb_free_frag(data);
			continue;
		}

492 493 494 495 496 497 498 499 500 501 502 503 504
		if (q->rx_head) {
			mt76_add_fragment(dev, q, data, len, more);
			continue;
		}

		skb = build_skb(data, q->buf_size);
		if (!skb) {
			skb_free_frag(data);
			continue;
		}
		skb_reserve(skb, q->buf_offset);

		if (q == &dev->q_rx[MT_RXQ_MCU]) {
R
Ryder Lee 已提交
505
			u32 *rxfce = (u32 *)skb->cb;
506 507 508 509 510 511 512 513 514 515 516 517 518 519
			*rxfce = info;
		}

		__skb_put(skb, len);
		done++;

		if (more) {
			q->rx_head = skb;
			continue;
		}

		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
	}

520
	mt76_dma_rx_fill(dev, q);
521 522 523 524 525 526 527
	return done;
}

static int
mt76_dma_rx_poll(struct napi_struct *napi, int budget)
{
	struct mt76_dev *dev;
528
	int qid, done = 0, cur;
529 530 531 532

	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
	qid = napi - dev->napi;

533 534
	rcu_read_lock();

535 536
	do {
		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
537
		mt76_rx_poll_complete(dev, qid, napi);
538 539 540
		done += cur;
	} while (cur && done < budget);

541 542
	rcu_read_unlock();

543
	if (done < budget && napi_complete(napi))
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		dev->drv->rx_poll_complete(dev, qid);

	return done;
}

static int
mt76_dma_init(struct mt76_dev *dev)
{
	int i;

	init_dummy_netdev(&dev->napi_dev);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
			       64);
559
		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
560 561 562 563 564 565 566 567 568
		napi_enable(&dev->napi[i]);
	}

	return 0;
}

static const struct mt76_queue_ops mt76_dma_ops = {
	.init = mt76_dma_init,
	.alloc = mt76_dma_alloc_queue,
569
	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
570
	.tx_queue_skb = mt76_dma_tx_queue_skb,
571 572 573 574 575
	.tx_cleanup = mt76_dma_tx_cleanup,
	.rx_reset = mt76_dma_rx_reset,
	.kick = mt76_dma_kick_queue,
};

576
void mt76_dma_attach(struct mt76_dev *dev)
577 578 579 580 581 582 583 584 585
{
	dev->queue_ops = &mt76_dma_ops;
}
EXPORT_SYMBOL_GPL(mt76_dma_attach);

void mt76_dma_cleanup(struct mt76_dev *dev)
{
	int i;

586
	netif_napi_del(&dev->tx_napi);
587 588 589 590 591 592 593 594 595
	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
		mt76_dma_tx_cleanup(dev, i, true);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_del(&dev->napi[i]);
		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
	}
}
EXPORT_SYMBOL_GPL(mt76_dma_cleanup);