dma.c 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/dma-mapping.h>
#include "mt76.h"
#include "dma.h"

#define DMA_DUMMY_TXWI	((void *) ~0)

static int
24 25 26
mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
		     int idx, int n_desc, int bufsize,
		     u32 ring_base)
27 28 29 30 31 32
{
	int size;
	int i;

	spin_lock_init(&q->lock);

33 34 35 36 37
	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
	q->ndesc = n_desc;
	q->buf_size = bufsize;
	q->hw_idx = idx;

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	size = q->ndesc * sizeof(struct mt76_desc);
	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
	if (!q->desc)
		return -ENOMEM;

	size = q->ndesc * sizeof(*q->entry);
	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
	if (!q->entry)
		return -ENOMEM;

	/* clear descriptors */
	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);

	iowrite32(q->desc_dma, &q->regs->desc_base);
	iowrite32(0, &q->regs->cpu_idx);
	iowrite32(0, &q->regs->dma_idx);
	iowrite32(q->ndesc, &q->regs->ring_size);

	return 0;
}

static int
mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
		 struct mt76_queue_buf *buf, int nbufs, u32 info,
		 struct sk_buff *skb, void *txwi)
{
	struct mt76_desc *desc;
	u32 ctrl;
	int i, idx = -1;

	if (txwi)
		q->entry[q->head].txwi = DMA_DUMMY_TXWI;

	for (i = 0; i < nbufs; i += 2, buf += 2) {
		u32 buf0 = buf[0].addr, buf1 = 0;

		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
		if (i < nbufs - 1) {
			buf1 = buf[1].addr;
			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
		}

		if (i == nbufs - 1)
			ctrl |= MT_DMA_CTL_LAST_SEC0;
		else if (i == nbufs - 2)
			ctrl |= MT_DMA_CTL_LAST_SEC1;

		idx = q->head;
		q->head = (q->head + 1) % q->ndesc;

		desc = &q->desc[idx];

		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
		WRITE_ONCE(desc->info, cpu_to_le32(info));
		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));

		q->queued++;
	}

	q->entry[idx].txwi = txwi;
	q->entry[idx].skb = skb;

	return idx;
}

static void
mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
			struct mt76_queue_entry *prev_e)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
	u32 ctrl = le32_to_cpu(__ctrl);

	if (!e->txwi || !e->skb) {
		__le32 addr = READ_ONCE(q->desc[idx].buf0);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
		__le32 addr = READ_ONCE(q->desc[idx].buf1);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

	if (e->txwi == DMA_DUMMY_TXWI)
		e->txwi = NULL;

	*prev_e = *e;
	memset(e, 0, sizeof(*e));
}

static void
mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
{
139 140
	iowrite32(q->desc_dma, &q->regs->desc_base);
	iowrite32(q->ndesc, &q->regs->ring_size);
141 142 143 144 145 146 147 148
	q->head = ioread32(&q->regs->dma_idx);
	q->tail = q->head;
	iowrite32(q->head, &q->regs->cpu_idx);
}

static void
mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
{
149 150
	struct mt76_sw_queue *sq = &dev->q_tx[qid];
	struct mt76_queue *q = sq->q;
151 152 153 154
	struct mt76_queue_entry entry;
	bool wake = false;
	int last;

155
	if (!q)
156 157 158 159 160 161 162 163 164 165 166
		return;

	spin_lock_bh(&q->lock);
	if (flush)
		last = -1;
	else
		last = ioread32(&q->regs->dma_idx);

	while (q->queued && q->tail != last) {
		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
		if (entry.schedule)
167
			dev->q_tx[entry.qid].swq_queued--;
168

169 170 171 172 173
		q->tail = (q->tail + 1) % q->ndesc;
		q->queued--;

		if (entry.skb) {
			spin_unlock_bh(&q->lock);
174
			dev->drv->tx_complete_skb(dev, qid, &entry);
175 176
			spin_lock_bh(&q->lock);
		}
177 178 179

		if (entry.txwi) {
			mt76_put_txwi(dev, entry.txwi);
180
			wake = !flush;
181 182 183 184 185 186 187
		}

		if (!flush && q->tail == last)
			last = ioread32(&q->regs->dma_idx);
	}

	if (!flush)
188
		mt76_txq_schedule(dev, sq);
189 190 191
	else
		mt76_dma_sync_idx(dev, q);

192 193 194 195
	wake = wake && q->stopped &&
	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
	if (wake)
		q->stopped = false;
196 197 198 199

	if (!q->queued)
		wake_up(&dev->tx_wait);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	spin_unlock_bh(&q->lock);

	if (wake)
		ieee80211_wake_queue(dev->hw, qid);
}

static void *
mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
		 int *len, u32 *info, bool *more)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	struct mt76_desc *desc = &q->desc[idx];
	dma_addr_t buf_addr;
	void *buf = e->buf;
	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);

	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
	if (len) {
		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
	}

	if (info)
		*info = le32_to_cpu(desc->info);

	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
	e->buf = NULL;

	return buf;
}

static void *
mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
		 int *len, u32 *info, bool *more)
{
	int idx = q->tail;

	*more = false;
	if (!q->queued)
		return NULL;

	if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
		return NULL;

	q->tail = (q->tail + 1) % q->ndesc;
	q->queued--;

	return mt76_dma_get_buf(dev, q, idx, len, info, more);
}

static void
mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
{
	iowrite32(q->head, &q->regs->cpu_idx);
}

257 258 259 260
static int
mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
			  struct sk_buff *skb, u32 tx_info)
{
261
	struct mt76_queue *q = dev->q_tx[qid].q;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	struct mt76_queue_buf buf;
	dma_addr_t addr;

	addr = dma_map_single(dev->dev, skb->data, skb->len,
			      DMA_TO_DEVICE);
	if (dma_mapping_error(dev->dev, addr))
		return -ENOMEM;

	buf.addr = addr;
	buf.len = skb->len;

	spin_lock_bh(&q->lock);
	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
	mt76_dma_kick_queue(dev, q);
	spin_unlock_bh(&q->lock);

	return 0;
}

281
int mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
282 283 284
			  struct sk_buff *skb, struct mt76_wcid *wcid,
			  struct ieee80211_sta *sta)
{
285
	struct mt76_queue *q = dev->q_tx[qid].q;
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	struct mt76_queue_entry e;
	struct mt76_txwi_cache *t;
	struct mt76_queue_buf buf[32];
	struct sk_buff *iter;
	dma_addr_t addr;
	int len;
	u32 tx_info = 0;
	int n, ret;

	t = mt76_get_txwi(dev);
	if (!t) {
		ieee80211_free_txskb(dev->hw, skb);
		return -ENOMEM;
	}

301
	skb->prev = skb->next = NULL;
302 303 304
	if (dev->drv->tx_aligned4_skbs)
		mt76_insert_hdr_pad(skb);

305 306
	dma_sync_single_for_cpu(dev->dev, t->dma_addr, sizeof(t->txwi),
				DMA_TO_DEVICE);
307
	ret = dev->drv->tx_prepare_skb(dev, &t->txwi, skb, qid, wcid, sta,
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
				       &tx_info);
	dma_sync_single_for_device(dev->dev, t->dma_addr, sizeof(t->txwi),
				   DMA_TO_DEVICE);
	if (ret < 0)
		goto free;

	len = skb->len - skb->data_len;
	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
	if (dma_mapping_error(dev->dev, addr)) {
		ret = -ENOMEM;
		goto free;
	}

	n = 0;
	buf[n].addr = t->dma_addr;
	buf[n++].len = dev->drv->txwi_size;
	buf[n].addr = addr;
	buf[n++].len = len;

	skb_walk_frags(skb, iter) {
		if (n == ARRAY_SIZE(buf))
			goto unmap;

		addr = dma_map_single(dev->dev, iter->data, iter->len,
				      DMA_TO_DEVICE);
		if (dma_mapping_error(dev->dev, addr))
			goto unmap;

		buf[n].addr = addr;
		buf[n++].len = iter->len;
	}

	if (q->queued + (n + 1) / 2 >= q->ndesc - 1)
		goto unmap;

343
	return mt76_dma_add_buf(dev, q, buf, n, tx_info, skb, t);
344 345 346 347 348 349 350 351 352 353

unmap:
	ret = -ENOMEM;
	for (n--; n > 0; n--)
		dma_unmap_single(dev->dev, buf[n].addr, buf[n].len,
				 DMA_TO_DEVICE);

free:
	e.skb = skb;
	e.txwi = t;
354
	dev->drv->tx_complete_skb(dev, qid, &e);
355 356 357 358 359
	mt76_put_txwi(dev, t);
	return ret;
}
EXPORT_SYMBOL_GPL(mt76_dma_tx_queue_skb);

360
static int
361
mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
362 363 364 365 366 367 368 369 370 371 372 373 374
{
	dma_addr_t addr;
	void *buf;
	int frames = 0;
	int len = SKB_WITH_OVERHEAD(q->buf_size);
	int offset = q->buf_offset;
	int idx;

	spin_lock_bh(&q->lock);

	while (q->queued < q->ndesc - 1) {
		struct mt76_queue_buf qbuf;

375
		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
		if (!buf)
			break;

		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
		if (dma_mapping_error(dev->dev, addr)) {
			skb_free_frag(buf);
			break;
		}

		qbuf.addr = addr + offset;
		qbuf.len = len - offset;
		idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
		frames++;
	}

	if (frames)
		mt76_dma_kick_queue(dev, q);

	spin_unlock_bh(&q->lock);

	return frames;
}

static void
mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
{
402
	struct page *page;
403 404 405 406 407 408 409 410 411 412 413 414
	void *buf;
	bool more;

	spin_lock_bh(&q->lock);
	do {
		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
		if (!buf)
			break;

		skb_free_frag(buf);
	} while (1);
	spin_unlock_bh(&q->lock);
415 416 417 418 419 420 421

	if (!q->rx_page.va)
		return;

	page = virt_to_page(q->rx_page.va);
	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
	memset(&q->rx_page, 0, sizeof(q->rx_page));
422 423 424 425 426 427 428 429 430 431 432 433 434
}

static void
mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
{
	struct mt76_queue *q = &dev->q_rx[qid];
	int i;

	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);

	mt76_dma_rx_cleanup(dev, q);
	mt76_dma_sync_idx(dev, q);
435
	mt76_dma_rx_fill(dev, q);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
}

static void
mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
		  int len, bool more)
{
	struct page *page = virt_to_head_page(data);
	int offset = data - page_address(page);
	struct sk_buff *skb = q->rx_head;

	offset += q->buf_offset;
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
			q->buf_size);

	if (more)
		return;

	q->rx_head = NULL;
	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
}

static int
mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
{
460
	int len, data_len, done = 0;
461 462 463 464 465 466 467 468 469 470 471
	struct sk_buff *skb;
	unsigned char *data;
	bool more;

	while (done < budget) {
		u32 info;

		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
		if (!data)
			break;

472 473 474 475 476 477
		if (q->rx_head)
			data_len = q->buf_size;
		else
			data_len = SKB_WITH_OVERHEAD(q->buf_size);

		if (data_len < len + q->buf_offset) {
478 479 480 481 482 483 484
			dev_kfree_skb(q->rx_head);
			q->rx_head = NULL;

			skb_free_frag(data);
			continue;
		}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
		if (q->rx_head) {
			mt76_add_fragment(dev, q, data, len, more);
			continue;
		}

		skb = build_skb(data, q->buf_size);
		if (!skb) {
			skb_free_frag(data);
			continue;
		}
		skb_reserve(skb, q->buf_offset);

		if (q == &dev->q_rx[MT_RXQ_MCU]) {
			u32 *rxfce = (u32 *) skb->cb;
			*rxfce = info;
		}

		__skb_put(skb, len);
		done++;

		if (more) {
			q->rx_head = skb;
			continue;
		}

		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
	}

513
	mt76_dma_rx_fill(dev, q);
514 515 516 517 518 519 520
	return done;
}

static int
mt76_dma_rx_poll(struct napi_struct *napi, int budget)
{
	struct mt76_dev *dev;
521
	int qid, done = 0, cur;
522 523 524 525

	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
	qid = napi - dev->napi;

526 527
	rcu_read_lock();

528 529
	do {
		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
530
		mt76_rx_poll_complete(dev, qid, napi);
531 532 533
		done += cur;
	} while (cur && done < budget);

534 535
	rcu_read_unlock();

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	if (done < budget) {
		napi_complete(napi);
		dev->drv->rx_poll_complete(dev, qid);
	}

	return done;
}

static int
mt76_dma_init(struct mt76_dev *dev)
{
	int i;

	init_dummy_netdev(&dev->napi_dev);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
			       64);
554
		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
555 556 557 558 559 560 561 562 563 564
		skb_queue_head_init(&dev->rx_skb[i]);
		napi_enable(&dev->napi[i]);
	}

	return 0;
}

static const struct mt76_queue_ops mt76_dma_ops = {
	.init = mt76_dma_init,
	.alloc = mt76_dma_alloc_queue,
565
	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
566
	.tx_queue_skb = mt76_dma_tx_queue_skb,
567 568 569 570 571
	.tx_cleanup = mt76_dma_tx_cleanup,
	.rx_reset = mt76_dma_rx_reset,
	.kick = mt76_dma_kick_queue,
};

572
void mt76_dma_attach(struct mt76_dev *dev)
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
{
	dev->queue_ops = &mt76_dma_ops;
}
EXPORT_SYMBOL_GPL(mt76_dma_attach);

void mt76_dma_cleanup(struct mt76_dev *dev)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
		mt76_dma_tx_cleanup(dev, i, true);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_del(&dev->napi[i]);
		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
	}
}
EXPORT_SYMBOL_GPL(mt76_dma_cleanup);