dma.c 12.6 KB
Newer Older
1
// SPDX-License-Identifier: ISC
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
 */

#include <linux/dma-mapping.h>
#include "mt76.h"
#include "dma.h"

static int
11 12 13
mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
		     int idx, int n_desc, int bufsize,
		     u32 ring_base)
14 15 16 17 18 19
{
	int size;
	int i;

	spin_lock_init(&q->lock);

20 21 22 23 24
	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
	q->ndesc = n_desc;
	q->buf_size = bufsize;
	q->hw_idx = idx;

25 26 27 28 29 30 31 32 33 34 35 36 37 38
	size = q->ndesc * sizeof(struct mt76_desc);
	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
	if (!q->desc)
		return -ENOMEM;

	size = q->ndesc * sizeof(*q->entry);
	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
	if (!q->entry)
		return -ENOMEM;

	/* clear descriptors */
	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);

39 40 41 42
	writel(q->desc_dma, &q->regs->desc_base);
	writel(0, &q->regs->cpu_idx);
	writel(0, &q->regs->dma_idx);
	writel(q->ndesc, &q->regs->ring_size);
43 44 45 46 47 48 49 50 51 52 53 54 55

	return 0;
}

static int
mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
		 struct mt76_queue_buf *buf, int nbufs, u32 info,
		 struct sk_buff *skb, void *txwi)
{
	struct mt76_desc *desc;
	u32 ctrl;
	int i, idx = -1;

56
	if (txwi) {
57
		q->entry[q->head].txwi = DMA_DUMMY_DATA;
58 59
		q->entry[q->head].skip_buf0 = true;
	}
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

	for (i = 0; i < nbufs; i += 2, buf += 2) {
		u32 buf0 = buf[0].addr, buf1 = 0;

		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
		if (i < nbufs - 1) {
			buf1 = buf[1].addr;
			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
		}

		if (i == nbufs - 1)
			ctrl |= MT_DMA_CTL_LAST_SEC0;
		else if (i == nbufs - 2)
			ctrl |= MT_DMA_CTL_LAST_SEC1;

		idx = q->head;
		q->head = (q->head + 1) % q->ndesc;

		desc = &q->desc[idx];

		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
		WRITE_ONCE(desc->info, cpu_to_le32(info));
		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));

		q->queued++;
	}

	q->entry[idx].txwi = txwi;
	q->entry[idx].skb = skb;

	return idx;
}

static void
mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
			struct mt76_queue_entry *prev_e)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
	u32 ctrl = le32_to_cpu(__ctrl);

102
	if (!e->skip_buf0) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
		__le32 addr = READ_ONCE(q->desc[idx].buf0);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
		__le32 addr = READ_ONCE(q->desc[idx].buf1);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

118
	if (e->txwi == DMA_DUMMY_DATA)
119 120
		e->txwi = NULL;

121 122 123
	if (e->skb == DMA_DUMMY_DATA)
		e->skb = NULL;

124 125 126 127 128 129 130
	*prev_e = *e;
	memset(e, 0, sizeof(*e));
}

static void
mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
{
131 132 133
	writel(q->desc_dma, &q->regs->desc_base);
	writel(q->ndesc, &q->regs->ring_size);
	q->head = readl(&q->regs->dma_idx);
134
	q->tail = q->head;
135
	writel(q->head, &q->regs->cpu_idx);
136 137 138 139 140
}

static void
mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
{
141 142
	struct mt76_sw_queue *sq = &dev->q_tx[qid];
	struct mt76_queue *q = sq->q;
143
	struct mt76_queue_entry entry;
144
	unsigned int n_swq_queued[8] = {};
145
	unsigned int n_queued = 0;
146
	bool wake = false;
147
	int i, last;
148

149
	if (!q)
150 151 152 153 154
		return;

	if (flush)
		last = -1;
	else
155
		last = readl(&q->regs->dma_idx);
156

157
	while ((q->queued > n_queued) && q->tail != last) {
158 159
		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
		if (entry.schedule)
160
			n_swq_queued[entry.qid]++;
161

162
		q->tail = (q->tail + 1) % q->ndesc;
163
		n_queued++;
164

165
		if (entry.skb)
166
			dev->drv->tx_complete_skb(dev, qid, &entry);
167 168

		if (entry.txwi) {
169
			if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
170
				mt76_put_txwi(dev, entry.txwi);
171
			wake = !flush;
172 173 174
		}

		if (!flush && q->tail == last)
175
			last = readl(&q->regs->dma_idx);
176 177
	}

178 179 180
	spin_lock_bh(&q->lock);

	q->queued -= n_queued;
181
	for (i = 0; i < 4; i++) {
182 183 184 185 186 187
		if (!n_swq_queued[i])
			continue;

		dev->q_tx[i].swq_queued -= n_swq_queued[i];
	}

188 189 190 191 192 193 194 195
	/* ext PHY */
	for (i = 0; i < 4; i++) {
		if (!n_swq_queued[i])
			continue;

		dev->q_tx[__MT_TXQ_MAX + i].swq_queued -= n_swq_queued[4 + i];
	}

196
	if (flush)
197 198
		mt76_dma_sync_idx(dev, q);

199 200 201 202
	wake = wake && q->stopped &&
	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
	if (wake)
		q->stopped = false;
203 204 205 206

	if (!q->queued)
		wake_up(&dev->tx_wait);

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	spin_unlock_bh(&q->lock);

	if (wake)
		ieee80211_wake_queue(dev->hw, qid);
}

static void *
mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
		 int *len, u32 *info, bool *more)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	struct mt76_desc *desc = &q->desc[idx];
	dma_addr_t buf_addr;
	void *buf = e->buf;
	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);

	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
	if (len) {
		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
	}

	if (info)
		*info = le32_to_cpu(desc->info);

	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
	e->buf = NULL;

	return buf;
}

static void *
mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
		 int *len, u32 *info, bool *more)
{
	int idx = q->tail;

	*more = false;
	if (!q->queued)
		return NULL;

	if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
		return NULL;

	q->tail = (q->tail + 1) % q->ndesc;
	q->queued--;

	return mt76_dma_get_buf(dev, q, idx, len, info, more);
}

static void
mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
{
261
	writel(q->head, &q->regs->cpu_idx);
262 263
}

264 265 266 267
static int
mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
			  struct sk_buff *skb, u32 tx_info)
{
268
	struct mt76_queue *q = dev->q_tx[qid].q;
269 270 271 272 273
	struct mt76_queue_buf buf;
	dma_addr_t addr;

	addr = dma_map_single(dev->dev, skb->data, skb->len,
			      DMA_TO_DEVICE);
274
	if (unlikely(dma_mapping_error(dev->dev, addr)))
275 276 277 278 279 280 281 282 283 284 285 286 287
		return -ENOMEM;

	buf.addr = addr;
	buf.len = skb->len;

	spin_lock_bh(&q->lock);
	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
	mt76_dma_kick_queue(dev, q);
	spin_unlock_bh(&q->lock);

	return 0;
}

288 289 290 291
static int
mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
		      struct sk_buff *skb, struct mt76_wcid *wcid,
		      struct ieee80211_sta *sta)
292
{
293
	struct mt76_queue *q = dev->q_tx[qid].q;
294 295 296
	struct mt76_tx_info tx_info = {
		.skb = skb,
	};
297
	struct ieee80211_hw *hw;
298
	int len, n = 0, ret = -ENOMEM;
299 300 301 302
	struct mt76_queue_entry e;
	struct mt76_txwi_cache *t;
	struct sk_buff *iter;
	dma_addr_t addr;
303
	u8 *txwi;
304 305 306

	t = mt76_get_txwi(dev);
	if (!t) {
307 308
		hw = mt76_tx_status_get_hw(dev, skb);
		ieee80211_free_txskb(hw, skb);
309 310
		return -ENOMEM;
	}
311
	txwi = mt76_get_txwi_ptr(dev, t);
312

313
	skb->prev = skb->next = NULL;
314
	if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
315 316
		mt76_insert_hdr_pad(skb);

317
	len = skb_headlen(skb);
318
	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
319
	if (unlikely(dma_mapping_error(dev->dev, addr)))
320 321
		goto free;

322 323 324 325
	tx_info.buf[n].addr = t->dma_addr;
	tx_info.buf[n++].len = dev->drv->txwi_size;
	tx_info.buf[n].addr = addr;
	tx_info.buf[n++].len = len;
326 327

	skb_walk_frags(skb, iter) {
328
		if (n == ARRAY_SIZE(tx_info.buf))
329 330 331 332
			goto unmap;

		addr = dma_map_single(dev->dev, iter->data, iter->len,
				      DMA_TO_DEVICE);
333
		if (unlikely(dma_mapping_error(dev->dev, addr)))
334 335
			goto unmap;

336 337
		tx_info.buf[n].addr = addr;
		tx_info.buf[n++].len = iter->len;
338
	}
339
	tx_info.nbuf = n;
340

341
	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
342
				DMA_TO_DEVICE);
343
	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
344
	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
345 346
				   DMA_TO_DEVICE);
	if (ret < 0)
347 348
		goto unmap;

349
	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
350 351 352 353
		ret = -ENOMEM;
		goto unmap;
	}

354
	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
355
				tx_info.info, tx_info.skb, t);
356 357 358

unmap:
	for (n--; n > 0; n--)
359 360
		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
				 tx_info.buf[n].len, DMA_TO_DEVICE);
361 362

free:
363
	e.skb = tx_info.skb;
364
	e.txwi = t;
365
	dev->drv->tx_complete_skb(dev, qid, &e);
366 367 368 369
	mt76_put_txwi(dev, t);
	return ret;
}

370
static int
371
mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
372 373 374 375 376 377 378 379 380 381 382 383
{
	dma_addr_t addr;
	void *buf;
	int frames = 0;
	int len = SKB_WITH_OVERHEAD(q->buf_size);
	int offset = q->buf_offset;

	spin_lock_bh(&q->lock);

	while (q->queued < q->ndesc - 1) {
		struct mt76_queue_buf qbuf;

384
		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
385 386 387 388
		if (!buf)
			break;

		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
389
		if (unlikely(dma_mapping_error(dev->dev, addr))) {
390 391 392 393 394 395
			skb_free_frag(buf);
			break;
		}

		qbuf.addr = addr + offset;
		qbuf.len = len - offset;
396
		mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
397 398 399 400 401 402 403 404 405 406 407 408 409 410
		frames++;
	}

	if (frames)
		mt76_dma_kick_queue(dev, q);

	spin_unlock_bh(&q->lock);

	return frames;
}

static void
mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
{
411
	struct page *page;
412 413 414 415 416 417 418 419 420 421 422 423
	void *buf;
	bool more;

	spin_lock_bh(&q->lock);
	do {
		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
		if (!buf)
			break;

		skb_free_frag(buf);
	} while (1);
	spin_unlock_bh(&q->lock);
424 425 426 427 428 429 430

	if (!q->rx_page.va)
		return;

	page = virt_to_page(q->rx_page.va);
	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
	memset(&q->rx_page, 0, sizeof(q->rx_page));
431 432 433 434 435 436 437 438 439
}

static void
mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
{
	struct mt76_queue *q = &dev->q_rx[qid];
	int i;

	for (i = 0; i < q->ndesc; i++)
440
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
441 442 443

	mt76_dma_rx_cleanup(dev, q);
	mt76_dma_sync_idx(dev, q);
444
	mt76_dma_rx_fill(dev, q);
445 446 447 448 449 450

	if (!q->rx_head)
		return;

	dev_kfree_skb(q->rx_head);
	q->rx_head = NULL;
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
}

static void
mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
		  int len, bool more)
{
	struct page *page = virt_to_head_page(data);
	int offset = data - page_address(page);
	struct sk_buff *skb = q->rx_head;

	offset += q->buf_offset;
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
			q->buf_size);

	if (more)
		return;

	q->rx_head = NULL;
	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
}

static int
mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
{
475
	int len, data_len, done = 0;
476 477 478 479 480 481 482 483 484 485 486
	struct sk_buff *skb;
	unsigned char *data;
	bool more;

	while (done < budget) {
		u32 info;

		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
		if (!data)
			break;

487 488 489 490 491 492
		if (q->rx_head)
			data_len = q->buf_size;
		else
			data_len = SKB_WITH_OVERHEAD(q->buf_size);

		if (data_len < len + q->buf_offset) {
493 494 495 496 497 498 499
			dev_kfree_skb(q->rx_head);
			q->rx_head = NULL;

			skb_free_frag(data);
			continue;
		}

500 501 502 503 504 505 506 507 508 509 510 511 512
		if (q->rx_head) {
			mt76_add_fragment(dev, q, data, len, more);
			continue;
		}

		skb = build_skb(data, q->buf_size);
		if (!skb) {
			skb_free_frag(data);
			continue;
		}
		skb_reserve(skb, q->buf_offset);

		if (q == &dev->q_rx[MT_RXQ_MCU]) {
R
Ryder Lee 已提交
513
			u32 *rxfce = (u32 *)skb->cb;
514 515 516 517 518 519 520 521 522 523 524 525 526 527
			*rxfce = info;
		}

		__skb_put(skb, len);
		done++;

		if (more) {
			q->rx_head = skb;
			continue;
		}

		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
	}

528
	mt76_dma_rx_fill(dev, q);
529 530 531 532 533 534 535
	return done;
}

static int
mt76_dma_rx_poll(struct napi_struct *napi, int budget)
{
	struct mt76_dev *dev;
536
	int qid, done = 0, cur;
537 538 539 540

	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
	qid = napi - dev->napi;

541 542
	rcu_read_lock();

543 544
	do {
		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
545
		mt76_rx_poll_complete(dev, qid, napi);
546 547 548
		done += cur;
	} while (cur && done < budget);

549 550
	rcu_read_unlock();

551
	if (done < budget && napi_complete(napi))
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		dev->drv->rx_poll_complete(dev, qid);

	return done;
}

static int
mt76_dma_init(struct mt76_dev *dev)
{
	int i;

	init_dummy_netdev(&dev->napi_dev);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
			       64);
567
		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
568 569 570 571 572 573 574 575 576
		napi_enable(&dev->napi[i]);
	}

	return 0;
}

static const struct mt76_queue_ops mt76_dma_ops = {
	.init = mt76_dma_init,
	.alloc = mt76_dma_alloc_queue,
577
	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
578
	.tx_queue_skb = mt76_dma_tx_queue_skb,
579 580 581 582 583
	.tx_cleanup = mt76_dma_tx_cleanup,
	.rx_reset = mt76_dma_rx_reset,
	.kick = mt76_dma_kick_queue,
};

584
void mt76_dma_attach(struct mt76_dev *dev)
585 586 587 588 589 590 591 592 593
{
	dev->queue_ops = &mt76_dma_ops;
}
EXPORT_SYMBOL_GPL(mt76_dma_attach);

void mt76_dma_cleanup(struct mt76_dev *dev)
{
	int i;

594
	netif_napi_del(&dev->tx_napi);
595 596 597 598 599 600 601 602 603
	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
		mt76_dma_tx_cleanup(dev, i, true);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_del(&dev->napi[i]);
		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
	}
}
EXPORT_SYMBOL_GPL(mt76_dma_cleanup);