dma.c 12.5 KB
Newer Older
1
// SPDX-License-Identifier: ISC
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
 */

#include <linux/dma-mapping.h>
#include "mt76.h"
#include "dma.h"

static int
11 12 13
mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
		     int idx, int n_desc, int bufsize,
		     u32 ring_base)
14 15 16 17 18 19
{
	int size;
	int i;

	spin_lock_init(&q->lock);

20 21 22 23 24
	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
	q->ndesc = n_desc;
	q->buf_size = bufsize;
	q->hw_idx = idx;

25 26 27 28 29 30 31 32 33 34 35 36 37 38
	size = q->ndesc * sizeof(struct mt76_desc);
	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
	if (!q->desc)
		return -ENOMEM;

	size = q->ndesc * sizeof(*q->entry);
	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
	if (!q->entry)
		return -ENOMEM;

	/* clear descriptors */
	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);

39 40 41 42
	writel(q->desc_dma, &q->regs->desc_base);
	writel(0, &q->regs->cpu_idx);
	writel(0, &q->regs->dma_idx);
	writel(q->ndesc, &q->regs->ring_size);
43 44 45 46 47 48 49 50 51 52 53 54 55

	return 0;
}

static int
mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
		 struct mt76_queue_buf *buf, int nbufs, u32 info,
		 struct sk_buff *skb, void *txwi)
{
	struct mt76_desc *desc;
	u32 ctrl;
	int i, idx = -1;

56
	if (txwi) {
57
		q->entry[q->head].txwi = DMA_DUMMY_DATA;
58 59
		q->entry[q->head].skip_buf0 = true;
	}
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

	for (i = 0; i < nbufs; i += 2, buf += 2) {
		u32 buf0 = buf[0].addr, buf1 = 0;

		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
		if (i < nbufs - 1) {
			buf1 = buf[1].addr;
			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
		}

		if (i == nbufs - 1)
			ctrl |= MT_DMA_CTL_LAST_SEC0;
		else if (i == nbufs - 2)
			ctrl |= MT_DMA_CTL_LAST_SEC1;

		idx = q->head;
		q->head = (q->head + 1) % q->ndesc;

		desc = &q->desc[idx];

		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
		WRITE_ONCE(desc->info, cpu_to_le32(info));
		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));

		q->queued++;
	}

	q->entry[idx].txwi = txwi;
	q->entry[idx].skb = skb;

	return idx;
}

static void
mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
			struct mt76_queue_entry *prev_e)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
	u32 ctrl = le32_to_cpu(__ctrl);

102
	if (!e->skip_buf0) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
		__le32 addr = READ_ONCE(q->desc[idx].buf0);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
		__le32 addr = READ_ONCE(q->desc[idx].buf1);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

118
	if (e->txwi == DMA_DUMMY_DATA)
119 120
		e->txwi = NULL;

121 122 123
	if (e->skb == DMA_DUMMY_DATA)
		e->skb = NULL;

124 125 126 127 128 129 130
	*prev_e = *e;
	memset(e, 0, sizeof(*e));
}

static void
mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
{
131 132 133
	writel(q->desc_dma, &q->regs->desc_base);
	writel(q->ndesc, &q->regs->ring_size);
	q->head = readl(&q->regs->dma_idx);
134
	q->tail = q->head;
135
	writel(q->head, &q->regs->cpu_idx);
136 137 138 139 140
}

static void
mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
{
141 142
	struct mt76_sw_queue *sq = &dev->q_tx[qid];
	struct mt76_queue *q = sq->q;
143
	struct mt76_queue_entry entry;
144 145
	unsigned int n_swq_queued[4] = {};
	unsigned int n_queued = 0;
146
	bool wake = false;
147
	int i, last;
148

149
	if (!q)
150 151 152 153 154
		return;

	if (flush)
		last = -1;
	else
155
		last = readl(&q->regs->dma_idx);
156

157
	while ((q->queued > n_queued) && q->tail != last) {
158 159
		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
		if (entry.schedule)
160
			n_swq_queued[entry.qid]++;
161

162
		q->tail = (q->tail + 1) % q->ndesc;
163
		n_queued++;
164

165
		if (entry.skb)
166
			dev->drv->tx_complete_skb(dev, qid, &entry);
167 168

		if (entry.txwi) {
169 170
			if (!(dev->drv->txwi_flags & MT_TXWI_NO_FREE))
				mt76_put_txwi(dev, entry.txwi);
171
			wake = !flush;
172 173 174
		}

		if (!flush && q->tail == last)
175
			last = readl(&q->regs->dma_idx);
176 177
	}

178 179 180 181 182 183 184 185 186 187
	spin_lock_bh(&q->lock);

	q->queued -= n_queued;
	for (i = 0; i < ARRAY_SIZE(n_swq_queued); i++) {
		if (!n_swq_queued[i])
			continue;

		dev->q_tx[i].swq_queued -= n_swq_queued[i];
	}

188
	if (flush)
189 190
		mt76_dma_sync_idx(dev, q);

191 192 193 194
	wake = wake && q->stopped &&
	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
	if (wake)
		q->stopped = false;
195 196 197 198

	if (!q->queued)
		wake_up(&dev->tx_wait);

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	spin_unlock_bh(&q->lock);

	if (wake)
		ieee80211_wake_queue(dev->hw, qid);
}

static void *
mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
		 int *len, u32 *info, bool *more)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	struct mt76_desc *desc = &q->desc[idx];
	dma_addr_t buf_addr;
	void *buf = e->buf;
	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);

	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
	if (len) {
		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
	}

	if (info)
		*info = le32_to_cpu(desc->info);

	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
	e->buf = NULL;

	return buf;
}

static void *
mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
		 int *len, u32 *info, bool *more)
{
	int idx = q->tail;

	*more = false;
	if (!q->queued)
		return NULL;

	if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
		return NULL;

	q->tail = (q->tail + 1) % q->ndesc;
	q->queued--;

	return mt76_dma_get_buf(dev, q, idx, len, info, more);
}

static void
mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
{
253
	writel(q->head, &q->regs->cpu_idx);
254 255
}

256 257 258 259
static int
mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
			  struct sk_buff *skb, u32 tx_info)
{
260
	struct mt76_queue *q = dev->q_tx[qid].q;
261 262 263 264 265
	struct mt76_queue_buf buf;
	dma_addr_t addr;

	addr = dma_map_single(dev->dev, skb->data, skb->len,
			      DMA_TO_DEVICE);
266
	if (unlikely(dma_mapping_error(dev->dev, addr)))
267 268 269 270 271 272 273 274 275 276 277 278 279
		return -ENOMEM;

	buf.addr = addr;
	buf.len = skb->len;

	spin_lock_bh(&q->lock);
	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
	mt76_dma_kick_queue(dev, q);
	spin_unlock_bh(&q->lock);

	return 0;
}

280 281 282 283
static int
mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
		      struct sk_buff *skb, struct mt76_wcid *wcid,
		      struct ieee80211_sta *sta)
284
{
285
	struct mt76_queue *q = dev->q_tx[qid].q;
286 287 288
	struct mt76_tx_info tx_info = {
		.skb = skb,
	};
289
	int len, n = 0, ret = -ENOMEM;
290 291 292 293
	struct mt76_queue_entry e;
	struct mt76_txwi_cache *t;
	struct sk_buff *iter;
	dma_addr_t addr;
294
	u8 *txwi;
295 296 297 298 299 300

	t = mt76_get_txwi(dev);
	if (!t) {
		ieee80211_free_txskb(dev->hw, skb);
		return -ENOMEM;
	}
301
	txwi = mt76_get_txwi_ptr(dev, t);
302

303
	skb->prev = skb->next = NULL;
304 305 306
	if (dev->drv->tx_aligned4_skbs)
		mt76_insert_hdr_pad(skb);

307
	len = skb_headlen(skb);
308
	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
309
	if (unlikely(dma_mapping_error(dev->dev, addr)))
310 311
		goto free;

312 313 314 315
	tx_info.buf[n].addr = t->dma_addr;
	tx_info.buf[n++].len = dev->drv->txwi_size;
	tx_info.buf[n].addr = addr;
	tx_info.buf[n++].len = len;
316 317

	skb_walk_frags(skb, iter) {
318
		if (n == ARRAY_SIZE(tx_info.buf))
319 320 321 322
			goto unmap;

		addr = dma_map_single(dev->dev, iter->data, iter->len,
				      DMA_TO_DEVICE);
323
		if (unlikely(dma_mapping_error(dev->dev, addr)))
324 325
			goto unmap;

326 327
		tx_info.buf[n].addr = addr;
		tx_info.buf[n++].len = iter->len;
328
	}
329
	tx_info.nbuf = n;
330

331
	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
332
				DMA_TO_DEVICE);
333
	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
334
	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
335 336
				   DMA_TO_DEVICE);
	if (ret < 0)
337 338
		goto unmap;

339
	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
340 341 342 343
		ret = -ENOMEM;
		goto unmap;
	}

344
	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
345
				tx_info.info, tx_info.skb, t);
346 347 348

unmap:
	for (n--; n > 0; n--)
349 350
		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
				 tx_info.buf[n].len, DMA_TO_DEVICE);
351 352

free:
353
	e.skb = tx_info.skb;
354
	e.txwi = t;
355
	dev->drv->tx_complete_skb(dev, qid, &e);
356 357 358 359
	mt76_put_txwi(dev, t);
	return ret;
}

360
static int
361
mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
362 363 364 365 366 367 368 369 370 371 372 373 374
{
	dma_addr_t addr;
	void *buf;
	int frames = 0;
	int len = SKB_WITH_OVERHEAD(q->buf_size);
	int offset = q->buf_offset;
	int idx;

	spin_lock_bh(&q->lock);

	while (q->queued < q->ndesc - 1) {
		struct mt76_queue_buf qbuf;

375
		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
376 377 378 379
		if (!buf)
			break;

		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
380
		if (unlikely(dma_mapping_error(dev->dev, addr))) {
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
			skb_free_frag(buf);
			break;
		}

		qbuf.addr = addr + offset;
		qbuf.len = len - offset;
		idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
		frames++;
	}

	if (frames)
		mt76_dma_kick_queue(dev, q);

	spin_unlock_bh(&q->lock);

	return frames;
}

static void
mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
{
402
	struct page *page;
403 404 405 406 407 408 409 410 411 412 413 414
	void *buf;
	bool more;

	spin_lock_bh(&q->lock);
	do {
		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
		if (!buf)
			break;

		skb_free_frag(buf);
	} while (1);
	spin_unlock_bh(&q->lock);
415 416 417 418 419 420 421

	if (!q->rx_page.va)
		return;

	page = virt_to_page(q->rx_page.va);
	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
	memset(&q->rx_page, 0, sizeof(q->rx_page));
422 423 424 425 426 427 428 429 430 431 432 433 434
}

static void
mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
{
	struct mt76_queue *q = &dev->q_rx[qid];
	int i;

	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);

	mt76_dma_rx_cleanup(dev, q);
	mt76_dma_sync_idx(dev, q);
435
	mt76_dma_rx_fill(dev, q);
436 437 438 439 440 441

	if (!q->rx_head)
		return;

	dev_kfree_skb(q->rx_head);
	q->rx_head = NULL;
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
}

static void
mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
		  int len, bool more)
{
	struct page *page = virt_to_head_page(data);
	int offset = data - page_address(page);
	struct sk_buff *skb = q->rx_head;

	offset += q->buf_offset;
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
			q->buf_size);

	if (more)
		return;

	q->rx_head = NULL;
	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
}

static int
mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
{
466
	int len, data_len, done = 0;
467 468 469 470 471 472 473 474 475 476 477
	struct sk_buff *skb;
	unsigned char *data;
	bool more;

	while (done < budget) {
		u32 info;

		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
		if (!data)
			break;

478 479 480 481 482 483
		if (q->rx_head)
			data_len = q->buf_size;
		else
			data_len = SKB_WITH_OVERHEAD(q->buf_size);

		if (data_len < len + q->buf_offset) {
484 485 486 487 488 489 490
			dev_kfree_skb(q->rx_head);
			q->rx_head = NULL;

			skb_free_frag(data);
			continue;
		}

491 492 493 494 495 496 497 498 499 500 501 502 503
		if (q->rx_head) {
			mt76_add_fragment(dev, q, data, len, more);
			continue;
		}

		skb = build_skb(data, q->buf_size);
		if (!skb) {
			skb_free_frag(data);
			continue;
		}
		skb_reserve(skb, q->buf_offset);

		if (q == &dev->q_rx[MT_RXQ_MCU]) {
R
Ryder Lee 已提交
504
			u32 *rxfce = (u32 *)skb->cb;
505 506 507 508 509 510 511 512 513 514 515 516 517 518
			*rxfce = info;
		}

		__skb_put(skb, len);
		done++;

		if (more) {
			q->rx_head = skb;
			continue;
		}

		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
	}

519
	mt76_dma_rx_fill(dev, q);
520 521 522 523 524 525 526
	return done;
}

static int
mt76_dma_rx_poll(struct napi_struct *napi, int budget)
{
	struct mt76_dev *dev;
527
	int qid, done = 0, cur;
528 529 530 531

	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
	qid = napi - dev->napi;

532 533
	rcu_read_lock();

534 535
	do {
		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
536
		mt76_rx_poll_complete(dev, qid, napi);
537 538 539
		done += cur;
	} while (cur && done < budget);

540 541
	rcu_read_unlock();

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	if (done < budget) {
		napi_complete(napi);
		dev->drv->rx_poll_complete(dev, qid);
	}

	return done;
}

static int
mt76_dma_init(struct mt76_dev *dev)
{
	int i;

	init_dummy_netdev(&dev->napi_dev);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
			       64);
560
		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
561 562 563 564 565 566 567 568 569 570
		skb_queue_head_init(&dev->rx_skb[i]);
		napi_enable(&dev->napi[i]);
	}

	return 0;
}

static const struct mt76_queue_ops mt76_dma_ops = {
	.init = mt76_dma_init,
	.alloc = mt76_dma_alloc_queue,
571
	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
572
	.tx_queue_skb = mt76_dma_tx_queue_skb,
573 574 575 576 577
	.tx_cleanup = mt76_dma_tx_cleanup,
	.rx_reset = mt76_dma_rx_reset,
	.kick = mt76_dma_kick_queue,
};

578
void mt76_dma_attach(struct mt76_dev *dev)
579 580 581 582 583 584 585 586 587
{
	dev->queue_ops = &mt76_dma_ops;
}
EXPORT_SYMBOL_GPL(mt76_dma_attach);

void mt76_dma_cleanup(struct mt76_dev *dev)
{
	int i;

588
	netif_napi_del(&dev->tx_napi);
589 590 591 592 593 594 595 596 597
	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
		mt76_dma_tx_cleanup(dev, i, true);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_del(&dev->napi[i]);
		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
	}
}
EXPORT_SYMBOL_GPL(mt76_dma_cleanup);