dma.c 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/dma-mapping.h>
#include "mt76.h"
#include "dma.h"

static int
22 23 24
mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
		     int idx, int n_desc, int bufsize,
		     u32 ring_base)
25 26 27 28 29 30
{
	int size;
	int i;

	spin_lock_init(&q->lock);

31 32 33 34 35
	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
	q->ndesc = n_desc;
	q->buf_size = bufsize;
	q->hw_idx = idx;

36 37 38 39 40 41 42 43 44 45 46 47 48 49
	size = q->ndesc * sizeof(struct mt76_desc);
	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
	if (!q->desc)
		return -ENOMEM;

	size = q->ndesc * sizeof(*q->entry);
	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
	if (!q->entry)
		return -ENOMEM;

	/* clear descriptors */
	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);

50 51 52 53
	writel(q->desc_dma, &q->regs->desc_base);
	writel(0, &q->regs->cpu_idx);
	writel(0, &q->regs->dma_idx);
	writel(q->ndesc, &q->regs->ring_size);
54 55 56 57 58 59 60 61 62 63 64 65 66 67

	return 0;
}

static int
mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
		 struct mt76_queue_buf *buf, int nbufs, u32 info,
		 struct sk_buff *skb, void *txwi)
{
	struct mt76_desc *desc;
	u32 ctrl;
	int i, idx = -1;

	if (txwi)
68
		q->entry[q->head].txwi = DMA_DUMMY_DATA;
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

	for (i = 0; i < nbufs; i += 2, buf += 2) {
		u32 buf0 = buf[0].addr, buf1 = 0;

		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
		if (i < nbufs - 1) {
			buf1 = buf[1].addr;
			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
		}

		if (i == nbufs - 1)
			ctrl |= MT_DMA_CTL_LAST_SEC0;
		else if (i == nbufs - 2)
			ctrl |= MT_DMA_CTL_LAST_SEC1;

		idx = q->head;
		q->head = (q->head + 1) % q->ndesc;

		desc = &q->desc[idx];

		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
		WRITE_ONCE(desc->info, cpu_to_le32(info));
		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));

		q->queued++;
	}

	q->entry[idx].txwi = txwi;
	q->entry[idx].skb = skb;

	return idx;
}

static void
mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
			struct mt76_queue_entry *prev_e)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
	u32 ctrl = le32_to_cpu(__ctrl);

	if (!e->txwi || !e->skb) {
		__le32 addr = READ_ONCE(q->desc[idx].buf0);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
		__le32 addr = READ_ONCE(q->desc[idx].buf1);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

127
	if (e->txwi == DMA_DUMMY_DATA)
128 129
		e->txwi = NULL;

130 131 132
	if (e->skb == DMA_DUMMY_DATA)
		e->skb = NULL;

133 134 135 136 137 138 139
	*prev_e = *e;
	memset(e, 0, sizeof(*e));
}

static void
mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
{
140 141 142
	writel(q->desc_dma, &q->regs->desc_base);
	writel(q->ndesc, &q->regs->ring_size);
	q->head = readl(&q->regs->dma_idx);
143
	q->tail = q->head;
144
	writel(q->head, &q->regs->cpu_idx);
145 146 147 148 149
}

static void
mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
{
150 151
	struct mt76_sw_queue *sq = &dev->q_tx[qid];
	struct mt76_queue *q = sq->q;
152
	struct mt76_queue_entry entry;
153 154
	unsigned int n_swq_queued[4] = {};
	unsigned int n_queued = 0;
155
	bool wake = false;
156
	int i, last;
157

158
	if (!q)
159 160 161 162 163
		return;

	if (flush)
		last = -1;
	else
164
		last = readl(&q->regs->dma_idx);
165

166
	while ((q->queued > n_queued) && q->tail != last) {
167 168
		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
		if (entry.schedule)
169
			n_swq_queued[entry.qid]++;
170

171
		q->tail = (q->tail + 1) % q->ndesc;
172
		n_queued++;
173

174
		if (entry.skb)
175
			dev->drv->tx_complete_skb(dev, qid, &entry);
176 177

		if (entry.txwi) {
178 179
			if (!(dev->drv->txwi_flags & MT_TXWI_NO_FREE))
				mt76_put_txwi(dev, entry.txwi);
180
			wake = !flush;
181 182 183
		}

		if (!flush && q->tail == last)
184
			last = readl(&q->regs->dma_idx);
185 186
	}

187 188 189 190 191 192 193 194 195 196
	spin_lock_bh(&q->lock);

	q->queued -= n_queued;
	for (i = 0; i < ARRAY_SIZE(n_swq_queued); i++) {
		if (!n_swq_queued[i])
			continue;

		dev->q_tx[i].swq_queued -= n_swq_queued[i];
	}

197
	if (flush)
198 199
		mt76_dma_sync_idx(dev, q);

200 201 202 203
	wake = wake && q->stopped &&
	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
	if (wake)
		q->stopped = false;
204 205 206 207

	if (!q->queued)
		wake_up(&dev->tx_wait);

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	spin_unlock_bh(&q->lock);

	if (wake)
		ieee80211_wake_queue(dev->hw, qid);
}

static void *
mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
		 int *len, u32 *info, bool *more)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	struct mt76_desc *desc = &q->desc[idx];
	dma_addr_t buf_addr;
	void *buf = e->buf;
	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);

	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
	if (len) {
		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
	}

	if (info)
		*info = le32_to_cpu(desc->info);

	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
	e->buf = NULL;

	return buf;
}

static void *
mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
		 int *len, u32 *info, bool *more)
{
	int idx = q->tail;

	*more = false;
	if (!q->queued)
		return NULL;

	if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
		return NULL;

	q->tail = (q->tail + 1) % q->ndesc;
	q->queued--;

	return mt76_dma_get_buf(dev, q, idx, len, info, more);
}

static void
mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
{
262
	writel(q->head, &q->regs->cpu_idx);
263 264
}

265 266 267 268
static int
mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
			  struct sk_buff *skb, u32 tx_info)
{
269
	struct mt76_queue *q = dev->q_tx[qid].q;
270 271 272 273 274
	struct mt76_queue_buf buf;
	dma_addr_t addr;

	addr = dma_map_single(dev->dev, skb->data, skb->len,
			      DMA_TO_DEVICE);
275
	if (unlikely(dma_mapping_error(dev->dev, addr)))
276 277 278 279 280 281 282 283 284 285 286 287 288
		return -ENOMEM;

	buf.addr = addr;
	buf.len = skb->len;

	spin_lock_bh(&q->lock);
	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
	mt76_dma_kick_queue(dev, q);
	spin_unlock_bh(&q->lock);

	return 0;
}

289 290 291 292
static int
mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
		      struct sk_buff *skb, struct mt76_wcid *wcid,
		      struct ieee80211_sta *sta)
293
{
294
	struct mt76_queue *q = dev->q_tx[qid].q;
295 296 297
	struct mt76_tx_info tx_info = {
		.skb = skb,
	};
298
	int len, n = 0, ret = -ENOMEM;
299 300 301 302
	struct mt76_queue_entry e;
	struct mt76_txwi_cache *t;
	struct sk_buff *iter;
	dma_addr_t addr;
303
	u8 *txwi;
304 305 306 307 308 309

	t = mt76_get_txwi(dev);
	if (!t) {
		ieee80211_free_txskb(dev->hw, skb);
		return -ENOMEM;
	}
310
	txwi = mt76_get_txwi_ptr(dev, t);
311

312
	skb->prev = skb->next = NULL;
313 314 315
	if (dev->drv->tx_aligned4_skbs)
		mt76_insert_hdr_pad(skb);

316
	len = skb_headlen(skb);
317
	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
318
	if (unlikely(dma_mapping_error(dev->dev, addr)))
319 320
		goto free;

321 322 323 324
	tx_info.buf[n].addr = t->dma_addr;
	tx_info.buf[n++].len = dev->drv->txwi_size;
	tx_info.buf[n].addr = addr;
	tx_info.buf[n++].len = len;
325 326

	skb_walk_frags(skb, iter) {
327
		if (n == ARRAY_SIZE(tx_info.buf))
328 329 330 331
			goto unmap;

		addr = dma_map_single(dev->dev, iter->data, iter->len,
				      DMA_TO_DEVICE);
332
		if (unlikely(dma_mapping_error(dev->dev, addr)))
333 334
			goto unmap;

335 336
		tx_info.buf[n].addr = addr;
		tx_info.buf[n++].len = iter->len;
337
	}
338
	tx_info.nbuf = n;
339

340
	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
341
				DMA_TO_DEVICE);
342
	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
343
	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
344 345
				   DMA_TO_DEVICE);
	if (ret < 0)
346 347
		goto unmap;

348
	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
349 350 351 352
		ret = -ENOMEM;
		goto unmap;
	}

353
	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
354
				tx_info.info, tx_info.skb, t);
355 356 357

unmap:
	for (n--; n > 0; n--)
358 359
		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
				 tx_info.buf[n].len, DMA_TO_DEVICE);
360 361

free:
362
	e.skb = tx_info.skb;
363
	e.txwi = t;
364
	dev->drv->tx_complete_skb(dev, qid, &e);
365 366 367 368
	mt76_put_txwi(dev, t);
	return ret;
}

369
static int
370
mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
371 372 373 374 375 376 377 378 379 380 381 382 383
{
	dma_addr_t addr;
	void *buf;
	int frames = 0;
	int len = SKB_WITH_OVERHEAD(q->buf_size);
	int offset = q->buf_offset;
	int idx;

	spin_lock_bh(&q->lock);

	while (q->queued < q->ndesc - 1) {
		struct mt76_queue_buf qbuf;

384
		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
385 386 387 388
		if (!buf)
			break;

		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
389
		if (unlikely(dma_mapping_error(dev->dev, addr))) {
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
			skb_free_frag(buf);
			break;
		}

		qbuf.addr = addr + offset;
		qbuf.len = len - offset;
		idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
		frames++;
	}

	if (frames)
		mt76_dma_kick_queue(dev, q);

	spin_unlock_bh(&q->lock);

	return frames;
}

static void
mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
{
411
	struct page *page;
412 413 414 415 416 417 418 419 420 421 422 423
	void *buf;
	bool more;

	spin_lock_bh(&q->lock);
	do {
		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
		if (!buf)
			break;

		skb_free_frag(buf);
	} while (1);
	spin_unlock_bh(&q->lock);
424 425 426 427 428 429 430

	if (!q->rx_page.va)
		return;

	page = virt_to_page(q->rx_page.va);
	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
	memset(&q->rx_page, 0, sizeof(q->rx_page));
431 432 433 434 435 436 437 438 439 440 441 442 443
}

static void
mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
{
	struct mt76_queue *q = &dev->q_rx[qid];
	int i;

	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);

	mt76_dma_rx_cleanup(dev, q);
	mt76_dma_sync_idx(dev, q);
444
	mt76_dma_rx_fill(dev, q);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
}

static void
mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
		  int len, bool more)
{
	struct page *page = virt_to_head_page(data);
	int offset = data - page_address(page);
	struct sk_buff *skb = q->rx_head;

	offset += q->buf_offset;
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
			q->buf_size);

	if (more)
		return;

	q->rx_head = NULL;
	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
}

static int
mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
{
469
	int len, data_len, done = 0;
470 471 472 473 474 475 476 477 478 479 480
	struct sk_buff *skb;
	unsigned char *data;
	bool more;

	while (done < budget) {
		u32 info;

		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
		if (!data)
			break;

481 482 483 484 485 486
		if (q->rx_head)
			data_len = q->buf_size;
		else
			data_len = SKB_WITH_OVERHEAD(q->buf_size);

		if (data_len < len + q->buf_offset) {
487 488 489 490 491 492 493
			dev_kfree_skb(q->rx_head);
			q->rx_head = NULL;

			skb_free_frag(data);
			continue;
		}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
		if (q->rx_head) {
			mt76_add_fragment(dev, q, data, len, more);
			continue;
		}

		skb = build_skb(data, q->buf_size);
		if (!skb) {
			skb_free_frag(data);
			continue;
		}
		skb_reserve(skb, q->buf_offset);

		if (q == &dev->q_rx[MT_RXQ_MCU]) {
			u32 *rxfce = (u32 *) skb->cb;
			*rxfce = info;
		}

		__skb_put(skb, len);
		done++;

		if (more) {
			q->rx_head = skb;
			continue;
		}

		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
	}

522
	mt76_dma_rx_fill(dev, q);
523 524 525 526 527 528 529
	return done;
}

static int
mt76_dma_rx_poll(struct napi_struct *napi, int budget)
{
	struct mt76_dev *dev;
530
	int qid, done = 0, cur;
531 532 533 534

	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
	qid = napi - dev->napi;

535 536
	rcu_read_lock();

537 538
	do {
		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
539
		mt76_rx_poll_complete(dev, qid, napi);
540 541 542
		done += cur;
	} while (cur && done < budget);

543 544
	rcu_read_unlock();

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	if (done < budget) {
		napi_complete(napi);
		dev->drv->rx_poll_complete(dev, qid);
	}

	return done;
}

static int
mt76_dma_init(struct mt76_dev *dev)
{
	int i;

	init_dummy_netdev(&dev->napi_dev);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
			       64);
563
		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
564 565 566 567 568 569 570 571 572 573
		skb_queue_head_init(&dev->rx_skb[i]);
		napi_enable(&dev->napi[i]);
	}

	return 0;
}

static const struct mt76_queue_ops mt76_dma_ops = {
	.init = mt76_dma_init,
	.alloc = mt76_dma_alloc_queue,
574
	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
575
	.tx_queue_skb = mt76_dma_tx_queue_skb,
576 577 578 579 580
	.tx_cleanup = mt76_dma_tx_cleanup,
	.rx_reset = mt76_dma_rx_reset,
	.kick = mt76_dma_kick_queue,
};

581
void mt76_dma_attach(struct mt76_dev *dev)
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
{
	dev->queue_ops = &mt76_dma_ops;
}
EXPORT_SYMBOL_GPL(mt76_dma_attach);

void mt76_dma_cleanup(struct mt76_dev *dev)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
		mt76_dma_tx_cleanup(dev, i, true);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_del(&dev->napi[i]);
		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
	}
}
EXPORT_SYMBOL_GPL(mt76_dma_cleanup);