dma.c 13.0 KB
Newer Older
1
// SPDX-License-Identifier: ISC
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
 */

#include <linux/dma-mapping.h>
#include "mt76.h"
#include "dma.h"

static int
11 12 13
mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
		     int idx, int n_desc, int bufsize,
		     u32 ring_base)
14 15 16 17 18 19
{
	int size;
	int i;

	spin_lock_init(&q->lock);

20 21 22 23 24
	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
	q->ndesc = n_desc;
	q->buf_size = bufsize;
	q->hw_idx = idx;

25 26 27 28 29 30 31 32 33 34 35 36 37 38
	size = q->ndesc * sizeof(struct mt76_desc);
	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
	if (!q->desc)
		return -ENOMEM;

	size = q->ndesc * sizeof(*q->entry);
	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
	if (!q->entry)
		return -ENOMEM;

	/* clear descriptors */
	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);

39 40 41 42
	writel(q->desc_dma, &q->regs->desc_base);
	writel(0, &q->regs->cpu_idx);
	writel(0, &q->regs->dma_idx);
	writel(q->ndesc, &q->regs->ring_size);
43 44 45 46 47 48 49 50 51 52 53 54 55

	return 0;
}

static int
mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
		 struct mt76_queue_buf *buf, int nbufs, u32 info,
		 struct sk_buff *skb, void *txwi)
{
	struct mt76_desc *desc;
	u32 ctrl;
	int i, idx = -1;

56
	if (txwi) {
57
		q->entry[q->head].txwi = DMA_DUMMY_DATA;
58 59
		q->entry[q->head].skip_buf0 = true;
	}
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

	for (i = 0; i < nbufs; i += 2, buf += 2) {
		u32 buf0 = buf[0].addr, buf1 = 0;

		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
		if (i < nbufs - 1) {
			buf1 = buf[1].addr;
			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
		}

		if (i == nbufs - 1)
			ctrl |= MT_DMA_CTL_LAST_SEC0;
		else if (i == nbufs - 2)
			ctrl |= MT_DMA_CTL_LAST_SEC1;

		idx = q->head;
		q->head = (q->head + 1) % q->ndesc;

		desc = &q->desc[idx];

		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
		WRITE_ONCE(desc->info, cpu_to_le32(info));
		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));

		q->queued++;
	}

	q->entry[idx].txwi = txwi;
	q->entry[idx].skb = skb;

	return idx;
}

static void
mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
			struct mt76_queue_entry *prev_e)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
	u32 ctrl = le32_to_cpu(__ctrl);

102
	if (!e->skip_buf0) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
		__le32 addr = READ_ONCE(q->desc[idx].buf0);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
		__le32 addr = READ_ONCE(q->desc[idx].buf1);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

118
	if (e->txwi == DMA_DUMMY_DATA)
119 120
		e->txwi = NULL;

121 122 123
	if (e->skb == DMA_DUMMY_DATA)
		e->skb = NULL;

124 125 126 127 128 129 130
	*prev_e = *e;
	memset(e, 0, sizeof(*e));
}

static void
mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
{
131 132 133
	writel(q->desc_dma, &q->regs->desc_base);
	writel(q->ndesc, &q->regs->ring_size);
	q->head = readl(&q->regs->dma_idx);
134
	q->tail = q->head;
135 136 137 138 139
}

static void
mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
{
140
	writel(q->head, &q->regs->cpu_idx);
141 142 143 144 145
}

static void
mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
{
146 147
	struct mt76_sw_queue *sq = &dev->q_tx[qid];
	struct mt76_queue *q = sq->q;
148
	struct mt76_queue_entry entry;
149
	unsigned int n_swq_queued[8] = {};
150
	unsigned int n_queued = 0;
151
	bool wake = false;
152
	int i, last;
153

154
	if (!q)
155 156 157 158 159
		return;

	if (flush)
		last = -1;
	else
160
		last = readl(&q->regs->dma_idx);
161

162
	while ((q->queued > n_queued) && q->tail != last) {
163 164
		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
		if (entry.schedule)
165
			n_swq_queued[entry.qid]++;
166

167
		q->tail = (q->tail + 1) % q->ndesc;
168
		n_queued++;
169

170
		if (entry.skb)
171
			dev->drv->tx_complete_skb(dev, qid, &entry);
172 173

		if (entry.txwi) {
174
			if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
175
				mt76_put_txwi(dev, entry.txwi);
176
			wake = !flush;
177 178 179
		}

		if (!flush && q->tail == last)
180
			last = readl(&q->regs->dma_idx);
181 182
	}

183 184 185
	spin_lock_bh(&q->lock);

	q->queued -= n_queued;
186
	for (i = 0; i < 4; i++) {
187 188 189 190 191 192
		if (!n_swq_queued[i])
			continue;

		dev->q_tx[i].swq_queued -= n_swq_queued[i];
	}

193 194 195 196 197 198 199 200
	/* ext PHY */
	for (i = 0; i < 4; i++) {
		if (!n_swq_queued[i])
			continue;

		dev->q_tx[__MT_TXQ_MAX + i].swq_queued -= n_swq_queued[4 + i];
	}

201
	if (flush) {
202
		mt76_dma_sync_idx(dev, q);
203 204
		mt76_dma_kick_queue(dev, q);
	}
205

206 207 208 209
	wake = wake && q->stopped &&
	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
	if (wake)
		q->stopped = false;
210 211 212 213

	if (!q->queued)
		wake_up(&dev->tx_wait);

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	spin_unlock_bh(&q->lock);

	if (wake)
		ieee80211_wake_queue(dev->hw, qid);
}

static void *
mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
		 int *len, u32 *info, bool *more)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	struct mt76_desc *desc = &q->desc[idx];
	dma_addr_t buf_addr;
	void *buf = e->buf;
	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);

	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
	if (len) {
		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
	}

	if (info)
		*info = le32_to_cpu(desc->info);

	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
	e->buf = NULL;

	return buf;
}

static void *
mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
		 int *len, u32 *info, bool *more)
{
	int idx = q->tail;

	*more = false;
	if (!q->queued)
		return NULL;

256 257 258
	if (flush)
		q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
	else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
259 260 261 262 263 264 265 266
		return NULL;

	q->tail = (q->tail + 1) % q->ndesc;
	q->queued--;

	return mt76_dma_get_buf(dev, q, idx, len, info, more);
}

267 268 269 270
static int
mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
			  struct sk_buff *skb, u32 tx_info)
{
271
	struct mt76_queue *q = dev->q_tx[qid].q;
272 273 274
	struct mt76_queue_buf buf;
	dma_addr_t addr;

275 276 277
	if (q->queued + 1 >= q->ndesc - 1)
		goto error;

278 279
	addr = dma_map_single(dev->dev, skb->data, skb->len,
			      DMA_TO_DEVICE);
280
	if (unlikely(dma_mapping_error(dev->dev, addr)))
281
		goto error;
282 283 284 285 286 287 288 289 290 291

	buf.addr = addr;
	buf.len = skb->len;

	spin_lock_bh(&q->lock);
	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
	mt76_dma_kick_queue(dev, q);
	spin_unlock_bh(&q->lock);

	return 0;
292 293 294 295

error:
	dev_kfree_skb(skb);
	return -ENOMEM;
296 297
}

298 299 300 301
static int
mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
		      struct sk_buff *skb, struct mt76_wcid *wcid,
		      struct ieee80211_sta *sta)
302
{
303
	struct mt76_queue *q = dev->q_tx[qid].q;
304 305 306
	struct mt76_tx_info tx_info = {
		.skb = skb,
	};
307
	struct ieee80211_hw *hw;
308
	int len, n = 0, ret = -ENOMEM;
309 310 311 312
	struct mt76_queue_entry e;
	struct mt76_txwi_cache *t;
	struct sk_buff *iter;
	dma_addr_t addr;
313
	u8 *txwi;
314 315 316

	t = mt76_get_txwi(dev);
	if (!t) {
317 318
		hw = mt76_tx_status_get_hw(dev, skb);
		ieee80211_free_txskb(hw, skb);
319 320
		return -ENOMEM;
	}
321
	txwi = mt76_get_txwi_ptr(dev, t);
322

323
	skb->prev = skb->next = NULL;
324
	if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
325 326
		mt76_insert_hdr_pad(skb);

327
	len = skb_headlen(skb);
328
	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
329
	if (unlikely(dma_mapping_error(dev->dev, addr)))
330 331
		goto free;

332 333 334 335
	tx_info.buf[n].addr = t->dma_addr;
	tx_info.buf[n++].len = dev->drv->txwi_size;
	tx_info.buf[n].addr = addr;
	tx_info.buf[n++].len = len;
336 337

	skb_walk_frags(skb, iter) {
338
		if (n == ARRAY_SIZE(tx_info.buf))
339 340 341 342
			goto unmap;

		addr = dma_map_single(dev->dev, iter->data, iter->len,
				      DMA_TO_DEVICE);
343
		if (unlikely(dma_mapping_error(dev->dev, addr)))
344 345
			goto unmap;

346 347
		tx_info.buf[n].addr = addr;
		tx_info.buf[n++].len = iter->len;
348
	}
349
	tx_info.nbuf = n;
350

351
	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
352
				DMA_TO_DEVICE);
353
	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
354
	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
355 356
				   DMA_TO_DEVICE);
	if (ret < 0)
357 358
		goto unmap;

359
	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
360 361 362 363
		ret = -ENOMEM;
		goto unmap;
	}

364
	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
365
				tx_info.info, tx_info.skb, t);
366 367 368

unmap:
	for (n--; n > 0; n--)
369 370
		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
				 tx_info.buf[n].len, DMA_TO_DEVICE);
371 372

free:
373 374 375 376 377 378
#ifdef CONFIG_NL80211_TESTMODE
	/* fix tx_done accounting on queue overflow */
	if (tx_info.skb == dev->test.tx_skb)
		dev->test.tx_done--;
#endif

379
	e.skb = tx_info.skb;
380
	e.txwi = t;
381
	dev->drv->tx_complete_skb(dev, qid, &e);
382 383 384 385
	mt76_put_txwi(dev, t);
	return ret;
}

386
static int
387
mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
388 389 390 391 392 393 394 395 396 397 398 399
{
	dma_addr_t addr;
	void *buf;
	int frames = 0;
	int len = SKB_WITH_OVERHEAD(q->buf_size);
	int offset = q->buf_offset;

	spin_lock_bh(&q->lock);

	while (q->queued < q->ndesc - 1) {
		struct mt76_queue_buf qbuf;

400
		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
401 402 403 404
		if (!buf)
			break;

		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
405
		if (unlikely(dma_mapping_error(dev->dev, addr))) {
406 407 408 409 410 411
			skb_free_frag(buf);
			break;
		}

		qbuf.addr = addr + offset;
		qbuf.len = len - offset;
412
		mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
413 414 415 416 417 418 419 420 421 422 423 424 425 426
		frames++;
	}

	if (frames)
		mt76_dma_kick_queue(dev, q);

	spin_unlock_bh(&q->lock);

	return frames;
}

static void
mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
{
427
	struct page *page;
428 429 430 431 432 433 434 435 436 437 438 439
	void *buf;
	bool more;

	spin_lock_bh(&q->lock);
	do {
		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
		if (!buf)
			break;

		skb_free_frag(buf);
	} while (1);
	spin_unlock_bh(&q->lock);
440 441 442 443 444 445 446

	if (!q->rx_page.va)
		return;

	page = virt_to_page(q->rx_page.va);
	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
	memset(&q->rx_page, 0, sizeof(q->rx_page));
447 448 449 450 451 452 453 454 455
}

static void
mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
{
	struct mt76_queue *q = &dev->q_rx[qid];
	int i;

	for (i = 0; i < q->ndesc; i++)
456
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
457 458 459

	mt76_dma_rx_cleanup(dev, q);
	mt76_dma_sync_idx(dev, q);
460
	mt76_dma_rx_fill(dev, q);
461 462 463 464 465 466

	if (!q->rx_head)
		return;

	dev_kfree_skb(q->rx_head);
	q->rx_head = NULL;
467 468 469 470 471 472 473 474 475
}

static void
mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
		  int len, bool more)
{
	struct page *page = virt_to_head_page(data);
	int offset = data - page_address(page);
	struct sk_buff *skb = q->rx_head;
476
	struct skb_shared_info *shinfo = skb_shinfo(skb);
477

478 479 480 481 482
	if (shinfo->nr_frags < ARRAY_SIZE(shinfo->frags)) {
		offset += q->buf_offset;
		skb_add_rx_frag(skb, shinfo->nr_frags, page, offset, len,
				q->buf_size);
	}
483 484 485 486 487 488 489 490 491 492 493

	if (more)
		return;

	q->rx_head = NULL;
	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
}

static int
mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
{
494
	int len, data_len, done = 0;
495 496 497 498 499 500 501 502 503 504 505
	struct sk_buff *skb;
	unsigned char *data;
	bool more;

	while (done < budget) {
		u32 info;

		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
		if (!data)
			break;

506 507 508 509 510 511
		if (q->rx_head)
			data_len = q->buf_size;
		else
			data_len = SKB_WITH_OVERHEAD(q->buf_size);

		if (data_len < len + q->buf_offset) {
512 513 514 515 516 517 518
			dev_kfree_skb(q->rx_head);
			q->rx_head = NULL;

			skb_free_frag(data);
			continue;
		}

519 520 521 522 523 524 525 526 527 528 529 530 531
		if (q->rx_head) {
			mt76_add_fragment(dev, q, data, len, more);
			continue;
		}

		skb = build_skb(data, q->buf_size);
		if (!skb) {
			skb_free_frag(data);
			continue;
		}
		skb_reserve(skb, q->buf_offset);

		if (q == &dev->q_rx[MT_RXQ_MCU]) {
R
Ryder Lee 已提交
532
			u32 *rxfce = (u32 *)skb->cb;
533 534 535 536 537 538 539 540 541 542 543 544 545 546
			*rxfce = info;
		}

		__skb_put(skb, len);
		done++;

		if (more) {
			q->rx_head = skb;
			continue;
		}

		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
	}

547
	mt76_dma_rx_fill(dev, q);
548 549 550 551 552 553 554
	return done;
}

static int
mt76_dma_rx_poll(struct napi_struct *napi, int budget)
{
	struct mt76_dev *dev;
555
	int qid, done = 0, cur;
556 557 558 559

	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
	qid = napi - dev->napi;

560
	local_bh_disable();
561 562
	rcu_read_lock();

563 564
	do {
		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
565
		mt76_rx_poll_complete(dev, qid, napi);
566 567 568
		done += cur;
	} while (cur && done < budget);

569
	rcu_read_unlock();
570
	local_bh_enable();
571

572
	if (done < budget && napi_complete(napi))
573 574 575 576 577 578 579 580 581 582 583 584
		dev->drv->rx_poll_complete(dev, qid);

	return done;
}

static int
mt76_dma_init(struct mt76_dev *dev)
{
	int i;

	init_dummy_netdev(&dev->napi_dev);

585
	mt76_for_each_q_rx(dev, i) {
586 587
		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
			       64);
588
		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
589 590 591 592 593 594 595 596 597
		napi_enable(&dev->napi[i]);
	}

	return 0;
}

static const struct mt76_queue_ops mt76_dma_ops = {
	.init = mt76_dma_init,
	.alloc = mt76_dma_alloc_queue,
598
	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
599
	.tx_queue_skb = mt76_dma_tx_queue_skb,
600 601 602 603 604
	.tx_cleanup = mt76_dma_tx_cleanup,
	.rx_reset = mt76_dma_rx_reset,
	.kick = mt76_dma_kick_queue,
};

605
void mt76_dma_attach(struct mt76_dev *dev)
606 607 608 609 610 611 612 613 614
{
	dev->queue_ops = &mt76_dma_ops;
}
EXPORT_SYMBOL_GPL(mt76_dma_attach);

void mt76_dma_cleanup(struct mt76_dev *dev)
{
	int i;

615
	netif_napi_del(&dev->tx_napi);
616 617 618
	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
		mt76_dma_tx_cleanup(dev, i, true);

619
	mt76_for_each_q_rx(dev, i) {
620 621 622 623 624
		netif_napi_del(&dev->napi[i]);
		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
	}
}
EXPORT_SYMBOL_GPL(mt76_dma_cleanup);