dma.c 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/dma-mapping.h>
#include "mt76.h"
#include "dma.h"

#define DMA_DUMMY_TXWI	((void *) ~0)

static int
mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q)
{
	int size;
	int i;

	spin_lock_init(&q->lock);
	INIT_LIST_HEAD(&q->swq);

	size = q->ndesc * sizeof(struct mt76_desc);
	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
	if (!q->desc)
		return -ENOMEM;

	size = q->ndesc * sizeof(*q->entry);
	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
	if (!q->entry)
		return -ENOMEM;

	/* clear descriptors */
	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);

	iowrite32(q->desc_dma, &q->regs->desc_base);
	iowrite32(0, &q->regs->cpu_idx);
	iowrite32(0, &q->regs->dma_idx);
	iowrite32(q->ndesc, &q->regs->ring_size);

	return 0;
}

static int
mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
		 struct mt76_queue_buf *buf, int nbufs, u32 info,
		 struct sk_buff *skb, void *txwi)
{
	struct mt76_desc *desc;
	u32 ctrl;
	int i, idx = -1;

	if (txwi)
		q->entry[q->head].txwi = DMA_DUMMY_TXWI;

	for (i = 0; i < nbufs; i += 2, buf += 2) {
		u32 buf0 = buf[0].addr, buf1 = 0;

		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
		if (i < nbufs - 1) {
			buf1 = buf[1].addr;
			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
		}

		if (i == nbufs - 1)
			ctrl |= MT_DMA_CTL_LAST_SEC0;
		else if (i == nbufs - 2)
			ctrl |= MT_DMA_CTL_LAST_SEC1;

		idx = q->head;
		q->head = (q->head + 1) % q->ndesc;

		desc = &q->desc[idx];

		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
		WRITE_ONCE(desc->info, cpu_to_le32(info));
		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));

		q->queued++;
	}

	q->entry[idx].txwi = txwi;
	q->entry[idx].skb = skb;

	return idx;
}

static void
mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
			struct mt76_queue_entry *prev_e)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
	u32 ctrl = le32_to_cpu(__ctrl);

	if (!e->txwi || !e->skb) {
		__le32 addr = READ_ONCE(q->desc[idx].buf0);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
		__le32 addr = READ_ONCE(q->desc[idx].buf1);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

	if (e->txwi == DMA_DUMMY_TXWI)
		e->txwi = NULL;

	*prev_e = *e;
	memset(e, 0, sizeof(*e));
}

static void
mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
{
	q->head = ioread32(&q->regs->dma_idx);
	q->tail = q->head;
	iowrite32(q->head, &q->regs->cpu_idx);
}

static void
mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
{
	struct mt76_queue *q = &dev->q_tx[qid];
	struct mt76_queue_entry entry;
	bool wake = false;
	int last;

	if (!q->ndesc)
		return;

	spin_lock_bh(&q->lock);
	if (flush)
		last = -1;
	else
		last = ioread32(&q->regs->dma_idx);

	while (q->queued && q->tail != last) {
		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
		if (entry.schedule)
			q->swq_queued--;

160 161 162 163 164
		q->tail = (q->tail + 1) % q->ndesc;
		q->queued--;

		if (entry.skb) {
			spin_unlock_bh(&q->lock);
165
			dev->drv->tx_complete_skb(dev, q, &entry, flush);
166 167
			spin_lock_bh(&q->lock);
		}
168 169 170

		if (entry.txwi) {
			mt76_put_txwi(dev, entry.txwi);
171
			wake = !flush;
172 173 174 175 176 177 178 179 180 181 182 183
		}

		if (!flush && q->tail == last)
			last = ioread32(&q->regs->dma_idx);
	}

	if (!flush)
		mt76_txq_schedule(dev, q);
	else
		mt76_dma_sync_idx(dev, q);

	wake = wake && qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
184 185 186 187

	if (!q->queued)
		wake_up(&dev->tx_wait);

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	spin_unlock_bh(&q->lock);

	if (wake)
		ieee80211_wake_queue(dev->hw, qid);
}

static void *
mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
		 int *len, u32 *info, bool *more)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	struct mt76_desc *desc = &q->desc[idx];
	dma_addr_t buf_addr;
	void *buf = e->buf;
	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);

	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
	if (len) {
		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
	}

	if (info)
		*info = le32_to_cpu(desc->info);

	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
	e->buf = NULL;

	return buf;
}

static void *
mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
		 int *len, u32 *info, bool *more)
{
	int idx = q->tail;

	*more = false;
	if (!q->queued)
		return NULL;

	if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
		return NULL;

	q->tail = (q->tail + 1) % q->ndesc;
	q->queued--;

	return mt76_dma_get_buf(dev, q, idx, len, info, more);
}

static void
mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
{
	iowrite32(q->head, &q->regs->cpu_idx);
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
int mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q,
			  struct sk_buff *skb, struct mt76_wcid *wcid,
			  struct ieee80211_sta *sta)
{
	struct mt76_queue_entry e;
	struct mt76_txwi_cache *t;
	struct mt76_queue_buf buf[32];
	struct sk_buff *iter;
	dma_addr_t addr;
	int len;
	u32 tx_info = 0;
	int n, ret;

	t = mt76_get_txwi(dev);
	if (!t) {
		ieee80211_free_txskb(dev->hw, skb);
		return -ENOMEM;
	}

264
	skb->prev = skb->next = NULL;
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	dma_sync_single_for_cpu(dev->dev, t->dma_addr, sizeof(t->txwi),
				DMA_TO_DEVICE);
	ret = dev->drv->tx_prepare_skb(dev, &t->txwi, skb, q, wcid, sta,
				       &tx_info);
	dma_sync_single_for_device(dev->dev, t->dma_addr, sizeof(t->txwi),
				   DMA_TO_DEVICE);
	if (ret < 0)
		goto free;

	len = skb->len - skb->data_len;
	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
	if (dma_mapping_error(dev->dev, addr)) {
		ret = -ENOMEM;
		goto free;
	}

	n = 0;
	buf[n].addr = t->dma_addr;
	buf[n++].len = dev->drv->txwi_size;
	buf[n].addr = addr;
	buf[n++].len = len;

	skb_walk_frags(skb, iter) {
		if (n == ARRAY_SIZE(buf))
			goto unmap;

		addr = dma_map_single(dev->dev, iter->data, iter->len,
				      DMA_TO_DEVICE);
		if (dma_mapping_error(dev->dev, addr))
			goto unmap;

		buf[n].addr = addr;
		buf[n++].len = iter->len;
	}

	if (q->queued + (n + 1) / 2 >= q->ndesc - 1)
		goto unmap;

	return dev->queue_ops->add_buf(dev, q, buf, n, tx_info, skb, t);

unmap:
	ret = -ENOMEM;
	for (n--; n > 0; n--)
		dma_unmap_single(dev->dev, buf[n].addr, buf[n].len,
				 DMA_TO_DEVICE);

free:
	e.skb = skb;
	e.txwi = t;
	dev->drv->tx_complete_skb(dev, q, &e, true);
	mt76_put_txwi(dev, t);
	return ret;
}
EXPORT_SYMBOL_GPL(mt76_dma_tx_queue_skb);

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
static int
mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q, bool napi)
{
	dma_addr_t addr;
	void *buf;
	int frames = 0;
	int len = SKB_WITH_OVERHEAD(q->buf_size);
	int offset = q->buf_offset;
	int idx;

	spin_lock_bh(&q->lock);

	while (q->queued < q->ndesc - 1) {
		struct mt76_queue_buf qbuf;

335
		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
		if (!buf)
			break;

		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
		if (dma_mapping_error(dev->dev, addr)) {
			skb_free_frag(buf);
			break;
		}

		qbuf.addr = addr + offset;
		qbuf.len = len - offset;
		idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
		frames++;
	}

	if (frames)
		mt76_dma_kick_queue(dev, q);

	spin_unlock_bh(&q->lock);

	return frames;
}

static void
mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
{
362
	struct page *page;
363 364 365 366 367 368 369 370 371 372 373 374
	void *buf;
	bool more;

	spin_lock_bh(&q->lock);
	do {
		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
		if (!buf)
			break;

		skb_free_frag(buf);
	} while (1);
	spin_unlock_bh(&q->lock);
375 376 377 378 379 380 381

	if (!q->rx_page.va)
		return;

	page = virt_to_page(q->rx_page.va);
	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
	memset(&q->rx_page, 0, sizeof(q->rx_page));
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
}

static void
mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
{
	struct mt76_queue *q = &dev->q_rx[qid];
	int i;

	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);

	mt76_dma_rx_cleanup(dev, q);
	mt76_dma_sync_idx(dev, q);
	mt76_dma_rx_fill(dev, q, false);
}

static void
mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
		  int len, bool more)
{
	struct page *page = virt_to_head_page(data);
	int offset = data - page_address(page);
	struct sk_buff *skb = q->rx_head;

	offset += q->buf_offset;
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
			q->buf_size);

	if (more)
		return;

	q->rx_head = NULL;
	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
}

static int
mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
{
	struct sk_buff *skb;
	unsigned char *data;
	int len;
	int done = 0;
	bool more;

	while (done < budget) {
		u32 info;

		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
		if (!data)
			break;

433 434 435 436 437 438 439 440
		if (q->buf_size < len + q->buf_offset) {
			dev_kfree_skb(q->rx_head);
			q->rx_head = NULL;

			skb_free_frag(data);
			continue;
		}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
		if (q->rx_head) {
			mt76_add_fragment(dev, q, data, len, more);
			continue;
		}

		skb = build_skb(data, q->buf_size);
		if (!skb) {
			skb_free_frag(data);
			continue;
		}

		skb_reserve(skb, q->buf_offset);
		if (skb->tail + len > skb->end) {
			dev_kfree_skb(skb);
			continue;
		}

		if (q == &dev->q_rx[MT_RXQ_MCU]) {
			u32 *rxfce = (u32 *) skb->cb;
			*rxfce = info;
		}

		__skb_put(skb, len);
		done++;

		if (more) {
			q->rx_head = skb;
			continue;
		}

		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
	}

	mt76_dma_rx_fill(dev, q, true);
	return done;
}

static int
mt76_dma_rx_poll(struct napi_struct *napi, int budget)
{
	struct mt76_dev *dev;
482
	int qid, done = 0, cur;
483 484 485 486

	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
	qid = napi - dev->napi;

487 488
	rcu_read_lock();

489 490
	do {
		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
491
		mt76_rx_poll_complete(dev, qid, napi);
492 493 494
		done += cur;
	} while (cur && done < budget);

495 496
	rcu_read_unlock();

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	if (done < budget) {
		napi_complete(napi);
		dev->drv->rx_poll_complete(dev, qid);
	}

	return done;
}

static int
mt76_dma_init(struct mt76_dev *dev)
{
	int i;

	init_dummy_netdev(&dev->napi_dev);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
			       64);
		mt76_dma_rx_fill(dev, &dev->q_rx[i], false);
		skb_queue_head_init(&dev->rx_skb[i]);
		napi_enable(&dev->napi[i]);
	}

	return 0;
}

static const struct mt76_queue_ops mt76_dma_ops = {
	.init = mt76_dma_init,
	.alloc = mt76_dma_alloc_queue,
	.add_buf = mt76_dma_add_buf,
527
	.tx_queue_skb = mt76_dma_tx_queue_skb,
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	.tx_cleanup = mt76_dma_tx_cleanup,
	.rx_reset = mt76_dma_rx_reset,
	.kick = mt76_dma_kick_queue,
};

int mt76_dma_attach(struct mt76_dev *dev)
{
	dev->queue_ops = &mt76_dma_ops;
	return 0;
}
EXPORT_SYMBOL_GPL(mt76_dma_attach);

void mt76_dma_cleanup(struct mt76_dev *dev)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
		mt76_dma_tx_cleanup(dev, i, true);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_del(&dev->napi[i]);
		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
	}
}
EXPORT_SYMBOL_GPL(mt76_dma_cleanup);