dma.c 12.4 KB
Newer Older
1
// SPDX-License-Identifier: ISC
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
 */

#include <linux/dma-mapping.h>
#include "mt76.h"
#include "dma.h"

static int
11 12 13
mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
		     int idx, int n_desc, int bufsize,
		     u32 ring_base)
14 15 16 17 18 19
{
	int size;
	int i;

	spin_lock_init(&q->lock);

20 21 22 23 24
	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
	q->ndesc = n_desc;
	q->buf_size = bufsize;
	q->hw_idx = idx;

25 26 27 28 29 30 31 32 33 34 35 36 37 38
	size = q->ndesc * sizeof(struct mt76_desc);
	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
	if (!q->desc)
		return -ENOMEM;

	size = q->ndesc * sizeof(*q->entry);
	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
	if (!q->entry)
		return -ENOMEM;

	/* clear descriptors */
	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);

39 40 41 42
	writel(q->desc_dma, &q->regs->desc_base);
	writel(0, &q->regs->cpu_idx);
	writel(0, &q->regs->dma_idx);
	writel(q->ndesc, &q->regs->ring_size);
43 44 45 46 47 48 49 50 51 52 53 54 55 56

	return 0;
}

static int
mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
		 struct mt76_queue_buf *buf, int nbufs, u32 info,
		 struct sk_buff *skb, void *txwi)
{
	struct mt76_desc *desc;
	u32 ctrl;
	int i, idx = -1;

	if (txwi)
57
		q->entry[q->head].txwi = DMA_DUMMY_DATA;
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

	for (i = 0; i < nbufs; i += 2, buf += 2) {
		u32 buf0 = buf[0].addr, buf1 = 0;

		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
		if (i < nbufs - 1) {
			buf1 = buf[1].addr;
			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
		}

		if (i == nbufs - 1)
			ctrl |= MT_DMA_CTL_LAST_SEC0;
		else if (i == nbufs - 2)
			ctrl |= MT_DMA_CTL_LAST_SEC1;

		idx = q->head;
		q->head = (q->head + 1) % q->ndesc;

		desc = &q->desc[idx];

		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
		WRITE_ONCE(desc->info, cpu_to_le32(info));
		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));

		q->queued++;
	}

	q->entry[idx].txwi = txwi;
	q->entry[idx].skb = skb;

	return idx;
}

static void
mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
			struct mt76_queue_entry *prev_e)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
	u32 ctrl = le32_to_cpu(__ctrl);

	if (!e->txwi || !e->skb) {
		__le32 addr = READ_ONCE(q->desc[idx].buf0);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
		__le32 addr = READ_ONCE(q->desc[idx].buf1);
		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);

		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
				 DMA_TO_DEVICE);
	}

116
	if (e->txwi == DMA_DUMMY_DATA)
117 118
		e->txwi = NULL;

119 120 121
	if (e->skb == DMA_DUMMY_DATA)
		e->skb = NULL;

122 123 124 125 126 127 128
	*prev_e = *e;
	memset(e, 0, sizeof(*e));
}

static void
mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
{
129 130 131
	writel(q->desc_dma, &q->regs->desc_base);
	writel(q->ndesc, &q->regs->ring_size);
	q->head = readl(&q->regs->dma_idx);
132
	q->tail = q->head;
133
	writel(q->head, &q->regs->cpu_idx);
134 135 136 137 138
}

static void
mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
{
139 140
	struct mt76_sw_queue *sq = &dev->q_tx[qid];
	struct mt76_queue *q = sq->q;
141
	struct mt76_queue_entry entry;
142 143
	unsigned int n_swq_queued[4] = {};
	unsigned int n_queued = 0;
144
	bool wake = false;
145
	int i, last;
146

147
	if (!q)
148 149 150 151 152
		return;

	if (flush)
		last = -1;
	else
153
		last = readl(&q->regs->dma_idx);
154

155
	while ((q->queued > n_queued) && q->tail != last) {
156 157
		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
		if (entry.schedule)
158
			n_swq_queued[entry.qid]++;
159

160
		q->tail = (q->tail + 1) % q->ndesc;
161
		n_queued++;
162

163
		if (entry.skb)
164
			dev->drv->tx_complete_skb(dev, qid, &entry);
165 166

		if (entry.txwi) {
167 168
			if (!(dev->drv->txwi_flags & MT_TXWI_NO_FREE))
				mt76_put_txwi(dev, entry.txwi);
169
			wake = !flush;
170 171 172
		}

		if (!flush && q->tail == last)
173
			last = readl(&q->regs->dma_idx);
174 175
	}

176 177 178 179 180 181 182 183 184 185
	spin_lock_bh(&q->lock);

	q->queued -= n_queued;
	for (i = 0; i < ARRAY_SIZE(n_swq_queued); i++) {
		if (!n_swq_queued[i])
			continue;

		dev->q_tx[i].swq_queued -= n_swq_queued[i];
	}

186
	if (flush)
187 188
		mt76_dma_sync_idx(dev, q);

189 190 191 192
	wake = wake && q->stopped &&
	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
	if (wake)
		q->stopped = false;
193 194 195 196

	if (!q->queued)
		wake_up(&dev->tx_wait);

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	spin_unlock_bh(&q->lock);

	if (wake)
		ieee80211_wake_queue(dev->hw, qid);
}

static void *
mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
		 int *len, u32 *info, bool *more)
{
	struct mt76_queue_entry *e = &q->entry[idx];
	struct mt76_desc *desc = &q->desc[idx];
	dma_addr_t buf_addr;
	void *buf = e->buf;
	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);

	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
	if (len) {
		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
	}

	if (info)
		*info = le32_to_cpu(desc->info);

	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
	e->buf = NULL;

	return buf;
}

static void *
mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
		 int *len, u32 *info, bool *more)
{
	int idx = q->tail;

	*more = false;
	if (!q->queued)
		return NULL;

	if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
		return NULL;

	q->tail = (q->tail + 1) % q->ndesc;
	q->queued--;

	return mt76_dma_get_buf(dev, q, idx, len, info, more);
}

static void
mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
{
251
	writel(q->head, &q->regs->cpu_idx);
252 253
}

254 255 256 257
static int
mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
			  struct sk_buff *skb, u32 tx_info)
{
258
	struct mt76_queue *q = dev->q_tx[qid].q;
259 260 261 262 263
	struct mt76_queue_buf buf;
	dma_addr_t addr;

	addr = dma_map_single(dev->dev, skb->data, skb->len,
			      DMA_TO_DEVICE);
264
	if (unlikely(dma_mapping_error(dev->dev, addr)))
265 266 267 268 269 270 271 272 273 274 275 276 277
		return -ENOMEM;

	buf.addr = addr;
	buf.len = skb->len;

	spin_lock_bh(&q->lock);
	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
	mt76_dma_kick_queue(dev, q);
	spin_unlock_bh(&q->lock);

	return 0;
}

278 279 280 281
static int
mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
		      struct sk_buff *skb, struct mt76_wcid *wcid,
		      struct ieee80211_sta *sta)
282
{
283
	struct mt76_queue *q = dev->q_tx[qid].q;
284 285 286
	struct mt76_tx_info tx_info = {
		.skb = skb,
	};
287
	int len, n = 0, ret = -ENOMEM;
288 289 290 291
	struct mt76_queue_entry e;
	struct mt76_txwi_cache *t;
	struct sk_buff *iter;
	dma_addr_t addr;
292
	u8 *txwi;
293 294 295 296 297 298

	t = mt76_get_txwi(dev);
	if (!t) {
		ieee80211_free_txskb(dev->hw, skb);
		return -ENOMEM;
	}
299
	txwi = mt76_get_txwi_ptr(dev, t);
300

301
	skb->prev = skb->next = NULL;
302 303 304
	if (dev->drv->tx_aligned4_skbs)
		mt76_insert_hdr_pad(skb);

305
	len = skb_headlen(skb);
306
	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
307
	if (unlikely(dma_mapping_error(dev->dev, addr)))
308 309
		goto free;

310 311 312 313
	tx_info.buf[n].addr = t->dma_addr;
	tx_info.buf[n++].len = dev->drv->txwi_size;
	tx_info.buf[n].addr = addr;
	tx_info.buf[n++].len = len;
314 315

	skb_walk_frags(skb, iter) {
316
		if (n == ARRAY_SIZE(tx_info.buf))
317 318 319 320
			goto unmap;

		addr = dma_map_single(dev->dev, iter->data, iter->len,
				      DMA_TO_DEVICE);
321
		if (unlikely(dma_mapping_error(dev->dev, addr)))
322 323
			goto unmap;

324 325
		tx_info.buf[n].addr = addr;
		tx_info.buf[n++].len = iter->len;
326
	}
327
	tx_info.nbuf = n;
328

329
	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
330
				DMA_TO_DEVICE);
331
	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
332
	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
333 334
				   DMA_TO_DEVICE);
	if (ret < 0)
335 336
		goto unmap;

337
	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
338 339 340 341
		ret = -ENOMEM;
		goto unmap;
	}

342
	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
343
				tx_info.info, tx_info.skb, t);
344 345 346

unmap:
	for (n--; n > 0; n--)
347 348
		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
				 tx_info.buf[n].len, DMA_TO_DEVICE);
349 350

free:
351
	e.skb = tx_info.skb;
352
	e.txwi = t;
353
	dev->drv->tx_complete_skb(dev, qid, &e);
354 355 356 357
	mt76_put_txwi(dev, t);
	return ret;
}

358
static int
359
mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
360 361 362 363 364 365 366 367 368 369 370 371 372
{
	dma_addr_t addr;
	void *buf;
	int frames = 0;
	int len = SKB_WITH_OVERHEAD(q->buf_size);
	int offset = q->buf_offset;
	int idx;

	spin_lock_bh(&q->lock);

	while (q->queued < q->ndesc - 1) {
		struct mt76_queue_buf qbuf;

373
		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
374 375 376 377
		if (!buf)
			break;

		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
378
		if (unlikely(dma_mapping_error(dev->dev, addr))) {
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
			skb_free_frag(buf);
			break;
		}

		qbuf.addr = addr + offset;
		qbuf.len = len - offset;
		idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
		frames++;
	}

	if (frames)
		mt76_dma_kick_queue(dev, q);

	spin_unlock_bh(&q->lock);

	return frames;
}

static void
mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
{
400
	struct page *page;
401 402 403 404 405 406 407 408 409 410 411 412
	void *buf;
	bool more;

	spin_lock_bh(&q->lock);
	do {
		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
		if (!buf)
			break;

		skb_free_frag(buf);
	} while (1);
	spin_unlock_bh(&q->lock);
413 414 415 416 417 418 419

	if (!q->rx_page.va)
		return;

	page = virt_to_page(q->rx_page.va);
	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
	memset(&q->rx_page, 0, sizeof(q->rx_page));
420 421 422 423 424 425 426 427 428 429 430 431 432
}

static void
mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
{
	struct mt76_queue *q = &dev->q_rx[qid];
	int i;

	for (i = 0; i < q->ndesc; i++)
		q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);

	mt76_dma_rx_cleanup(dev, q);
	mt76_dma_sync_idx(dev, q);
433
	mt76_dma_rx_fill(dev, q);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
}

static void
mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
		  int len, bool more)
{
	struct page *page = virt_to_head_page(data);
	int offset = data - page_address(page);
	struct sk_buff *skb = q->rx_head;

	offset += q->buf_offset;
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
			q->buf_size);

	if (more)
		return;

	q->rx_head = NULL;
	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
}

static int
mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
{
458
	int len, data_len, done = 0;
459 460 461 462 463 464 465 466 467 468 469
	struct sk_buff *skb;
	unsigned char *data;
	bool more;

	while (done < budget) {
		u32 info;

		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
		if (!data)
			break;

470 471 472 473 474 475
		if (q->rx_head)
			data_len = q->buf_size;
		else
			data_len = SKB_WITH_OVERHEAD(q->buf_size);

		if (data_len < len + q->buf_offset) {
476 477 478 479 480 481 482
			dev_kfree_skb(q->rx_head);
			q->rx_head = NULL;

			skb_free_frag(data);
			continue;
		}

483 484 485 486 487 488 489 490 491 492 493 494 495
		if (q->rx_head) {
			mt76_add_fragment(dev, q, data, len, more);
			continue;
		}

		skb = build_skb(data, q->buf_size);
		if (!skb) {
			skb_free_frag(data);
			continue;
		}
		skb_reserve(skb, q->buf_offset);

		if (q == &dev->q_rx[MT_RXQ_MCU]) {
R
Ryder Lee 已提交
496
			u32 *rxfce = (u32 *)skb->cb;
497 498 499 500 501 502 503 504 505 506 507 508 509 510
			*rxfce = info;
		}

		__skb_put(skb, len);
		done++;

		if (more) {
			q->rx_head = skb;
			continue;
		}

		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
	}

511
	mt76_dma_rx_fill(dev, q);
512 513 514 515 516 517 518
	return done;
}

static int
mt76_dma_rx_poll(struct napi_struct *napi, int budget)
{
	struct mt76_dev *dev;
519
	int qid, done = 0, cur;
520 521 522 523

	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
	qid = napi - dev->napi;

524 525
	rcu_read_lock();

526 527
	do {
		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
528
		mt76_rx_poll_complete(dev, qid, napi);
529 530 531
		done += cur;
	} while (cur && done < budget);

532 533
	rcu_read_unlock();

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	if (done < budget) {
		napi_complete(napi);
		dev->drv->rx_poll_complete(dev, qid);
	}

	return done;
}

static int
mt76_dma_init(struct mt76_dev *dev)
{
	int i;

	init_dummy_netdev(&dev->napi_dev);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
			       64);
552
		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
553 554 555 556 557 558 559 560 561 562
		skb_queue_head_init(&dev->rx_skb[i]);
		napi_enable(&dev->napi[i]);
	}

	return 0;
}

static const struct mt76_queue_ops mt76_dma_ops = {
	.init = mt76_dma_init,
	.alloc = mt76_dma_alloc_queue,
563
	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
564
	.tx_queue_skb = mt76_dma_tx_queue_skb,
565 566 567 568 569
	.tx_cleanup = mt76_dma_tx_cleanup,
	.rx_reset = mt76_dma_rx_reset,
	.kick = mt76_dma_kick_queue,
};

570
void mt76_dma_attach(struct mt76_dev *dev)
571 572 573 574 575 576 577 578 579
{
	dev->queue_ops = &mt76_dma_ops;
}
EXPORT_SYMBOL_GPL(mt76_dma_attach);

void mt76_dma_cleanup(struct mt76_dev *dev)
{
	int i;

580
	netif_napi_del(&dev->tx_napi);
581 582 583 584 585 586 587 588 589
	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
		mt76_dma_tx_cleanup(dev, i, true);

	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
		netif_napi_del(&dev->napi[i]);
		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
	}
}
EXPORT_SYMBOL_GPL(mt76_dma_cleanup);