backref.c 46.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30 31 32 33 34 35 36 37 38
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
39
	u64 offset = 0;
40 41
	struct extent_inode_elem *e;

42 43 44 45 46
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
47

48 49 50 51 52 53 54 55
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
56 57 58 59 60 61 62

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
63
	e->offset = key->offset + offset;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	*eie = e;

	return 0;
}

static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

108 109 110 111 112 113
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
114
	struct btrfs_key key_for_search;
115 116
	int level;
	int count;
117
	struct extent_inode_elem *inode_list;
118 119 120 121
	u64 parent;
	u64 wanted_disk_byte;
};

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

161
static int __add_prelim_ref(struct list_head *head, u64 root_id,
162 163
			    struct btrfs_key *key, int level,
			    u64 parent, u64 wanted_disk_byte, int count)
164 165 166 167 168 169 170 171 172 173
{
	struct __prelim_ref *ref;

	/* in case we're adding delayed refs, we're holding the refs spinlock */
	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
	if (key)
174
		ref->key_for_search = *key;
175
	else
176
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
177

178
	ref->inode_list = NULL;
179 180 181 182 183 184 185 186 187 188
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
189
				struct ulist *parents, int level,
190
				struct btrfs_key *key_for_search, u64 time_seq,
J
Jan Schmidt 已提交
191
				u64 wanted_disk_byte,
192
				const u64 *extent_item_pos)
193
{
194 195 196 197
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
198
	struct btrfs_file_extent_item *fi;
199
	struct extent_inode_elem *eie = NULL, *old = NULL;
200 201
	u64 disk_byte;

202 203 204
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
205 206
		if (ret < 0)
			return ret;
207
		return 0;
208
	}
209 210

	/*
211 212 213
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
214
	 */
215
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
J
Jan Schmidt 已提交
216
		ret = btrfs_next_old_leaf(root, path, time_seq);
217

218
	while (!ret) {
219
		eb = path->nodes[0];
220 221 222 223 224 225 226 227 228 229 230 231 232
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
233
			old = NULL;
234 235 236 237 238 239 240
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
241 242 243 244 245 246 247 248 249 250 251
			if (ret > 0)
				goto next;
			ret = ulist_add_merge(parents, eb->start,
					      (uintptr_t)eie,
					      (u64 *)&old, GFP_NOFS);
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
252
			}
253
		}
254
next:
255
		ret = btrfs_next_old_item(root, path, time_seq);
256 257
	}

258 259 260
	if (ret > 0)
		ret = 0;
	return ret;
261 262 263 264 265 266 267
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
268 269 270 271
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
				  const u64 *extent_item_pos)
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
		goto out;
	}

J
Jan Schmidt 已提交
289
	root_level = btrfs_old_root_level(root, time_seq);
290 291 292 293 294

	if (root_level + 1 == level)
		goto out;

	path->lowest_level = level;
295
	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
296 297
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
298 299 300
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
301 302 303 304
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
305 306 307 308 309 310 311 312
	while (!eb) {
		if (!level) {
			WARN_ON(1);
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
313 314
	}

315 316 317
	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
				time_seq, ref->wanted_disk_byte,
				extent_item_pos);
318
out:
319 320
	path->lowest_level = 0;
	btrfs_release_path(path);
321 322 323 324 325 326 327
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
328
				   struct btrfs_path *path, u64 time_seq,
329 330
				   struct list_head *head,
				   const u64 *extent_item_pos)
331 332 333 334 335 336 337 338
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
339
	struct ulist_iterator uiter;
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
355 356
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
					     parents, extent_item_pos);
357 358
		if (err == -ENOMEM)
			goto out;
359
		if (err)
360 361 362
			continue;

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
363 364
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
365
		ref->parent = node ? node->val : 0;
366
		ref->inode_list = node ?
367
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
368 369

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
370
		while ((node = ulist_next(parents, &uiter))) {
371 372 373
			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
			if (!new_ref) {
				ret = -ENOMEM;
374
				goto out;
375 376 377
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
378 379
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
380 381 382 383
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
384
out:
385 386 387 388
	ulist_free(parents);
	return ret;
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
				     fs_info->tree_root->leafsize, 0);
428 429 430 431
		if (!eb || !extent_buffer_uptodate(eb)) {
			free_extent_buffer(eb);
			return -EIO;
		}
432 433 434 435 436 437 438 439 440 441 442
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

443 444 445 446
/*
 * merge two lists of backrefs and adjust counts accordingly
 *
 * mode = 1: merge identical keys, if key is set
447 448 449 450
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
451 452
 * mode = 2: merge identical parents
 */
453
static void __merge_refs(struct list_head *head, int mode)
454 455 456 457 458 459 460 461 462 463 464 465 466
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
467
			struct __prelim_ref *xchg;
468
			struct extent_inode_elem *eie;
469 470 471 472

			ref2 = list_entry(pos2, struct __prelim_ref, list);

			if (mode == 1) {
473
				if (!ref_for_same_block(ref1, ref2))
474
					continue;
475 476 477 478 479
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
480 481 482 483
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
484 485 486 487 488 489 490 491 492 493

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
			list_del(&ref2->list);
			kfree(ref2);
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
			      struct list_head *prefs)
{
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
	struct rb_node *n = &head->node.rb_node;
510 511
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
512
	int sgn;
513
	int ret = 0;
514 515

	if (extent_op && extent_op->update_key)
516
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

	while ((n = rb_prev(n))) {
		struct btrfs_delayed_ref_node *node;
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				rb_node);
		if (node->bytenr != head->node.bytenr)
			break;
		WARN_ON(node->is_head);

		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
548
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
549 550 551 552 553 554 555 556
					       ref->level + 1, 0, node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
557
			ret = __add_prelim_ref(prefs, ref->root, NULL,
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
					       ref->level + 1, ref->parent,
					       node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
					       ref->parent, node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		default:
			WARN_ON(1);
		}
591 592
		if (ret)
			return ret;
593 594 595 596 597 598 599 600 601 602
	}

	return 0;
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
603
			     int *info_level, struct list_head *prefs)
604
{
605
	int ret = 0;
606 607 608
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
609
	struct btrfs_key found_key;
610 611 612 613 614 615 616 617 618 619
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
620
	slot = path->slots[0];
621 622 623 624 625 626

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
627
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
628 629 630 631

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

632 633
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
634 635 636 637 638 639
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
640 641
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
657
			ret = __add_prelim_ref(prefs, 0, NULL,
658 659 660 661 662 663 664 665 666 667 668 669 670 671
						*info_level + 1, offset,
						bytenr, 1);
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
					       bytenr, count);
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
672 673 674
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
					       bytenr, 1);
675 676 677 678 679 680 681 682 683 684 685 686 687
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
688 689
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
					       bytenr, count);
690 691 692 693 694
			break;
		}
		default:
			WARN_ON(1);
		}
695 696
		if (ret)
			return ret;
697 698 699 700 701 702 703 704 705 706 707
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
708
			    int info_level, struct list_head *prefs)
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
738
			ret = __add_prelim_ref(prefs, 0, NULL,
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
						info_level + 1, key.offset,
						bytenr, 1);
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
						bytenr, count);
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
754 755 756
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
					       bytenr, 1);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
772
					       bytenr, count);
773 774 775 776 777
			break;
		}
		default:
			WARN_ON(1);
		}
778 779 780
		if (ret)
			return ret;

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
796 797
			     u64 time_seq, struct ulist *refs,
			     struct ulist *roots, const u64 *extent_item_pos)
798 799 800 801
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
802
	struct btrfs_delayed_ref_head *head;
803 804 805 806 807 808 809 810 811 812 813
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
814 815 816 817
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
818 819 820 821

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
822 823
	if (!trans)
		path->search_commit_root = 1;
824 825 826 827 828 829 830

	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
831 832
	head = NULL;

833 834 835 836 837
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

838
	if (trans) {
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
862
			ret = __add_delayed_refs(head, time_seq,
863
						 &prefs_delayed);
864
			mutex_unlock(&head->mutex);
865 866 867 868
			if (ret) {
				spin_unlock(&delayed_refs->lock);
				goto out;
			}
869
		}
870
		spin_unlock(&delayed_refs->lock);
871 872 873 874 875 876
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

877
		path->slots[0]--;
878
		leaf = path->nodes[0];
879
		slot = path->slots[0];
880 881
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
882 883
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
884
			ret = __add_inline_refs(fs_info, path, bytenr,
885
						&info_level, &prefs);
886 887
			if (ret)
				goto out;
888
			ret = __add_keyed_refs(fs_info, path, bytenr,
889 890 891 892 893 894 895 896 897
					       info_level, &prefs);
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

898 899 900 901
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

902
	__merge_refs(&prefs, 1);
903

904 905
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
				      extent_item_pos);
906 907 908
	if (ret)
		goto out;

909
	__merge_refs(&prefs, 2);
910 911 912

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
913
		WARN_ON(ref->count < 0);
914 915 916
		if (ref->count && ref->root_id && ref->parent == 0) {
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
917 918
			if (ret < 0)
				goto out;
919 920
		}
		if (ref->count && ref->parent) {
921
			struct extent_inode_elem *eie = NULL;
922
			if (extent_item_pos && !ref->inode_list) {
923 924 925 926 927 928
				u32 bsz;
				struct extent_buffer *eb;
				bsz = btrfs_level_size(fs_info->extent_root,
							info_level);
				eb = read_tree_block(fs_info->extent_root,
							   ref->parent, bsz, 0);
929 930
				if (!eb || !extent_buffer_uptodate(eb)) {
					free_extent_buffer(eb);
931 932
					ret = -EIO;
					goto out;
933
				}
934 935 936
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
				free_extent_buffer(eb);
937 938 939
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
940
			}
941
			ret = ulist_add_merge(refs, ref->parent,
942
					      (uintptr_t)ref->inode_list,
943
					      (u64 *)&eie, GFP_NOFS);
944 945
			if (ret < 0)
				goto out;
946 947 948 949 950 951 952 953 954 955
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
956
		}
957
		list_del(&ref->list);
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
		kfree(ref);
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
		kfree(ref);
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
		kfree(ref);
	}

	return ret;
}

978 979 980 981 982 983 984 985 986 987 988
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct extent_inode_elem *eie_next;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
989
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
990 991 992 993 994 995 996 997 998 999
		for (; eie; eie = eie_next) {
			eie_next = eie->next;
			kfree(eie);
		}
		node->aux = 0;
	}

	ulist_free(blocks);
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1010
				u64 time_seq, struct ulist **leafs,
1011
				const u64 *extent_item_pos)
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
{
	struct ulist *tmp;
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*leafs = ulist_alloc(GFP_NOFS);
	if (!*leafs) {
		ulist_free(tmp);
		return -ENOMEM;
	}

1025
	ret = find_parent_nodes(trans, fs_info, bytenr,
1026
				time_seq, *leafs, tmp, extent_item_pos);
1027 1028 1029
	ulist_free(tmp);

	if (ret < 0 && ret != -ENOENT) {
1030
		free_leaf_list(*leafs);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1052
				u64 time_seq, struct ulist **roots)
1053 1054 1055
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1056
	struct ulist_iterator uiter;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1068
	ULIST_ITER_INIT(&uiter);
1069
	while (1) {
1070
		ret = find_parent_nodes(trans, fs_info, bytenr,
1071
					time_seq, tmp, *roots, NULL);
1072 1073 1074 1075 1076
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1077
		node = ulist_next(tmp, &uiter);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		if (!node)
			break;
		bytenr = node->val;
	}

	ulist_free(tmp);
	return 0;
}


1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
static int __inode_info(u64 inum, u64 ioff, u8 key_type,
			struct btrfs_root *fs_root, struct btrfs_path *path,
			struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;

	key.type = key_type;
	key.objectid = inum;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type || found_key->objectid != key.objectid)
		return 1;

	return 0;
}

/*
 * this makes the path point to (inum INODE_ITEM ioff)
 */
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
			struct btrfs_path *path)
{
	struct btrfs_key key;
	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
				&key);
}

static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				struct btrfs_key *found_key)
{
	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
				found_key);
}

M
Mark Fasheh 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1220 1221 1222 1223
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1224 1225 1226 1227
{
	int slot;
	u64 next_inum;
	int ret;
1228
	s64 bytes_left = ((s64)size) - 1;
1229 1230
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1231
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1232
	struct btrfs_inode_ref *iref;
1233 1234 1235 1236

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1237
	path->leave_spinning = 1;
1238
	while (1) {
M
Mark Fasheh 已提交
1239
		bytes_left -= name_len;
1240 1241
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1242
					   name_off, name_len);
1243 1244
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1245
			free_extent_buffer(eb);
1246
		}
1247
		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1248 1249
		if (ret > 0)
			ret = -ENOENT;
1250 1251
		if (ret)
			break;
M
Mark Fasheh 已提交
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1262
		if (eb != eb_in) {
1263
			atomic_inc(&eb->refs);
1264 1265 1266
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1267 1268
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1269 1270 1271 1272

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1273 1274 1275 1276 1277 1278 1279
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1280
	path->leave_spinning = leave_spinning;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1294 1295
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1296 1297 1298
{
	int ret;
	u64 flags;
1299
	u64 size = 0;
1300 1301 1302 1303 1304
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1305 1306 1307 1308
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	ret = btrfs_previous_item(fs_info->extent_root, path,
					0, BTRFS_EXTENT_ITEM_KEY);
	if (ret < 0)
		return ret;

	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1321 1322 1323 1324 1325 1326 1327
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
		size = fs_info->extent_root->leafsize;
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

	if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
	     found_key->type != BTRFS_METADATA_ITEM_KEY) ||
1328
	    found_key->objectid > logical ||
1329
	    found_key->objectid + size <= logical) {
1330
		pr_debug("logical %llu is not within any extent\n", logical);
1331
		return -ENOENT;
J
Jan Schmidt 已提交
1332
	}
1333 1334 1335 1336 1337 1338 1339 1340

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1341 1342
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1343 1344
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				struct btrfs_extent_inline_ref **out_eiref,
				int *out_type)
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			info = (struct btrfs_tree_block_info *)(ei + 1);
			*out_eiref =
				(struct btrfs_extent_inline_ref *)(info + 1);
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
		if ((void *)*ptr >= (void *)ei + item_size)
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				u64 *out_root, u8 *out_level)
{
	int ret;
	int type;
	struct btrfs_tree_block_info *info;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
						&eiref, &type);
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	info = (struct btrfs_tree_block_info *)(ei + 1);
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
	*out_level = btrfs_tree_block_level(eb, info);

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1448 1449
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1450
				iterate_extent_inodes_t *iterate, void *ctx)
1451
{
1452
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1453 1454
	int ret = 0;

1455
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1456
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1457 1458 1459
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1460
		if (ret) {
1461 1462
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1463 1464
			break;
		}
1465 1466 1467 1468 1469 1470 1471
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1472
 * the given parameters.
1473 1474 1475
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1476
				u64 extent_item_objectid, u64 extent_item_pos,
1477
				int search_commit_root,
1478 1479 1480
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1481
	struct btrfs_trans_handle *trans = NULL;
1482 1483
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1484 1485
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1486
	struct seq_list tree_mod_seq_elem = {};
J
Jan Schmidt 已提交
1487 1488
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1489

J
Jan Schmidt 已提交
1490 1491
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1492

1493
	if (!search_commit_root) {
1494 1495 1496
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1497
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1498
	}
1499

J
Jan Schmidt 已提交
1500
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1501
				   tree_mod_seq_elem.seq, &refs,
1502
				   &extent_item_pos);
J
Jan Schmidt 已提交
1503 1504
	if (ret)
		goto out;
1505

J
Jan Schmidt 已提交
1506 1507
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1508
		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1509
					   tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1510 1511
		if (ret)
			break;
J
Jan Schmidt 已提交
1512 1513
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1514
			pr_debug("root %llu references leaf %llu, data list "
1515
				 "%#llx\n", root_node->val, ref_node->val,
1516
				 ref_node->aux);
1517 1518 1519 1520 1521
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1522
		}
1523
		ulist_free(roots);
1524 1525
	}

1526
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1527
out:
1528
	if (!search_commit_root) {
1529
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1530 1531 1532
		btrfs_end_transaction(trans, fs_info->extent_root);
	}

1533 1534 1535 1536 1537 1538 1539 1540
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1541
	u64 extent_item_pos;
1542
	u64 flags = 0;
1543
	struct btrfs_key found_key;
1544
	int search_commit_root = path->search_commit_root;
1545

1546
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1547
	btrfs_release_path(path);
1548 1549
	if (ret < 0)
		return ret;
1550
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1551
		return -EINVAL;
1552

J
Jan Schmidt 已提交
1553
	extent_item_pos = logical - found_key.objectid;
1554 1555 1556
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1557 1558 1559 1560

	return ret;
}

M
Mark Fasheh 已提交
1561 1562 1563 1564 1565 1566
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1567
{
1568
	int ret = 0;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1580
	while (!ret) {
1581
		path->leave_spinning = 1;
1582
		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
M
Mark Fasheh 已提交
1583
				     &found_key);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
		atomic_inc(&eb->refs);
1597 1598
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1599 1600 1601 1602 1603 1604 1605 1606
		btrfs_release_path(path);

		item = btrfs_item_nr(eb, slot);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1607
			pr_debug("following ref at offset %u for inode %llu in "
1608 1609
				 "tree %llu\n", cur, found_key.objectid,
				 fs_root->objectid);
M
Mark Fasheh 已提交
1610 1611
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1612
			if (ret)
1613 1614 1615 1616
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1617
		btrfs_tree_read_unlock_blocking(eb);
1618 1619 1620 1621 1622 1623 1624 1625
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
		atomic_inc(&eb->refs);

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

		leaf = path->nodes[0];
		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1712 1713 1714 1715
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1716 1717
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1729
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1730 1731
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1732 1733 1734 1735
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1736
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1751
 * from ipath->fspath->val[i].
1752
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1753
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1754 1755 1756 1757 1758 1759 1760
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1761
			     inode_to_path, ipath);
1762 1763 1764 1765 1766 1767 1768 1769
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1770
	data = vmalloc(alloc_bytes);
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
1819 1820
	if (!ipath)
		return;
1821
	vfree(ipath->fspath);
1822 1823
	kfree(ipath);
}