intel_ringbuffer.c 58.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
static int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52
	ring->space = __intel_ring_space(ring->head, ring->tail, ring->size);
53 54
}

55
static int
56
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
57
{
58
	u32 cmd, *cs;
59 60 61

	cmd = MI_FLUSH;

62
	if (mode & EMIT_INVALIDATE)
63 64
		cmd |= MI_READ_FLUSH;

65 66 67
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
68

69 70 71
	*cs++ = cmd;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
72 73 74 75 76

	return 0;
}

static int
77
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
78
{
79
	u32 cmd, *cs;
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

109
	cmd = MI_FLUSH;
110
	if (mode & EMIT_INVALIDATE) {
111
		cmd |= MI_EXE_FLUSH;
112 113 114
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
115

116 117 118
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
119

120 121 122
	*cs++ = cmd;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
123 124

	return 0;
125 126
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
165
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
166
{
167
	u32 scratch_addr =
168
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	u32 *cs;

	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0; /* low dword */
	*cs++ = 0; /* high dword */
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);

	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
194 195 196 197 198

	return 0;
}

static int
199
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
200
{
201
	u32 scratch_addr =
202
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
203
	u32 *cs, flags = 0;
204 205
	int ret;

206
	/* Force SNB workarounds for PIPE_CONTROL flushes */
207
	ret = intel_emit_post_sync_nonzero_flush(req);
208 209 210
	if (ret)
		return ret;

211 212 213 214
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
215
	if (mode & EMIT_FLUSH) {
216 217 218 219 220 221
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
222
		flags |= PIPE_CONTROL_CS_STALL;
223
	}
224
	if (mode & EMIT_INVALIDATE) {
225 226 227 228 229 230 231 232 233
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
234
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
235
	}
236

237 238 239
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
240

241 242 243 244 245
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	intel_ring_advance(req, cs);
246 247 248 249

	return 0;
}

250
static int
251
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
252
{
253
	u32 *cs;
254

255 256 257
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
258

259 260 261 262 263
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;
	intel_ring_advance(req, cs);
264 265 266 267

	return 0;
}

268
static int
269
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
270
{
271
	u32 scratch_addr =
272
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
273
	u32 *cs, flags = 0;
274

275 276 277 278 279 280 281 282 283 284
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

285 286 287 288
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
289
	if (mode & EMIT_FLUSH) {
290 291
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
292
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
293
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
294
	}
295
	if (mode & EMIT_INVALIDATE) {
296 297 298 299 300 301
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
302
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
303 304 305 306
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
307
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
308

309 310
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

311 312 313
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
314
		gen7_render_ring_cs_stall_wa(req);
315 316
	}

317 318 319
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
320

321 322 323 324 325
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
	intel_ring_advance(req, cs);
326 327 328 329

	return 0;
}

330
static int
331
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
332
{
333
	u32 flags;
334
	u32 *cs;
335

336
	cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
337 338
	if (IS_ERR(cs))
		return PTR_ERR(cs);
339

340
	flags = PIPE_CONTROL_CS_STALL;
B
Ben Widawsky 已提交
341

342
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
343 344
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
346
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
347
	}
348
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
349 350 351 352 353 354 355 356
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
357 358

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
359 360 361 362
		cs = gen8_emit_pipe_control(cs,
					    PIPE_CONTROL_CS_STALL |
					    PIPE_CONTROL_STALL_AT_SCOREBOARD,
					    0);
B
Ben Widawsky 已提交
363 364
	}

365 366 367 368 369 370 371
	cs = gen8_emit_pipe_control(cs, flags,
				    i915_ggtt_offset(req->engine->scratch) +
				    2 * CACHELINE_BYTES);

	intel_ring_advance(req, cs);

	return 0;
B
Ben Widawsky 已提交
372 373
}

374
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
375
{
376
	struct drm_i915_private *dev_priv = engine->i915;
377 378 379
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
380
	if (INTEL_GEN(dev_priv) >= 4)
381 382 383 384
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

385
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
386
{
387
	struct drm_i915_private *dev_priv = engine->i915;
388
	i915_reg_t mmio;
389 390 391 392

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
393
	if (IS_GEN7(dev_priv)) {
394
		switch (engine->id) {
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
413
	} else if (IS_GEN6(dev_priv)) {
414
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
415 416
	} else {
		/* XXX: gen8 returns to sanity */
417
		mmio = RING_HWS_PGA(engine->mmio_base);
418 419
	}

420
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
421 422 423 424 425 426 427 428 429
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
430
	if (IS_GEN(dev_priv, 6, 7)) {
431
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
432 433

		/* ring should be idle before issuing a sync flush*/
434
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
435 436 437 438

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
439 440 441
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
442
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
443
				  engine->name);
444 445 446
	}
}

447
static bool stop_ring(struct intel_engine_cs *engine)
448
{
449
	struct drm_i915_private *dev_priv = engine->i915;
450

451
	if (INTEL_GEN(dev_priv) > 2) {
452
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
453 454 455 456 457
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
458 459
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
460 461 462 463
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
464
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
465
				return false;
466 467
		}
	}
468

469 470
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
471
	I915_WRITE_TAIL(engine, 0);
472

473
	if (INTEL_GEN(dev_priv) > 2) {
474 475
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
476
	}
477

478
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
479
}
480

481
static int init_ring_common(struct intel_engine_cs *engine)
482
{
483
	struct drm_i915_private *dev_priv = engine->i915;
484
	struct intel_ring *ring = engine->buffer;
485 486
	int ret = 0;

487
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
488

489
	if (!stop_ring(engine)) {
490
		/* G45 ring initialization often fails to reset head to zero */
491 492
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
493 494 495 496 497
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
498

499
		if (!stop_ring(engine)) {
500 501
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
502 503 504 505 506
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
507 508
			ret = -EIO;
			goto out;
509
		}
510 511
	}

512
	if (HWS_NEEDS_PHYSICAL(dev_priv))
513
		ring_setup_phys_status_page(engine);
514 515
	else
		intel_ring_setup_status_page(engine);
516

517
	intel_engine_reset_breadcrumbs(engine);
518

519
	/* Enforce ordering by reading HEAD register back */
520
	I915_READ_HEAD(engine);
521

522 523 524 525
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
526
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
527 528

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
529
	if (I915_READ_HEAD(engine))
530
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
531
			  engine->name, I915_READ_HEAD(engine));
532 533 534 535 536

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
537

538
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
539 540

	/* If the head is still not zero, the ring is dead */
541 542 543
	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
				       RING_VALID, RING_VALID,
				       50)) {
544
		DRM_ERROR("%s initialization failed "
545
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
546 547 548
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
549 550
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
551
			  I915_READ_START(engine),
552
			  i915_ggtt_offset(ring->vma));
553 554
		ret = -EIO;
		goto out;
555 556
	}

557
	intel_engine_init_hangcheck(engine);
558

559
out:
560
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
561 562

	return ret;
563 564
}

565 566 567
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	/* Try to restore the logical GPU state to match the continuation
	 * of the request queue. If we skip the context/PD restore, then
	 * the next request may try to execute assuming that its context
	 * is valid and loaded on the GPU and so may try to access invalid
	 * memory, prompting repeated GPU hangs.
	 *
	 * If the request was guilty, we still restore the logical state
	 * in case the next request requires it (e.g. the aliasing ppgtt),
	 * but skip over the hung batch.
	 *
	 * If the request was innocent, we try to replay the request with
	 * the restored context.
	 */
	if (request) {
		struct drm_i915_private *dev_priv = request->i915;
		struct intel_context *ce = &request->ctx->engine[engine->id];
		struct i915_hw_ppgtt *ppgtt;

		/* FIXME consider gen8 reset */

		if (ce->state) {
			I915_WRITE(CCID,
				   i915_ggtt_offset(ce->state) |
				   BIT(8) /* must be set! */ |
				   CCID_EXTENDED_STATE_SAVE |
				   CCID_EXTENDED_STATE_RESTORE |
				   CCID_EN);
		}

		ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
		if (ppgtt) {
			u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;

			I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
			I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);

			/* Wait for the PD reload to complete */
			if (intel_wait_for_register(dev_priv,
						    RING_PP_DIR_BASE(engine),
						    BIT(0), 0,
						    10))
				DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
610

611 612 613 614
			ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
		}

		/* If the rq hung, jump to its breadcrumb and skip the batch */
615 616
		if (request->fence.error == -EIO)
			request->ring->head = request->postfix;
617 618 619
	} else {
		engine->legacy_active_context = NULL;
	}
620 621
}

622
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
623 624 625
{
	int ret;

626
	ret = intel_ring_workarounds_emit(req);
627 628 629
	if (ret != 0)
		return ret;

630
	ret = i915_gem_render_state_emit(req);
631
	if (ret)
632
		return ret;
633

634
	return 0;
635 636
}

637
static int init_render_ring(struct intel_engine_cs *engine)
638
{
639
	struct drm_i915_private *dev_priv = engine->i915;
640
	int ret = init_ring_common(engine);
641 642
	if (ret)
		return ret;
643

644
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
645
	if (IS_GEN(dev_priv, 4, 6))
646
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
647 648 649 650

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
651
	 *
652
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
653
	 */
654
	if (IS_GEN(dev_priv, 6, 7))
655 656
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

657
	/* Required for the hardware to program scanline values for waiting */
658
	/* WaEnableFlushTlbInvalidationMode:snb */
659
	if (IS_GEN6(dev_priv))
660
		I915_WRITE(GFX_MODE,
661
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
662

663
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
664
	if (IS_GEN7(dev_priv))
665
		I915_WRITE(GFX_MODE_GEN7,
666
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
667
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
668

669
	if (IS_GEN6(dev_priv)) {
670 671 672 673 674 675
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
676
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
677 678
	}

679
	if (IS_GEN(dev_priv, 6, 7))
680
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
681

682 683
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
684

685
	return init_workarounds_ring(engine);
686 687
}

688
static void render_ring_cleanup(struct intel_engine_cs *engine)
689
{
690
	struct drm_i915_private *dev_priv = engine->i915;
691

692
	i915_vma_unpin_and_release(&dev_priv->semaphore);
693 694
}

695
static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
696
{
697
	struct drm_i915_private *dev_priv = req->i915;
698
	struct intel_engine_cs *waiter;
699
	enum intel_engine_id id;
700

701
	for_each_engine(waiter, dev_priv, id) {
702
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
703 704 705
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

706 707 708 709 710 711 712 713 714 715
		*cs++ = GFX_OP_PIPE_CONTROL(6);
		*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
			PIPE_CONTROL_CS_STALL;
		*cs++ = lower_32_bits(gtt_offset);
		*cs++ = upper_32_bits(gtt_offset);
		*cs++ = req->global_seqno;
		*cs++ = 0;
		*cs++ = MI_SEMAPHORE_SIGNAL |
			MI_SEMAPHORE_TARGET(waiter->hw_id);
		*cs++ = 0;
716 717
	}

718
	return cs;
719 720
}

721
static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
722
{
723
	struct drm_i915_private *dev_priv = req->i915;
724
	struct intel_engine_cs *waiter;
725
	enum intel_engine_id id;
726

727
	for_each_engine(waiter, dev_priv, id) {
728
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
729 730 731
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

732 733 734 735 736 737 738
		*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
		*cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
		*cs++ = upper_32_bits(gtt_offset);
		*cs++ = req->global_seqno;
		*cs++ = MI_SEMAPHORE_SIGNAL |
			MI_SEMAPHORE_TARGET(waiter->hw_id);
		*cs++ = 0;
739 740
	}

741
	return cs;
742 743
}

744
static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
745
{
746
	struct drm_i915_private *dev_priv = req->i915;
747
	struct intel_engine_cs *engine;
748
	enum intel_engine_id id;
C
Chris Wilson 已提交
749
	int num_rings = 0;
750

751
	for_each_engine(engine, dev_priv, id) {
752 753 754 755
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
756

757
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
758
		if (i915_mmio_reg_valid(mbox_reg)) {
759 760 761
			*cs++ = MI_LOAD_REGISTER_IMM(1);
			*cs++ = i915_mmio_reg_offset(mbox_reg);
			*cs++ = req->global_seqno;
C
Chris Wilson 已提交
762
			num_rings++;
763 764
		}
	}
C
Chris Wilson 已提交
765
	if (num_rings & 1)
766
		*cs++ = MI_NOOP;
767

768
	return cs;
769 770
}

771 772 773 774
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

775 776
	i915_gem_request_submit(request);

777
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
778
	GEM_BUG_ON(request->tail >= request->ring->size);
C
Chris Wilson 已提交
779
	I915_WRITE_TAIL(request->engine, request->tail);
780 781
}

782
static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
783
{
784 785 786 787
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
	*cs++ = req->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
788

789
	req->tail = intel_ring_offset(req, cs);
790
	GEM_BUG_ON(!IS_ALIGNED(req->tail, 8));
791
	GEM_BUG_ON(req->tail >= req->ring->size);
792 793
}

794 795
static const int i9xx_emit_breadcrumb_sz = 4;

796
/**
797
 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
798 799 800 801 802 803
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
804
static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
805
{
C
Chris Wilson 已提交
806
	return i9xx_emit_breadcrumb(req,
807
				    req->engine->semaphore.signal(req, cs));
808 809
}

C
Chris Wilson 已提交
810
static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
811
					u32 *cs)
812 813
{
	struct intel_engine_cs *engine = req->engine;
814

C
Chris Wilson 已提交
815
	if (engine->semaphore.signal)
816 817 818 819 820 821 822 823
		cs = engine->semaphore.signal(req, cs);

	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(engine);
	*cs++ = 0;
	*cs++ = req->global_seqno;
824
	/* We're thrashing one dword of HWS. */
825 826 827
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
828

829
	req->tail = intel_ring_offset(req, cs);
830
	GEM_BUG_ON(!IS_ALIGNED(req->tail, 8));
831
	GEM_BUG_ON(req->tail >= req->ring->size);
832 833
}

834 835
static const int gen8_render_emit_breadcrumb_sz = 8;

836 837 838 839 840 841 842
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
843 844

static int
845 846
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
847
{
848 849
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
850
	struct i915_hw_ppgtt *ppgtt;
851
	u32 *cs;
852

853 854 855
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
856

857 858 859 860 861 862
	*cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_SAD_GTE_SDD;
	*cs++ = signal->global_seqno;
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
863 864 865 866 867 868

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
869 870 871
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
872 873 874
	return 0;
}

875
static int
876 877
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
878
{
879 880 881
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
882
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
883
	u32 *cs;
884

885
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
886

887 888 889
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
890

891
	*cs++ = dw1 | wait_mbox;
892 893 894 895
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
896 897 898 899
	*cs++ = signal->global_seqno - 1;
	*cs++ = 0;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
900 901 902 903

	return 0;
}

904
static void
905
gen5_seqno_barrier(struct intel_engine_cs *engine)
906
{
907 908 909
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
910
	 *
911 912 913 914 915 916 917
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
918
	 */
919
	usleep_range(125, 250);
920 921
}

922 923
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
924
{
925
	struct drm_i915_private *dev_priv = engine->i915;
926

927 928
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
929 930 931 932 933 934 935 936 937
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
938 939 940
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
941
	 */
942
	spin_lock_irq(&dev_priv->uncore.lock);
943
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
944
	spin_unlock_irq(&dev_priv->uncore.lock);
945 946
}

947 948
static void
gen5_irq_enable(struct intel_engine_cs *engine)
949
{
950
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
951 952 953
}

static void
954
gen5_irq_disable(struct intel_engine_cs *engine)
955
{
956
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
957 958
}

959 960
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
961
{
962
	struct drm_i915_private *dev_priv = engine->i915;
963

964 965 966
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
967 968
}

969
static void
970
i9xx_irq_disable(struct intel_engine_cs *engine)
971
{
972
	struct drm_i915_private *dev_priv = engine->i915;
973

974 975
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
976 977
}

978 979
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
980
{
981
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
982

983 984 985
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
986 987 988
}

static void
989
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
990
{
991
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
992

993 994
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
995 996
}

997
static int
998
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
999
{
1000
	u32 *cs;
1001

1002 1003 1004
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1005

1006 1007 1008
	*cs++ = MI_FLUSH;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1009
	return 0;
1010 1011
}

1012 1013
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1014
{
1015
	struct drm_i915_private *dev_priv = engine->i915;
1016

1017 1018 1019
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1020
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1021 1022 1023
}

static void
1024
gen6_irq_disable(struct intel_engine_cs *engine)
1025
{
1026
	struct drm_i915_private *dev_priv = engine->i915;
1027

1028
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1029
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1030 1031
}

1032 1033
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1034
{
1035
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1036

1037
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1038
	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1039 1040 1041
}

static void
1042
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1043
{
1044
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1045

1046
	I915_WRITE_IMR(engine, ~0);
1047
	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1048 1049
}

1050 1051
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1052
{
1053
	struct drm_i915_private *dev_priv = engine->i915;
1054

1055 1056 1057
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1058
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1059 1060 1061
}

static void
1062
gen8_irq_disable(struct intel_engine_cs *engine)
1063
{
1064
	struct drm_i915_private *dev_priv = engine->i915;
1065

1066
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1067 1068
}

1069
static int
1070 1071 1072
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1073
{
1074
	u32 *cs;
1075

1076 1077 1078
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1079

1080 1081 1082 1083
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
	*cs++ = offset;
	intel_ring_advance(req, cs);
1084

1085 1086 1087
	return 0;
}

1088 1089
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1090 1091
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1092
static int
1093 1094 1095
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1096
{
1097
	u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1098

1099 1100 1101
	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1102

1103
	/* Evict the invalid PTE TLBs */
1104 1105 1106 1107 1108 1109 1110
	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
	*cs++ = cs_offset;
	*cs++ = 0xdeadbeef;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1111

1112
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1113 1114 1115
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1116 1117 1118
		cs = intel_ring_begin(req, 6 + 2);
		if (IS_ERR(cs))
			return PTR_ERR(cs);
1119 1120 1121 1122 1123

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
		*cs++ = cs_offset;
		*cs++ = 4096;
		*cs++ = offset;

		*cs++ = MI_FLUSH;
		*cs++ = MI_NOOP;
		intel_ring_advance(req, cs);
1134 1135

		/* ... and execute it. */
1136
		offset = cs_offset;
1137
	}
1138

1139 1140 1141
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1142

1143 1144 1145 1146
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
	intel_ring_advance(req, cs);
1147

1148 1149 1150 1151
	return 0;
}

static int
1152 1153 1154
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1155
{
1156
	u32 *cs;
1157

1158 1159 1160
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1161

1162 1163 1164 1165
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
	intel_ring_advance(req, cs);
1166 1167 1168 1169

	return 0;
}

1170
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1171
{
1172
	struct drm_i915_private *dev_priv = engine->i915;
1173 1174 1175 1176

	if (!dev_priv->status_page_dmah)
		return;

1177
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1178
	engine->status_page.page_addr = NULL;
1179 1180
}

1181
static void cleanup_status_page(struct intel_engine_cs *engine)
1182
{
1183
	struct i915_vma *vma;
1184
	struct drm_i915_gem_object *obj;
1185

1186 1187
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1188 1189
		return;

1190 1191
	obj = vma->obj;

1192
	i915_vma_unpin(vma);
1193 1194 1195 1196
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
1197 1198
}

1199
static int init_status_page(struct intel_engine_cs *engine)
1200
{
1201 1202 1203
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
1204
	void *vaddr;
1205
	int ret;
1206

1207
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1208 1209 1210 1211
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1212

1213 1214 1215
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1216

1217
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1218 1219 1220
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1221
	}
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1239

1240 1241 1242 1243 1244 1245
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

1246
	engine->status_page.vma = vma;
1247
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1248
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1249

1250 1251
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1252
	return 0;
1253

1254 1255
err_unpin:
	i915_vma_unpin(vma);
1256 1257 1258
err:
	i915_gem_object_put(obj);
	return ret;
1259 1260
}

1261
static int init_phys_status_page(struct intel_engine_cs *engine)
1262
{
1263
	struct drm_i915_private *dev_priv = engine->i915;
1264

1265 1266 1267 1268
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1269

1270 1271
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1272 1273 1274 1275

	return 0;
}

1276
int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias)
1277
{
1278
	unsigned int flags;
1279
	enum i915_map_type map;
1280
	struct i915_vma *vma = ring->vma;
1281
	void *addr;
1282 1283
	int ret;

1284
	GEM_BUG_ON(ring->vaddr);
1285

1286 1287
	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;

1288 1289 1290
	flags = PIN_GLOBAL;
	if (offset_bias)
		flags |= PIN_OFFSET_BIAS | offset_bias;
1291
	if (vma->obj->stolen)
1292
		flags |= PIN_MAPPABLE;
1293

1294
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1295
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1296 1297 1298 1299
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1300
			return ret;
1301
	}
1302

1303 1304 1305
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1306

1307
	if (i915_vma_is_map_and_fenceable(vma))
1308 1309
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1310
		addr = i915_gem_object_pin_map(vma->obj, map);
1311 1312
	if (IS_ERR(addr))
		goto err;
1313

1314
	ring->vaddr = addr;
1315
	return 0;
1316

1317 1318 1319
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1320 1321
}

1322 1323 1324 1325 1326
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1327
	if (i915_vma_is_map_and_fenceable(ring->vma))
1328
		i915_vma_unpin_iomap(ring->vma);
1329 1330
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1331 1332
	ring->vaddr = NULL;

1333
	i915_vma_unpin(ring->vma);
1334 1335
}

1336 1337
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1338
{
1339
	struct drm_i915_gem_object *obj;
1340
	struct i915_vma *vma;
1341

1342
	obj = i915_gem_object_create_stolen(dev_priv, size);
1343
	if (!obj)
1344
		obj = i915_gem_object_create(dev_priv, size);
1345 1346
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1347

1348 1349 1350
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1351
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1352 1353 1354 1355
	if (IS_ERR(vma))
		goto err;

	return vma;
1356

1357 1358 1359
err:
	i915_gem_object_put(obj);
	return vma;
1360 1361
}

1362 1363
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1364
{
1365
	struct intel_ring *ring;
1366
	struct i915_vma *vma;
1367

1368
	GEM_BUG_ON(!is_power_of_2(size));
1369
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1370

1371
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1372
	if (!ring)
1373 1374
		return ERR_PTR(-ENOMEM);

1375
	ring->engine = engine;
1376

1377 1378
	INIT_LIST_HEAD(&ring->request_list);

1379 1380 1381 1382 1383 1384
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1385
	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1386 1387 1388 1389
		ring->effective_size -= 2 * CACHELINE_BYTES;

	intel_ring_update_space(ring);

1390 1391
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1392
		kfree(ring);
1393
		return ERR_CAST(vma);
1394
	}
1395
	ring->vma = vma;
1396 1397 1398 1399 1400

	return ring;
}

void
1401
intel_ring_free(struct intel_ring *ring)
1402
{
1403 1404 1405 1406 1407
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1408 1409 1410
	kfree(ring);
}

1411
static int context_pin(struct i915_gem_context *ctx)
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
{
	struct i915_vma *vma = ctx->engine[RCS].state;
	int ret;

	/* Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
		if (ret)
			return ret;
	}

1426 1427
	return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
			    PIN_GLOBAL | PIN_HIGH);
1428 1429 1430 1431
}

static int intel_ring_context_pin(struct intel_engine_cs *engine,
				  struct i915_gem_context *ctx)
1432 1433 1434 1435
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

1436
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1437 1438 1439

	if (ce->pin_count++)
		return 0;
1440
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1441 1442

	if (ce->state) {
1443
		ret = context_pin(ctx);
1444
		if (ret)
1445
			goto error;
1446 1447

		ce->state->obj->mm.dirty = true;
1448 1449
	}

1450 1451 1452 1453 1454 1455 1456
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
1457
	if (i915_gem_context_is_kernel(ctx))
1458 1459
		ce->initialised = true;

1460
	i915_gem_context_get(ctx);
1461 1462 1463 1464 1465 1466 1467
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

1468 1469
static void intel_ring_context_unpin(struct intel_engine_cs *engine,
				     struct i915_gem_context *ctx)
1470 1471 1472
{
	struct intel_context *ce = &ctx->engine[engine->id];

1473
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1474
	GEM_BUG_ON(ce->pin_count == 0);
1475 1476 1477 1478 1479

	if (--ce->pin_count)
		return;

	if (ce->state)
1480
		i915_vma_unpin(ce->state);
1481

1482
	i915_gem_context_put(ctx);
1483 1484
}

1485
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1486
{
1487
	struct drm_i915_private *dev_priv = engine->i915;
1488
	struct intel_ring *ring;
1489 1490
	int ret;

1491
	WARN_ON(engine->buffer);
1492

1493 1494 1495
	intel_engine_setup_common(engine);

	ret = intel_engine_init_common(engine);
1496 1497
	if (ret)
		goto error;
1498

1499 1500 1501
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
1502 1503
		goto error;
	}
1504

1505 1506 1507
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
1508
		if (ret)
1509
			goto error;
1510
	} else {
1511
		ret = init_status_page(engine);
1512
		if (ret)
1513
			goto error;
1514 1515
	}

1516
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1517
	ret = intel_ring_pin(ring, I915_GTT_PAGE_SIZE);
1518
	if (ret) {
1519
		intel_ring_free(ring);
1520
		goto error;
1521
	}
1522
	engine->buffer = ring;
1523

1524
	return 0;
1525

1526
error:
1527
	intel_engine_cleanup(engine);
1528
	return ret;
1529 1530
}

1531
void intel_engine_cleanup(struct intel_engine_cs *engine)
1532
{
1533
	struct drm_i915_private *dev_priv;
1534

1535
	dev_priv = engine->i915;
1536

1537
	if (engine->buffer) {
1538 1539
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
1540

1541
		intel_ring_unpin(engine->buffer);
1542
		intel_ring_free(engine->buffer);
1543
		engine->buffer = NULL;
1544
	}
1545

1546 1547
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
1548

1549
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
1550 1551
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
1552 1553
	} else {
		cleanup_status_page(engine);
1554
	}
1555

1556
	intel_engine_cleanup_common(engine);
1557

1558
	engine->i915 = NULL;
1559 1560
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1561 1562
}

1563 1564 1565
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1566
	enum intel_engine_id id;
1567

1568
	for_each_engine(engine, dev_priv, id)
1569 1570 1571
		engine->buffer->head = engine->buffer->tail;
}

1572
static int ring_request_alloc(struct drm_i915_gem_request *request)
1573
{
1574
	u32 *cs;
1575

1576 1577
	GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);

1578 1579 1580 1581
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1582
	request->reserved_space += LEGACY_REQUEST_SIZE;
1583

1584
	GEM_BUG_ON(!request->engine->buffer);
1585
	request->ring = request->engine->buffer;
1586

1587 1588 1589
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1590

1591
	request->reserved_space -= LEGACY_REQUEST_SIZE;
1592
	return 0;
1593 1594
}

1595 1596
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
1597
	struct intel_ring *ring = req->ring;
1598
	struct drm_i915_gem_request *target;
1599 1600 1601
	long timeout;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
1602

1603 1604
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
1616
	GEM_BUG_ON(!req->reserved_space);
1617

1618
	list_for_each_entry(target, &ring->request_list, ring_link) {
1619 1620 1621
		unsigned space;

		/* Would completion of this request free enough space? */
1622 1623
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
1624 1625
		if (space >= bytes)
			break;
1626
	}
1627

1628
	if (WARN_ON(&target->ring_link == &ring->request_list))
1629 1630
		return -ENOSPC;

1631 1632 1633 1634 1635
	timeout = i915_wait_request(target,
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
1636 1637 1638 1639 1640 1641

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
1642 1643
}

1644
u32 *intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
1645
{
1646
	struct intel_ring *ring = req->ring;
1647 1648
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
1649 1650
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
1651
	bool need_wrap = false;
1652
	u32 *cs;
1653

1654
	total_bytes = bytes + req->reserved_space;
1655

1656 1657 1658 1659 1660 1661 1662
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
1663 1664 1665 1666 1667 1668 1669
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
1670
		wait_bytes = remain_actual + req->reserved_space;
1671
	} else {
1672 1673
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
1674 1675
	}

1676
	if (wait_bytes > ring->space) {
1677
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
1678
		if (unlikely(ret))
1679
			return ERR_PTR(ret);
M
Mika Kuoppala 已提交
1680 1681
	}

1682
	if (unlikely(need_wrap)) {
1683 1684
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
1685

1686
		/* Fill the tail with MI_NOOP */
1687 1688 1689
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
1690
	}
1691

1692 1693 1694
	GEM_BUG_ON(ring->tail > ring->size - bytes);
	cs = ring->vaddr + ring->tail;
	ring->tail += bytes;
1695 1696
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
1697 1698

	return cs;
1699
}
1700

1701
/* Align the ring tail to a cacheline boundary */
1702
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1703
{
1704
	int num_dwords =
1705 1706
		(req->ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
	u32 *cs;
1707 1708 1709 1710

	if (num_dwords == 0)
		return 0;

1711
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1712 1713 1714
	cs = intel_ring_begin(req, num_dwords);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1715 1716

	while (num_dwords--)
1717
		*cs++ = MI_NOOP;
1718

1719
	intel_ring_advance(req, cs);
1720 1721 1722 1723

	return 0;
}

1724
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1725
{
1726
	struct drm_i915_private *dev_priv = request->i915;
1727

1728 1729
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

1730
       /* Every tail move must follow the sequence below */
1731 1732 1733 1734

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
1735 1736
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1737 1738

	/* Clear the context id. Here be magic! */
1739
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1740

1741
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1742 1743 1744 1745 1746
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
1747
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1748

1749
	/* Now that the ring is fully powered up, update the tail */
1750
	i9xx_submit_request(request);
1751 1752 1753 1754

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
1755 1756 1757 1758
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1759 1760
}

1761
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1762
{
1763
	u32 cmd, *cs;
1764

1765 1766 1767
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1768

1769
	cmd = MI_FLUSH_DW;
1770
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
1771
		cmd += 1;
1772 1773 1774 1775 1776 1777 1778 1779

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1780 1781 1782 1783 1784 1785
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1786
	if (mode & EMIT_INVALIDATE)
1787 1788
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

1789 1790
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1791
	if (INTEL_GEN(req->i915) >= 8) {
1792 1793
		*cs++ = 0; /* upper addr */
		*cs++ = 0; /* value */
B
Ben Widawsky 已提交
1794
	} else  {
1795 1796
		*cs++ = 0;
		*cs++ = MI_NOOP;
B
Ben Widawsky 已提交
1797
	}
1798
	intel_ring_advance(req, cs);
1799
	return 0;
1800 1801
}

1802
static int
1803 1804 1805
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1806
{
1807
	bool ppgtt = USES_PPGTT(req->i915) &&
1808
			!(dispatch_flags & I915_DISPATCH_SECURE);
1809
	u32 *cs;
1810

1811 1812 1813
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1814 1815

	/* FIXME(BDW): Address space and security selectors. */
1816 1817 1818 1819 1820 1821
	*cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
		I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1822 1823 1824 1825

	return 0;
}

1826
static int
1827 1828 1829
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
1830
{
1831
	u32 *cs;
1832

1833 1834 1835
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1836

1837 1838 1839 1840
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
		(dispatch_flags & I915_DISPATCH_RS ?
		MI_BATCH_RESOURCE_STREAMER : 0);
1841
	/* bit0-7 is the length on GEN6+ */
1842 1843
	*cs++ = offset;
	intel_ring_advance(req, cs);
1844 1845 1846 1847

	return 0;
}

1848
static int
1849 1850 1851
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1852
{
1853
	u32 *cs;
1854

1855 1856 1857
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1858

1859 1860
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_NON_SECURE_I965);
1861
	/* bit0-7 is the length on GEN6+ */
1862 1863
	*cs++ = offset;
	intel_ring_advance(req, cs);
1864

1865
	return 0;
1866 1867
}

1868 1869
/* Blitter support (SandyBridge+) */

1870
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
1871
{
1872
	u32 cmd, *cs;
1873

1874 1875 1876
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1877

1878
	cmd = MI_FLUSH_DW;
1879
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
1880
		cmd += 1;
1881 1882 1883 1884 1885 1886 1887 1888

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1889 1890 1891 1892 1893 1894
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1895
	if (mode & EMIT_INVALIDATE)
1896
		cmd |= MI_INVALIDATE_TLB;
1897 1898
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1899
	if (INTEL_GEN(req->i915) >= 8) {
1900 1901
		*cs++ = 0; /* upper addr */
		*cs++ = 0; /* value */
B
Ben Widawsky 已提交
1902
	} else  {
1903 1904
		*cs++ = 0;
		*cs++ = MI_NOOP;
B
Ben Widawsky 已提交
1905
	}
1906
	intel_ring_advance(req, cs);
R
Rodrigo Vivi 已提交
1907

1908
	return 0;
Z
Zou Nan hai 已提交
1909 1910
}

1911 1912 1913
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
1914
	struct drm_i915_gem_object *obj;
1915
	int ret, i;
1916

1917
	if (!i915.semaphores)
1918 1919
		return;

1920 1921 1922
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

1923
		obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1924 1925
		if (IS_ERR(obj))
			goto err;
1926

1927
		vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
1941 1942

	if (INTEL_GEN(dev_priv) >= 8) {
1943
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
1944

1945
		engine->semaphore.sync_to = gen8_ring_sync_to;
1946
		engine->semaphore.signal = gen8_xcs_signal;
1947 1948

		for (i = 0; i < I915_NUM_ENGINES; i++) {
1949
			u32 ring_offset;
1950 1951 1952 1953 1954 1955 1956 1957

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
1958
	} else if (INTEL_GEN(dev_priv) >= 6) {
1959
		engine->semaphore.sync_to = gen6_ring_sync_to;
1960
		engine->semaphore.signal = gen6_signal;
1961 1962 1963 1964 1965 1966 1967 1968

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
1969
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1970 1971 1972
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
1973 1974 1975 1976 1977
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1978
				},
1979 1980 1981 1982
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1983
				},
1984 1985 1986 1987
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1988
				},
1989 1990 1991 1992
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1993 1994 1995 1996 1997
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

1998
			if (i == engine->hw_id) {
1999 2000 2001
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2002 2003
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2004 2005 2006 2007 2008
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2009
	}
2010 2011 2012 2013 2014 2015 2016 2017

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2018 2019
}

2020 2021 2022
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2023 2024
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2025
	if (INTEL_GEN(dev_priv) >= 8) {
2026 2027
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2028 2029
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2030 2031
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2032 2033
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2034 2035
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2036
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2037
	} else if (INTEL_GEN(dev_priv) >= 3) {
2038 2039
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2040
	} else {
2041 2042
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2043 2044 2045
	}
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = i9xx_submit_request;
}

static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = gen6_bsd_submit_request;
}

2056 2057 2058
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2059 2060 2061
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2062
	engine->init_hw = init_ring_common;
2063
	engine->reset_hw = reset_ring_common;
2064

2065 2066 2067
	engine->context_pin = intel_ring_context_pin;
	engine->context_unpin = intel_ring_context_unpin;

2068 2069
	engine->request_alloc = ring_request_alloc;

2070
	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2071 2072 2073 2074
	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
	if (i915.semaphores) {
		int num_rings;

2075
		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

		num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
		if (INTEL_GEN(dev_priv) >= 8) {
			engine->emit_breadcrumb_sz += num_rings * 6;
		} else {
			engine->emit_breadcrumb_sz += num_rings * 3;
			if (num_rings & 1)
				engine->emit_breadcrumb_sz++;
		}
	}
2086 2087

	engine->set_default_submission = i9xx_set_default_submission;
2088 2089

	if (INTEL_GEN(dev_priv) >= 8)
2090
		engine->emit_bb_start = gen8_emit_bb_start;
2091
	else if (INTEL_GEN(dev_priv) >= 6)
2092
		engine->emit_bb_start = gen6_emit_bb_start;
2093
	else if (INTEL_GEN(dev_priv) >= 4)
2094
		engine->emit_bb_start = i965_emit_bb_start;
2095
	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2096
		engine->emit_bb_start = i830_emit_bb_start;
2097
	else
2098
		engine->emit_bb_start = i915_emit_bb_start;
2099 2100
}

2101
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2102
{
2103
	struct drm_i915_private *dev_priv = engine->i915;
2104
	int ret;
2105

2106 2107
	intel_ring_default_vfuncs(dev_priv, engine);

2108 2109
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2110

2111
	if (INTEL_GEN(dev_priv) >= 8) {
2112
		engine->init_context = intel_rcs_ctx_init;
2113
		engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2114
		engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2115
		engine->emit_flush = gen8_render_ring_flush;
2116 2117 2118
		if (i915.semaphores) {
			int num_rings;

2119
			engine->semaphore.signal = gen8_rcs_signal;
2120 2121 2122

			num_rings =
				hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2123
			engine->emit_breadcrumb_sz += num_rings * 8;
2124
		}
2125
	} else if (INTEL_GEN(dev_priv) >= 6) {
2126
		engine->init_context = intel_rcs_ctx_init;
2127
		engine->emit_flush = gen7_render_ring_flush;
2128
		if (IS_GEN6(dev_priv))
2129
			engine->emit_flush = gen6_render_ring_flush;
2130
	} else if (IS_GEN5(dev_priv)) {
2131
		engine->emit_flush = gen4_render_ring_flush;
2132
	} else {
2133
		if (INTEL_GEN(dev_priv) < 4)
2134
			engine->emit_flush = gen2_render_ring_flush;
2135
		else
2136
			engine->emit_flush = gen4_render_ring_flush;
2137
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2138
	}
B
Ben Widawsky 已提交
2139

2140
	if (IS_HASWELL(dev_priv))
2141
		engine->emit_bb_start = hsw_emit_bb_start;
2142

2143 2144
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2145

2146
	ret = intel_init_ring_buffer(engine);
2147 2148 2149
	if (ret)
		return ret;

2150
	if (INTEL_GEN(dev_priv) >= 6) {
2151
		ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2152 2153 2154
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2155
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2156 2157 2158 2159 2160
		if (ret)
			return ret;
	}

	return 0;
2161 2162
}

2163
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2164
{
2165
	struct drm_i915_private *dev_priv = engine->i915;
2166

2167 2168
	intel_ring_default_vfuncs(dev_priv, engine);

2169
	if (INTEL_GEN(dev_priv) >= 6) {
2170
		/* gen6 bsd needs a special wa for tail updates */
2171
		if (IS_GEN6(dev_priv))
2172
			engine->set_default_submission = gen6_bsd_set_default_submission;
2173
		engine->emit_flush = gen6_bsd_ring_flush;
2174
		if (INTEL_GEN(dev_priv) < 8)
2175
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2176
	} else {
2177
		engine->mmio_base = BSD_RING_BASE;
2178
		engine->emit_flush = bsd_ring_flush;
2179
		if (IS_GEN5(dev_priv))
2180
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2181
		else
2182
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2183 2184
	}

2185
	return intel_init_ring_buffer(engine);
2186
}
2187

2188
/**
2189
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2190
 */
2191
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2192
{
2193
	struct drm_i915_private *dev_priv = engine->i915;
2194 2195 2196

	intel_ring_default_vfuncs(dev_priv, engine);

2197
	engine->emit_flush = gen6_bsd_ring_flush;
2198

2199
	return intel_init_ring_buffer(engine);
2200 2201
}

2202
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2203
{
2204
	struct drm_i915_private *dev_priv = engine->i915;
2205 2206 2207

	intel_ring_default_vfuncs(dev_priv, engine);

2208
	engine->emit_flush = gen6_ring_flush;
2209
	if (INTEL_GEN(dev_priv) < 8)
2210
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2211

2212
	return intel_init_ring_buffer(engine);
2213
}
2214

2215
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2216
{
2217
	struct drm_i915_private *dev_priv = engine->i915;
2218 2219 2220

	intel_ring_default_vfuncs(dev_priv, engine);

2221
	engine->emit_flush = gen6_ring_flush;
2222

2223
	if (INTEL_GEN(dev_priv) < 8) {
2224
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2225 2226
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2227
	}
B
Ben Widawsky 已提交
2228

2229
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2230
}