intel_ringbuffer.c 57.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
static int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	u32 cmd, *cs;
65 66 67

	cmd = MI_FLUSH;

68
	if (mode & EMIT_INVALIDATE)
69 70
		cmd |= MI_READ_FLUSH;

71 72 73
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
74

75 76 77
	*cs++ = cmd;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
78 79 80 81 82

	return 0;
}

static int
83
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
84
{
85
	u32 cmd, *cs;
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

115
	cmd = MI_FLUSH;
116
	if (mode & EMIT_INVALIDATE) {
117
		cmd |= MI_EXE_FLUSH;
118 119 120
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
121

122 123 124
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
125

126 127 128
	*cs++ = cmd;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
129 130

	return 0;
131 132
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
171
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
172
{
173
	u32 scratch_addr =
174
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	u32 *cs;

	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0; /* low dword */
	*cs++ = 0; /* high dword */
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);

	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
200 201 202 203 204

	return 0;
}

static int
205
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
206
{
207
	u32 scratch_addr =
208
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
209
	u32 *cs, flags = 0;
210 211
	int ret;

212
	/* Force SNB workarounds for PIPE_CONTROL flushes */
213
	ret = intel_emit_post_sync_nonzero_flush(req);
214 215 216
	if (ret)
		return ret;

217 218 219 220
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
221
	if (mode & EMIT_FLUSH) {
222 223 224 225 226 227
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
228
		flags |= PIPE_CONTROL_CS_STALL;
229
	}
230
	if (mode & EMIT_INVALIDATE) {
231 232 233 234 235 236 237 238 239
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
240
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
241
	}
242

243 244 245
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
246

247 248 249 250 251
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	intel_ring_advance(req, cs);
252 253 254 255

	return 0;
}

256
static int
257
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
258
{
259
	u32 *cs;
260

261 262 263
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
264

265 266 267 268 269
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;
	intel_ring_advance(req, cs);
270 271 272 273

	return 0;
}

274
static int
275
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
276
{
277
	u32 scratch_addr =
278
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
279
	u32 *cs, flags = 0;
280

281 282 283 284 285 286 287 288 289 290
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

291 292 293 294
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
295
	if (mode & EMIT_FLUSH) {
296 297
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
298
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
299
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
300
	}
301
	if (mode & EMIT_INVALIDATE) {
302 303 304 305 306 307
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
308
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
309 310 311 312
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
313
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
314

315 316
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

317 318 319
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
320
		gen7_render_ring_cs_stall_wa(req);
321 322
	}

323 324 325
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
326

327 328 329 330 331
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
	intel_ring_advance(req, cs);
332 333 334 335

	return 0;
}

336
static int
337
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
338
{
339
	u32 flags;
340
	u32 *cs;
341

342
	cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
343 344
	if (IS_ERR(cs))
		return PTR_ERR(cs);
345

346
	flags = PIPE_CONTROL_CS_STALL;
B
Ben Widawsky 已提交
347

348
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
349 350
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
351
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
352
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
353
	}
354
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
355 356 357 358 359 360 361 362
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
363 364

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
365 366 367 368
		cs = gen8_emit_pipe_control(cs,
					    PIPE_CONTROL_CS_STALL |
					    PIPE_CONTROL_STALL_AT_SCOREBOARD,
					    0);
B
Ben Widawsky 已提交
369 370
	}

371 372 373 374 375 376 377
	cs = gen8_emit_pipe_control(cs, flags,
				    i915_ggtt_offset(req->engine->scratch) +
				    2 * CACHELINE_BYTES);

	intel_ring_advance(req, cs);

	return 0;
B
Ben Widawsky 已提交
378 379
}

380
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
381
{
382
	struct drm_i915_private *dev_priv = engine->i915;
383 384 385
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
386
	if (INTEL_GEN(dev_priv) >= 4)
387 388 389 390
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

391
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
392
{
393
	struct drm_i915_private *dev_priv = engine->i915;
394
	i915_reg_t mmio;
395 396 397 398

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
399
	if (IS_GEN7(dev_priv)) {
400
		switch (engine->id) {
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
419
	} else if (IS_GEN6(dev_priv)) {
420
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
421 422
	} else {
		/* XXX: gen8 returns to sanity */
423
		mmio = RING_HWS_PGA(engine->mmio_base);
424 425
	}

426
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
427 428 429 430 431 432 433 434 435
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
436
	if (IS_GEN(dev_priv, 6, 7)) {
437
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
438 439

		/* ring should be idle before issuing a sync flush*/
440
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
441 442 443 444

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
445 446 447
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
448
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
449
				  engine->name);
450 451 452
	}
}

453
static bool stop_ring(struct intel_engine_cs *engine)
454
{
455
	struct drm_i915_private *dev_priv = engine->i915;
456

457
	if (INTEL_GEN(dev_priv) > 2) {
458
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
459 460 461 462 463
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
464 465
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
466 467 468 469
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
470
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
471
				return false;
472 473
		}
	}
474

475 476
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
477
	I915_WRITE_TAIL(engine, 0);
478

479
	if (INTEL_GEN(dev_priv) > 2) {
480 481
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
482
	}
483

484
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
485
}
486

487
static int init_ring_common(struct intel_engine_cs *engine)
488
{
489
	struct drm_i915_private *dev_priv = engine->i915;
490
	struct intel_ring *ring = engine->buffer;
491 492
	int ret = 0;

493
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
494

495
	if (!stop_ring(engine)) {
496
		/* G45 ring initialization often fails to reset head to zero */
497 498
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
499 500 501 502 503
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
504

505
		if (!stop_ring(engine)) {
506 507
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
508 509 510 511 512
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
513 514
			ret = -EIO;
			goto out;
515
		}
516 517
	}

518
	if (HWS_NEEDS_PHYSICAL(dev_priv))
519
		ring_setup_phys_status_page(engine);
520 521
	else
		intel_ring_setup_status_page(engine);
522

523
	intel_engine_reset_breadcrumbs(engine);
524

525
	/* Enforce ordering by reading HEAD register back */
526
	I915_READ_HEAD(engine);
527

528 529 530 531
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
532
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
533 534

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
535
	if (I915_READ_HEAD(engine))
536
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
537
			  engine->name, I915_READ_HEAD(engine));
538 539 540 541 542

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
543

544
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
545 546

	/* If the head is still not zero, the ring is dead */
547 548 549
	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
				       RING_VALID, RING_VALID,
				       50)) {
550
		DRM_ERROR("%s initialization failed "
551
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
552 553 554
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
555 556
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
557
			  I915_READ_START(engine),
558
			  i915_ggtt_offset(ring->vma));
559 560
		ret = -EIO;
		goto out;
561 562
	}

563
	intel_engine_init_hangcheck(engine);
564

565
out:
566
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
567 568

	return ret;
569 570
}

571 572 573
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	/* Try to restore the logical GPU state to match the continuation
	 * of the request queue. If we skip the context/PD restore, then
	 * the next request may try to execute assuming that its context
	 * is valid and loaded on the GPU and so may try to access invalid
	 * memory, prompting repeated GPU hangs.
	 *
	 * If the request was guilty, we still restore the logical state
	 * in case the next request requires it (e.g. the aliasing ppgtt),
	 * but skip over the hung batch.
	 *
	 * If the request was innocent, we try to replay the request with
	 * the restored context.
	 */
	if (request) {
		struct drm_i915_private *dev_priv = request->i915;
		struct intel_context *ce = &request->ctx->engine[engine->id];
		struct i915_hw_ppgtt *ppgtt;

		/* FIXME consider gen8 reset */

		if (ce->state) {
			I915_WRITE(CCID,
				   i915_ggtt_offset(ce->state) |
				   BIT(8) /* must be set! */ |
				   CCID_EXTENDED_STATE_SAVE |
				   CCID_EXTENDED_STATE_RESTORE |
				   CCID_EN);
		}

		ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
		if (ppgtt) {
			u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;

			I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
			I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);

			/* Wait for the PD reload to complete */
			if (intel_wait_for_register(dev_priv,
						    RING_PP_DIR_BASE(engine),
						    BIT(0), 0,
						    10))
				DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
616

617 618 619 620 621 622 623 624 625 626 627 628 629
			ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
		}

		/* If the rq hung, jump to its breadcrumb and skip the batch */
		if (request->fence.error == -EIO) {
			struct intel_ring *ring = request->ring;

			ring->head = request->postfix;
			ring->last_retired_head = -1;
		}
	} else {
		engine->legacy_active_context = NULL;
	}
630 631
}

632
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
633 634 635
{
	int ret;

636
	ret = intel_ring_workarounds_emit(req);
637 638 639
	if (ret != 0)
		return ret;

640
	ret = i915_gem_render_state_emit(req);
641
	if (ret)
642
		return ret;
643

644
	return 0;
645 646
}

647
static int init_render_ring(struct intel_engine_cs *engine)
648
{
649
	struct drm_i915_private *dev_priv = engine->i915;
650
	int ret = init_ring_common(engine);
651 652
	if (ret)
		return ret;
653

654
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
655
	if (IS_GEN(dev_priv, 4, 6))
656
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
657 658 659 660

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
661
	 *
662
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
663
	 */
664
	if (IS_GEN(dev_priv, 6, 7))
665 666
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

667
	/* Required for the hardware to program scanline values for waiting */
668
	/* WaEnableFlushTlbInvalidationMode:snb */
669
	if (IS_GEN6(dev_priv))
670
		I915_WRITE(GFX_MODE,
671
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
672

673
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
674
	if (IS_GEN7(dev_priv))
675
		I915_WRITE(GFX_MODE_GEN7,
676
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
677
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
678

679
	if (IS_GEN6(dev_priv)) {
680 681 682 683 684 685
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
686
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
687 688
	}

689
	if (IS_GEN(dev_priv, 6, 7))
690
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
691

692 693
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
694

695
	return init_workarounds_ring(engine);
696 697
}

698
static void render_ring_cleanup(struct intel_engine_cs *engine)
699
{
700
	struct drm_i915_private *dev_priv = engine->i915;
701

702
	i915_vma_unpin_and_release(&dev_priv->semaphore);
703 704
}

705
static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
706
{
707
	struct drm_i915_private *dev_priv = req->i915;
708
	struct intel_engine_cs *waiter;
709
	enum intel_engine_id id;
710

711
	for_each_engine(waiter, dev_priv, id) {
712
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
713 714 715
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

716 717 718 719 720 721 722 723 724 725
		*cs++ = GFX_OP_PIPE_CONTROL(6);
		*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
			PIPE_CONTROL_CS_STALL;
		*cs++ = lower_32_bits(gtt_offset);
		*cs++ = upper_32_bits(gtt_offset);
		*cs++ = req->global_seqno;
		*cs++ = 0;
		*cs++ = MI_SEMAPHORE_SIGNAL |
			MI_SEMAPHORE_TARGET(waiter->hw_id);
		*cs++ = 0;
726 727
	}

728
	return cs;
729 730
}

731
static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
732
{
733
	struct drm_i915_private *dev_priv = req->i915;
734
	struct intel_engine_cs *waiter;
735
	enum intel_engine_id id;
736

737
	for_each_engine(waiter, dev_priv, id) {
738
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
739 740 741
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

742 743 744 745 746 747 748
		*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
		*cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
		*cs++ = upper_32_bits(gtt_offset);
		*cs++ = req->global_seqno;
		*cs++ = MI_SEMAPHORE_SIGNAL |
			MI_SEMAPHORE_TARGET(waiter->hw_id);
		*cs++ = 0;
749 750
	}

751
	return cs;
752 753
}

754
static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
755
{
756
	struct drm_i915_private *dev_priv = req->i915;
757
	struct intel_engine_cs *engine;
758
	enum intel_engine_id id;
C
Chris Wilson 已提交
759
	int num_rings = 0;
760

761
	for_each_engine(engine, dev_priv, id) {
762 763 764 765
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
766

767
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
768
		if (i915_mmio_reg_valid(mbox_reg)) {
769 770 771
			*cs++ = MI_LOAD_REGISTER_IMM(1);
			*cs++ = i915_mmio_reg_offset(mbox_reg);
			*cs++ = req->global_seqno;
C
Chris Wilson 已提交
772
			num_rings++;
773 774
		}
	}
C
Chris Wilson 已提交
775
	if (num_rings & 1)
776
		*cs++ = MI_NOOP;
777

778
	return cs;
779 780
}

781 782 783 784
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

785 786
	i915_gem_request_submit(request);

C
Chris Wilson 已提交
787
	I915_WRITE_TAIL(request->engine, request->tail);
788 789
}

790
static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
791
{
792 793 794 795
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
	*cs++ = req->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
796

797
	req->tail = intel_ring_offset(req, cs);
798 799
}

800 801
static const int i9xx_emit_breadcrumb_sz = 4;

802
/**
803
 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
804 805 806 807 808 809
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
810
static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
811
{
C
Chris Wilson 已提交
812
	return i9xx_emit_breadcrumb(req,
813
				    req->engine->semaphore.signal(req, cs));
814 815
}

C
Chris Wilson 已提交
816
static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
817
					u32 *cs)
818 819
{
	struct intel_engine_cs *engine = req->engine;
820

C
Chris Wilson 已提交
821
	if (engine->semaphore.signal)
822 823 824 825 826 827 828 829
		cs = engine->semaphore.signal(req, cs);

	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(engine);
	*cs++ = 0;
	*cs++ = req->global_seqno;
830
	/* We're thrashing one dword of HWS. */
831 832 833
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
834

835
	req->tail = intel_ring_offset(req, cs);
836 837
}

838 839
static const int gen8_render_emit_breadcrumb_sz = 8;

840 841 842 843 844 845 846
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
847 848

static int
849 850
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
851
{
852 853
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
854
	struct i915_hw_ppgtt *ppgtt;
855
	u32 *cs;
856

857 858 859
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
860

861 862 863 864 865 866
	*cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_SAD_GTE_SDD;
	*cs++ = signal->global_seqno;
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
867 868 869 870 871 872

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
873 874 875
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
876 877 878
	return 0;
}

879
static int
880 881
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
882
{
883 884 885
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
886
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
887
	u32 *cs;
888

889
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
890

891 892 893
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
894

895
	*cs++ = dw1 | wait_mbox;
896 897 898 899
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
900 901 902 903
	*cs++ = signal->global_seqno - 1;
	*cs++ = 0;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
904 905 906 907

	return 0;
}

908
static void
909
gen5_seqno_barrier(struct intel_engine_cs *engine)
910
{
911 912 913
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
914
	 *
915 916 917 918 919 920 921
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
922
	 */
923
	usleep_range(125, 250);
924 925
}

926 927
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
928
{
929
	struct drm_i915_private *dev_priv = engine->i915;
930

931 932
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
933 934 935 936 937 938 939 940 941
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
942 943 944
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
945
	 */
946
	spin_lock_irq(&dev_priv->uncore.lock);
947
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
948
	spin_unlock_irq(&dev_priv->uncore.lock);
949 950
}

951 952
static void
gen5_irq_enable(struct intel_engine_cs *engine)
953
{
954
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
955 956 957
}

static void
958
gen5_irq_disable(struct intel_engine_cs *engine)
959
{
960
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
961 962
}

963 964
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
965
{
966
	struct drm_i915_private *dev_priv = engine->i915;
967

968 969 970
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
971 972
}

973
static void
974
i9xx_irq_disable(struct intel_engine_cs *engine)
975
{
976
	struct drm_i915_private *dev_priv = engine->i915;
977

978 979
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
980 981
}

982 983
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
984
{
985
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
986

987 988 989
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
990 991 992
}

static void
993
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
994
{
995
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
996

997 998
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
999 1000
}

1001
static int
1002
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1003
{
1004
	u32 *cs;
1005

1006 1007 1008
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1009

1010 1011 1012
	*cs++ = MI_FLUSH;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1013
	return 0;
1014 1015
}

1016 1017
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1018
{
1019
	struct drm_i915_private *dev_priv = engine->i915;
1020

1021 1022 1023
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1024
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1025 1026 1027
}

static void
1028
gen6_irq_disable(struct intel_engine_cs *engine)
1029
{
1030
	struct drm_i915_private *dev_priv = engine->i915;
1031

1032
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1033
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1034 1035
}

1036 1037
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1038
{
1039
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1040

1041
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1042
	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1043 1044 1045
}

static void
1046
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1047
{
1048
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1049

1050
	I915_WRITE_IMR(engine, ~0);
1051
	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1052 1053
}

1054 1055
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1056
{
1057
	struct drm_i915_private *dev_priv = engine->i915;
1058

1059 1060 1061
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1062
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1063 1064 1065
}

static void
1066
gen8_irq_disable(struct intel_engine_cs *engine)
1067
{
1068
	struct drm_i915_private *dev_priv = engine->i915;
1069

1070
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1071 1072
}

1073
static int
1074 1075 1076
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1077
{
1078
	u32 *cs;
1079

1080 1081 1082
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1083

1084 1085 1086 1087
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
	*cs++ = offset;
	intel_ring_advance(req, cs);
1088

1089 1090 1091
	return 0;
}

1092 1093
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1094 1095
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1096
static int
1097 1098 1099
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1100
{
1101
	u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1102

1103 1104 1105
	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1106

1107
	/* Evict the invalid PTE TLBs */
1108 1109 1110 1111 1112 1113 1114
	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
	*cs++ = cs_offset;
	*cs++ = 0xdeadbeef;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1115

1116
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1117 1118 1119
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1120 1121 1122
		cs = intel_ring_begin(req, 6 + 2);
		if (IS_ERR(cs))
			return PTR_ERR(cs);
1123 1124 1125 1126 1127

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
		*cs++ = cs_offset;
		*cs++ = 4096;
		*cs++ = offset;

		*cs++ = MI_FLUSH;
		*cs++ = MI_NOOP;
		intel_ring_advance(req, cs);
1138 1139

		/* ... and execute it. */
1140
		offset = cs_offset;
1141
	}
1142

1143 1144 1145
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1146

1147 1148 1149 1150
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
	intel_ring_advance(req, cs);
1151

1152 1153 1154 1155
	return 0;
}

static int
1156 1157 1158
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1159
{
1160
	u32 *cs;
1161

1162 1163 1164
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1165

1166 1167 1168 1169
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
	intel_ring_advance(req, cs);
1170 1171 1172 1173

	return 0;
}

1174
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1175
{
1176
	struct drm_i915_private *dev_priv = engine->i915;
1177 1178 1179 1180

	if (!dev_priv->status_page_dmah)
		return;

1181
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1182
	engine->status_page.page_addr = NULL;
1183 1184
}

1185
static void cleanup_status_page(struct intel_engine_cs *engine)
1186
{
1187
	struct i915_vma *vma;
1188
	struct drm_i915_gem_object *obj;
1189

1190 1191
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1192 1193
		return;

1194 1195
	obj = vma->obj;

1196
	i915_vma_unpin(vma);
1197 1198 1199 1200
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
1201 1202
}

1203
static int init_status_page(struct intel_engine_cs *engine)
1204
{
1205 1206 1207
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
1208
	void *vaddr;
1209
	int ret;
1210

1211
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1212 1213 1214 1215
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1216

1217 1218 1219
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1220

1221
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1222 1223 1224
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1225
	}
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1243

1244 1245 1246 1247 1248 1249
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

1250
	engine->status_page.vma = vma;
1251
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1252
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1253

1254 1255
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
1256
	return 0;
1257

1258 1259
err_unpin:
	i915_vma_unpin(vma);
1260 1261 1262
err:
	i915_gem_object_put(obj);
	return ret;
1263 1264
}

1265
static int init_phys_status_page(struct intel_engine_cs *engine)
1266
{
1267
	struct drm_i915_private *dev_priv = engine->i915;
1268

1269 1270 1271 1272
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1273

1274 1275
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1276 1277 1278 1279

	return 0;
}

1280
int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias)
1281
{
1282
	unsigned int flags;
1283
	enum i915_map_type map;
1284
	struct i915_vma *vma = ring->vma;
1285
	void *addr;
1286 1287
	int ret;

1288
	GEM_BUG_ON(ring->vaddr);
1289

1290 1291
	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;

1292 1293 1294
	flags = PIN_GLOBAL;
	if (offset_bias)
		flags |= PIN_OFFSET_BIAS | offset_bias;
1295
	if (vma->obj->stolen)
1296
		flags |= PIN_MAPPABLE;
1297

1298
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1299
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1300 1301 1302 1303
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1304
			return ret;
1305
	}
1306

1307 1308 1309
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1310

1311
	if (i915_vma_is_map_and_fenceable(vma))
1312 1313
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1314
		addr = i915_gem_object_pin_map(vma->obj, map);
1315 1316
	if (IS_ERR(addr))
		goto err;
1317

1318
	ring->vaddr = addr;
1319
	return 0;
1320

1321 1322 1323
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1324 1325
}

1326 1327 1328 1329 1330
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1331
	if (i915_vma_is_map_and_fenceable(ring->vma))
1332
		i915_vma_unpin_iomap(ring->vma);
1333 1334
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1335 1336
	ring->vaddr = NULL;

1337
	i915_vma_unpin(ring->vma);
1338 1339
}

1340 1341
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1342
{
1343
	struct drm_i915_gem_object *obj;
1344
	struct i915_vma *vma;
1345

1346
	obj = i915_gem_object_create_stolen(dev_priv, size);
1347
	if (!obj)
1348
		obj = i915_gem_object_create(dev_priv, size);
1349 1350
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1351

1352 1353 1354
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1355
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1356 1357 1358 1359
	if (IS_ERR(vma))
		goto err;

	return vma;
1360

1361 1362 1363
err:
	i915_gem_object_put(obj);
	return vma;
1364 1365
}

1366 1367
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1368
{
1369
	struct intel_ring *ring;
1370
	struct i915_vma *vma;
1371

1372
	GEM_BUG_ON(!is_power_of_2(size));
1373
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1374

1375
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1376
	if (!ring)
1377 1378
		return ERR_PTR(-ENOMEM);

1379
	ring->engine = engine;
1380

1381 1382
	INIT_LIST_HEAD(&ring->request_list);

1383 1384 1385 1386 1387 1388
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1389
	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1390 1391 1392 1393 1394
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

1395 1396
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1397
		kfree(ring);
1398
		return ERR_CAST(vma);
1399
	}
1400
	ring->vma = vma;
1401 1402 1403 1404 1405

	return ring;
}

void
1406
intel_ring_free(struct intel_ring *ring)
1407
{
1408 1409 1410 1411 1412
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1413 1414 1415
	kfree(ring);
}

1416
static int context_pin(struct i915_gem_context *ctx)
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
{
	struct i915_vma *vma = ctx->engine[RCS].state;
	int ret;

	/* Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
		if (ret)
			return ret;
	}

1431
	return i915_vma_pin(vma, 0, ctx->ggtt_alignment, PIN_GLOBAL | PIN_HIGH);
1432 1433 1434 1435
}

static int intel_ring_context_pin(struct intel_engine_cs *engine,
				  struct i915_gem_context *ctx)
1436 1437 1438 1439
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

1440
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1441 1442 1443 1444 1445

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
1446
		ret = context_pin(ctx);
1447
		if (ret)
1448 1449 1450
			goto error;
	}

1451 1452 1453 1454 1455 1456 1457
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
1458
	if (i915_gem_context_is_kernel(ctx))
1459 1460
		ce->initialised = true;

1461
	i915_gem_context_get(ctx);
1462 1463 1464 1465 1466 1467 1468
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

1469 1470
static void intel_ring_context_unpin(struct intel_engine_cs *engine,
				     struct i915_gem_context *ctx)
1471 1472 1473
{
	struct intel_context *ce = &ctx->engine[engine->id];

1474
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1475
	GEM_BUG_ON(ce->pin_count == 0);
1476 1477 1478 1479 1480

	if (--ce->pin_count)
		return;

	if (ce->state)
1481
		i915_vma_unpin(ce->state);
1482

1483
	i915_gem_context_put(ctx);
1484 1485
}

1486
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1487
{
1488
	struct drm_i915_private *dev_priv = engine->i915;
1489
	struct intel_ring *ring;
1490 1491
	int ret;

1492
	WARN_ON(engine->buffer);
1493

1494 1495 1496
	intel_engine_setup_common(engine);

	ret = intel_engine_init_common(engine);
1497 1498
	if (ret)
		goto error;
1499

1500 1501 1502
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
1503 1504
		goto error;
	}
1505

1506 1507 1508
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
1509
		if (ret)
1510
			goto error;
1511
	} else {
1512
		ret = init_status_page(engine);
1513
		if (ret)
1514
			goto error;
1515 1516
	}

1517
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1518
	ret = intel_ring_pin(ring, I915_GTT_PAGE_SIZE);
1519
	if (ret) {
1520
		intel_ring_free(ring);
1521
		goto error;
1522
	}
1523
	engine->buffer = ring;
1524

1525
	return 0;
1526

1527
error:
1528
	intel_engine_cleanup(engine);
1529
	return ret;
1530 1531
}

1532
void intel_engine_cleanup(struct intel_engine_cs *engine)
1533
{
1534
	struct drm_i915_private *dev_priv;
1535

1536
	dev_priv = engine->i915;
1537

1538
	if (engine->buffer) {
1539 1540
		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
1541

1542
		intel_ring_unpin(engine->buffer);
1543
		intel_ring_free(engine->buffer);
1544
		engine->buffer = NULL;
1545
	}
1546

1547 1548
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
1549

1550
	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
1551 1552
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
1553 1554
	} else {
		cleanup_status_page(engine);
1555
	}
1556

1557
	intel_engine_cleanup_common(engine);
1558

1559
	engine->i915 = NULL;
1560 1561
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1562 1563
}

1564 1565 1566
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1567
	enum intel_engine_id id;
1568

1569
	for_each_engine(engine, dev_priv, id) {
1570 1571 1572 1573 1574
		engine->buffer->head = engine->buffer->tail;
		engine->buffer->last_retired_head = -1;
	}
}

1575
static int ring_request_alloc(struct drm_i915_gem_request *request)
1576
{
1577
	u32 *cs;
1578

1579 1580
	GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);

1581 1582 1583 1584
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1585
	request->reserved_space += LEGACY_REQUEST_SIZE;
1586

1587
	GEM_BUG_ON(!request->engine->buffer);
1588
	request->ring = request->engine->buffer;
1589

1590 1591 1592
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1593

1594
	request->reserved_space -= LEGACY_REQUEST_SIZE;
1595
	return 0;
1596 1597
}

1598 1599
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
1600
	struct intel_ring *ring = req->ring;
1601
	struct drm_i915_gem_request *target;
1602 1603 1604
	long timeout;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
1605

1606 1607
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
1619
	GEM_BUG_ON(!req->reserved_space);
1620

1621
	list_for_each_entry(target, &ring->request_list, ring_link) {
1622 1623 1624
		unsigned space;

		/* Would completion of this request free enough space? */
1625 1626
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
1627 1628
		if (space >= bytes)
			break;
1629
	}
1630

1631
	if (WARN_ON(&target->ring_link == &ring->request_list))
1632 1633
		return -ENOSPC;

1634 1635 1636 1637 1638
	timeout = i915_wait_request(target,
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
1639 1640 1641 1642 1643 1644

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
1645 1646
}

1647
u32 *intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
1648
{
1649
	struct intel_ring *ring = req->ring;
1650 1651
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
1652 1653
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
1654
	bool need_wrap = false;
1655
	u32 *cs;
1656

1657
	total_bytes = bytes + req->reserved_space;
1658

1659 1660 1661 1662 1663 1664 1665
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
1666 1667 1668 1669 1670 1671 1672
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
1673
		wait_bytes = remain_actual + req->reserved_space;
1674
	} else {
1675 1676
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
1677 1678
	}

1679
	if (wait_bytes > ring->space) {
1680
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
1681
		if (unlikely(ret))
1682
			return ERR_PTR(ret);
M
Mika Kuoppala 已提交
1683 1684
	}

1685
	if (unlikely(need_wrap)) {
1686 1687
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
1688

1689
		/* Fill the tail with MI_NOOP */
1690 1691 1692
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
1693
	}
1694

1695 1696 1697
	GEM_BUG_ON(ring->tail > ring->size - bytes);
	cs = ring->vaddr + ring->tail;
	ring->tail += bytes;
1698 1699
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
1700 1701

	return cs;
1702
}
1703

1704
/* Align the ring tail to a cacheline boundary */
1705
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1706
{
1707
	int num_dwords =
1708 1709
		(req->ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
	u32 *cs;
1710 1711 1712 1713

	if (num_dwords == 0)
		return 0;

1714
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1715 1716 1717
	cs = intel_ring_begin(req, num_dwords);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1718 1719

	while (num_dwords--)
1720
		*cs++ = MI_NOOP;
1721

1722
	intel_ring_advance(req, cs);
1723 1724 1725 1726

	return 0;
}

1727
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1728
{
1729
	struct drm_i915_private *dev_priv = request->i915;
1730

1731 1732
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

1733
       /* Every tail move must follow the sequence below */
1734 1735 1736 1737

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
1738 1739
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1740 1741

	/* Clear the context id. Here be magic! */
1742
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1743

1744
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1745 1746 1747 1748 1749
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
1750
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1751

1752
	/* Now that the ring is fully powered up, update the tail */
1753
	i9xx_submit_request(request);
1754 1755 1756 1757

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
1758 1759 1760 1761
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1762 1763
}

1764
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1765
{
1766
	u32 cmd, *cs;
1767

1768 1769 1770
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1771

1772
	cmd = MI_FLUSH_DW;
1773
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
1774
		cmd += 1;
1775 1776 1777 1778 1779 1780 1781 1782

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1783 1784 1785 1786 1787 1788
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1789
	if (mode & EMIT_INVALIDATE)
1790 1791
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

1792 1793
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1794
	if (INTEL_GEN(req->i915) >= 8) {
1795 1796
		*cs++ = 0; /* upper addr */
		*cs++ = 0; /* value */
B
Ben Widawsky 已提交
1797
	} else  {
1798 1799
		*cs++ = 0;
		*cs++ = MI_NOOP;
B
Ben Widawsky 已提交
1800
	}
1801
	intel_ring_advance(req, cs);
1802
	return 0;
1803 1804
}

1805
static int
1806 1807 1808
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1809
{
1810
	bool ppgtt = USES_PPGTT(req->i915) &&
1811
			!(dispatch_flags & I915_DISPATCH_SECURE);
1812
	u32 *cs;
1813

1814 1815 1816
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1817 1818

	/* FIXME(BDW): Address space and security selectors. */
1819 1820 1821 1822 1823 1824
	*cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
		I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1825 1826 1827 1828

	return 0;
}

1829
static int
1830 1831 1832
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
1833
{
1834
	u32 *cs;
1835

1836 1837 1838
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1839

1840 1841 1842 1843
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
		(dispatch_flags & I915_DISPATCH_RS ?
		MI_BATCH_RESOURCE_STREAMER : 0);
1844
	/* bit0-7 is the length on GEN6+ */
1845 1846
	*cs++ = offset;
	intel_ring_advance(req, cs);
1847 1848 1849 1850

	return 0;
}

1851
static int
1852 1853 1854
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1855
{
1856
	u32 *cs;
1857

1858 1859 1860
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1861

1862 1863
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_NON_SECURE_I965);
1864
	/* bit0-7 is the length on GEN6+ */
1865 1866
	*cs++ = offset;
	intel_ring_advance(req, cs);
1867

1868
	return 0;
1869 1870
}

1871 1872
/* Blitter support (SandyBridge+) */

1873
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
1874
{
1875
	u32 cmd, *cs;
1876

1877 1878 1879
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1880

1881
	cmd = MI_FLUSH_DW;
1882
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
1883
		cmd += 1;
1884 1885 1886 1887 1888 1889 1890 1891

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1892 1893 1894 1895 1896 1897
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1898
	if (mode & EMIT_INVALIDATE)
1899
		cmd |= MI_INVALIDATE_TLB;
1900 1901
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1902
	if (INTEL_GEN(req->i915) >= 8) {
1903 1904
		*cs++ = 0; /* upper addr */
		*cs++ = 0; /* value */
B
Ben Widawsky 已提交
1905
	} else  {
1906 1907
		*cs++ = 0;
		*cs++ = MI_NOOP;
B
Ben Widawsky 已提交
1908
	}
1909
	intel_ring_advance(req, cs);
R
Rodrigo Vivi 已提交
1910

1911
	return 0;
Z
Zou Nan hai 已提交
1912 1913
}

1914 1915 1916
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
1917
	struct drm_i915_gem_object *obj;
1918
	int ret, i;
1919

1920
	if (!i915.semaphores)
1921 1922
		return;

1923 1924 1925
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

1926
		obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1927 1928
		if (IS_ERR(obj))
			goto err;
1929

1930
		vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
1944 1945

	if (INTEL_GEN(dev_priv) >= 8) {
1946
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
1947

1948
		engine->semaphore.sync_to = gen8_ring_sync_to;
1949
		engine->semaphore.signal = gen8_xcs_signal;
1950 1951

		for (i = 0; i < I915_NUM_ENGINES; i++) {
1952
			u32 ring_offset;
1953 1954 1955 1956 1957 1958 1959 1960

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
1961
	} else if (INTEL_GEN(dev_priv) >= 6) {
1962
		engine->semaphore.sync_to = gen6_ring_sync_to;
1963
		engine->semaphore.signal = gen6_signal;
1964 1965 1966 1967 1968 1969 1970 1971

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
1972
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1973 1974 1975
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
1976 1977 1978 1979 1980
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1981
				},
1982 1983 1984 1985
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1986
				},
1987 1988 1989 1990
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1991
				},
1992 1993 1994 1995
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1996 1997 1998 1999 2000
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

2001
			if (i == engine->hw_id) {
2002 2003 2004
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
2005 2006
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2007 2008 2009 2010 2011
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2012
	}
2013 2014 2015 2016 2017 2018 2019 2020

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
2021 2022
}

2023 2024 2025
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2026 2027
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2028
	if (INTEL_GEN(dev_priv) >= 8) {
2029 2030
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2031 2032
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2033 2034
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2035 2036
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2037 2038
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2039
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2040
	} else if (INTEL_GEN(dev_priv) >= 3) {
2041 2042
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2043
	} else {
2044 2045
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2046 2047 2048
	}
}

2049 2050 2051
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2052 2053 2054
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2055
	engine->init_hw = init_ring_common;
2056
	engine->reset_hw = reset_ring_common;
2057

2058 2059 2060
	engine->context_pin = intel_ring_context_pin;
	engine->context_unpin = intel_ring_context_unpin;

2061 2062
	engine->request_alloc = ring_request_alloc;

2063
	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2064 2065 2066 2067
	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
	if (i915.semaphores) {
		int num_rings;

2068
		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

		num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
		if (INTEL_GEN(dev_priv) >= 8) {
			engine->emit_breadcrumb_sz += num_rings * 6;
		} else {
			engine->emit_breadcrumb_sz += num_rings * 3;
			if (num_rings & 1)
				engine->emit_breadcrumb_sz++;
		}
	}
2079
	engine->submit_request = i9xx_submit_request;
2080 2081

	if (INTEL_GEN(dev_priv) >= 8)
2082
		engine->emit_bb_start = gen8_emit_bb_start;
2083
	else if (INTEL_GEN(dev_priv) >= 6)
2084
		engine->emit_bb_start = gen6_emit_bb_start;
2085
	else if (INTEL_GEN(dev_priv) >= 4)
2086
		engine->emit_bb_start = i965_emit_bb_start;
2087
	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2088
		engine->emit_bb_start = i830_emit_bb_start;
2089
	else
2090
		engine->emit_bb_start = i915_emit_bb_start;
2091 2092
}

2093
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2094
{
2095
	struct drm_i915_private *dev_priv = engine->i915;
2096
	int ret;
2097

2098 2099
	intel_ring_default_vfuncs(dev_priv, engine);

2100 2101
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2102

2103
	if (INTEL_GEN(dev_priv) >= 8) {
2104
		engine->init_context = intel_rcs_ctx_init;
2105
		engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2106
		engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2107
		engine->emit_flush = gen8_render_ring_flush;
2108 2109 2110
		if (i915.semaphores) {
			int num_rings;

2111
			engine->semaphore.signal = gen8_rcs_signal;
2112 2113 2114 2115 2116

			num_rings =
				hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
			engine->emit_breadcrumb_sz += num_rings * 6;
		}
2117
	} else if (INTEL_GEN(dev_priv) >= 6) {
2118
		engine->init_context = intel_rcs_ctx_init;
2119
		engine->emit_flush = gen7_render_ring_flush;
2120
		if (IS_GEN6(dev_priv))
2121
			engine->emit_flush = gen6_render_ring_flush;
2122
	} else if (IS_GEN5(dev_priv)) {
2123
		engine->emit_flush = gen4_render_ring_flush;
2124
	} else {
2125
		if (INTEL_GEN(dev_priv) < 4)
2126
			engine->emit_flush = gen2_render_ring_flush;
2127
		else
2128
			engine->emit_flush = gen4_render_ring_flush;
2129
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2130
	}
B
Ben Widawsky 已提交
2131

2132
	if (IS_HASWELL(dev_priv))
2133
		engine->emit_bb_start = hsw_emit_bb_start;
2134

2135 2136
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2137

2138
	ret = intel_init_ring_buffer(engine);
2139 2140 2141
	if (ret)
		return ret;

2142
	if (INTEL_GEN(dev_priv) >= 6) {
2143
		ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2144 2145 2146
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2147
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2148 2149 2150 2151 2152
		if (ret)
			return ret;
	}

	return 0;
2153 2154
}

2155
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2156
{
2157
	struct drm_i915_private *dev_priv = engine->i915;
2158

2159 2160
	intel_ring_default_vfuncs(dev_priv, engine);

2161
	if (INTEL_GEN(dev_priv) >= 6) {
2162
		/* gen6 bsd needs a special wa for tail updates */
2163
		if (IS_GEN6(dev_priv))
2164
			engine->submit_request = gen6_bsd_submit_request;
2165
		engine->emit_flush = gen6_bsd_ring_flush;
2166
		if (INTEL_GEN(dev_priv) < 8)
2167
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2168
	} else {
2169
		engine->mmio_base = BSD_RING_BASE;
2170
		engine->emit_flush = bsd_ring_flush;
2171
		if (IS_GEN5(dev_priv))
2172
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2173
		else
2174
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2175 2176
	}

2177
	return intel_init_ring_buffer(engine);
2178
}
2179

2180
/**
2181
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2182
 */
2183
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2184
{
2185
	struct drm_i915_private *dev_priv = engine->i915;
2186 2187 2188

	intel_ring_default_vfuncs(dev_priv, engine);

2189
	engine->emit_flush = gen6_bsd_ring_flush;
2190

2191
	return intel_init_ring_buffer(engine);
2192 2193
}

2194
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2195
{
2196
	struct drm_i915_private *dev_priv = engine->i915;
2197 2198 2199

	intel_ring_default_vfuncs(dev_priv, engine);

2200
	engine->emit_flush = gen6_ring_flush;
2201
	if (INTEL_GEN(dev_priv) < 8)
2202
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2203

2204
	return intel_init_ring_buffer(engine);
2205
}
2206

2207
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2208
{
2209
	struct drm_i915_private *dev_priv = engine->i915;
2210 2211 2212

	intel_ring_default_vfuncs(dev_priv, engine);

2213
	engine->emit_flush = gen6_ring_flush;
2214

2215
	if (INTEL_GEN(dev_priv) < 8) {
2216
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2217 2218
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2219
	}
B
Ben Widawsky 已提交
2220

2221
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2222
}