intel_ringbuffer.c 57.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42 43 44
static unsigned int __intel_ring_space(unsigned int head,
				       unsigned int tail,
				       unsigned int size)
45
{
46 47 48 49 50 51 52
	/*
	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
	 * same cacheline, the Head Pointer must not be greater than the Tail
	 * Pointer."
	 */
	GEM_BUG_ON(!is_power_of_2(size));
	return (head - tail - CACHELINE_BYTES) & (size - 1);
53 54
}

55
unsigned int intel_ring_update_space(struct intel_ring *ring)
56
{
57 58 59 60 61 62
	unsigned int space;

	space = __intel_ring_space(ring->head, ring->emit, ring->size);

	ring->space = space;
	return space;
63 64
}

65
static int
66
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
67
{
68
	u32 cmd, *cs;
69 70 71

	cmd = MI_FLUSH;

72
	if (mode & EMIT_INVALIDATE)
73 74
		cmd |= MI_READ_FLUSH;

75 76 77
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
78

79 80 81
	*cs++ = cmd;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
82 83 84 85 86

	return 0;
}

static int
87
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
88
{
89
	u32 cmd, *cs;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126 127 128
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
129

130 131 132
	*cs++ = cmd;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	u32 scratch_addr =
178
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	u32 *cs;

	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0; /* low dword */
	*cs++ = 0; /* high dword */
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);

	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
204 205 206 207 208

	return 0;
}

static int
209
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
210
{
211
	u32 scratch_addr =
212
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
213
	u32 *cs, flags = 0;
214 215
	int ret;

216
	/* Force SNB workarounds for PIPE_CONTROL flushes */
217
	ret = intel_emit_post_sync_nonzero_flush(req);
218 219 220
	if (ret)
		return ret;

221 222 223 224
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
225
	if (mode & EMIT_FLUSH) {
226 227 228 229 230 231
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
232
		flags |= PIPE_CONTROL_CS_STALL;
233
	}
234
	if (mode & EMIT_INVALIDATE) {
235 236 237 238 239 240 241 242 243
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
244
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
245
	}
246

247 248 249
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
250

251 252 253 254 255
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	intel_ring_advance(req, cs);
256 257 258 259

	return 0;
}

260
static int
261
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
262
{
263
	u32 *cs;
264

265 266 267
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
268

269 270 271 272 273
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;
	intel_ring_advance(req, cs);
274 275 276 277

	return 0;
}

278
static int
279
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
280
{
281
	u32 scratch_addr =
282
		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
283
	u32 *cs, flags = 0;
284

285 286 287 288 289 290 291 292 293 294
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

295 296 297 298
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
299
	if (mode & EMIT_FLUSH) {
300 301
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
302
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
303
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
304
	}
305
	if (mode & EMIT_INVALIDATE) {
306 307 308 309 310 311
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
312
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
313 314 315 316
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
317
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
318

319 320
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

321 322 323
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
324
		gen7_render_ring_cs_stall_wa(req);
325 326
	}

327 328 329
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
330

331 332 333 334 335
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
	intel_ring_advance(req, cs);
336 337 338 339

	return 0;
}

340
static int
341
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
342
{
343
	u32 flags;
344
	u32 *cs;
345

346
	cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
347 348
	if (IS_ERR(cs))
		return PTR_ERR(cs);
349

350
	flags = PIPE_CONTROL_CS_STALL;
B
Ben Widawsky 已提交
351

352
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
353 354
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
355
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
356
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
357
	}
358
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
359 360 361 362 363 364 365 366
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
367 368

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
369 370 371 372
		cs = gen8_emit_pipe_control(cs,
					    PIPE_CONTROL_CS_STALL |
					    PIPE_CONTROL_STALL_AT_SCOREBOARD,
					    0);
B
Ben Widawsky 已提交
373 374
	}

375 376 377 378 379 380 381
	cs = gen8_emit_pipe_control(cs, flags,
				    i915_ggtt_offset(req->engine->scratch) +
				    2 * CACHELINE_BYTES);

	intel_ring_advance(req, cs);

	return 0;
B
Ben Widawsky 已提交
382 383
}

384
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
385
{
386
	struct drm_i915_private *dev_priv = engine->i915;
387 388 389
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
390
	if (INTEL_GEN(dev_priv) >= 4)
391 392 393 394
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

395
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
396
{
397
	struct drm_i915_private *dev_priv = engine->i915;
398
	i915_reg_t mmio;
399 400 401 402

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
403
	if (IS_GEN7(dev_priv)) {
404
		switch (engine->id) {
405 406 407 408 409 410
		/*
		 * No more rings exist on Gen7. Default case is only to shut up
		 * gcc switch check warning.
		 */
		default:
			GEM_BUG_ON(engine->id);
411 412 413 414 415 416 417 418 419 420 421 422 423
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
424
	} else if (IS_GEN6(dev_priv)) {
425
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
426 427
	} else {
		/* XXX: gen8 returns to sanity */
428
		mmio = RING_HWS_PGA(engine->mmio_base);
429 430
	}

431 432 433
	if (INTEL_GEN(dev_priv) >= 6)
		I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);

434
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
435 436 437 438 439 440 441 442 443
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
444
	if (IS_GEN(dev_priv, 6, 7)) {
445
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
446 447

		/* ring should be idle before issuing a sync flush*/
448
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
449 450 451 452

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
453 454 455
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
456
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
457
				  engine->name);
458 459 460
	}
}

461
static bool stop_ring(struct intel_engine_cs *engine)
462
{
463
	struct drm_i915_private *dev_priv = engine->i915;
464

465
	if (INTEL_GEN(dev_priv) > 2) {
466
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
467 468 469 470 471
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
472 473
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
474 475 476 477
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
478
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
479
				return false;
480 481
		}
	}
482

483 484
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
485
	I915_WRITE_TAIL(engine, 0);
486

487
	if (INTEL_GEN(dev_priv) > 2) {
488 489
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
490
	}
491

492
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
493
}
494

495
static int init_ring_common(struct intel_engine_cs *engine)
496
{
497
	struct drm_i915_private *dev_priv = engine->i915;
498
	struct intel_ring *ring = engine->buffer;
499 500
	int ret = 0;

501
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
502

503
	if (!stop_ring(engine)) {
504
		/* G45 ring initialization often fails to reset head to zero */
505 506
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
507 508 509 510 511
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
512

513
		if (!stop_ring(engine)) {
514 515
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
516 517 518 519 520
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
521 522
			ret = -EIO;
			goto out;
523
		}
524 525
	}

526
	if (HWS_NEEDS_PHYSICAL(dev_priv))
527
		ring_setup_phys_status_page(engine);
528 529
	else
		intel_ring_setup_status_page(engine);
530

531
	intel_engine_reset_breadcrumbs(engine);
532

533
	/* Enforce ordering by reading HEAD register back */
534
	I915_READ_HEAD(engine);
535

536 537 538 539
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
540
	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
541 542

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
543
	if (I915_READ_HEAD(engine))
544
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
545
			  engine->name, I915_READ_HEAD(engine));
546 547 548 549 550

	intel_ring_update_space(ring);
	I915_WRITE_HEAD(engine, ring->head);
	I915_WRITE_TAIL(engine, ring->tail);
	(void)I915_READ_TAIL(engine);
551

552
	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
553 554

	/* If the head is still not zero, the ring is dead */
555 556 557
	if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
				    RING_VALID, RING_VALID,
				    50)) {
558
		DRM_ERROR("%s initialization failed "
559
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
560 561 562
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
563 564
			  I915_READ_HEAD(engine), ring->head,
			  I915_READ_TAIL(engine), ring->tail,
565
			  I915_READ_START(engine),
566
			  i915_ggtt_offset(ring->vma));
567 568
		ret = -EIO;
		goto out;
569 570
	}

571
	intel_engine_init_hangcheck(engine);
572

573
out:
574
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
575 576

	return ret;
577 578
}

579 580 581
static void reset_ring_common(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
	/* Try to restore the logical GPU state to match the continuation
	 * of the request queue. If we skip the context/PD restore, then
	 * the next request may try to execute assuming that its context
	 * is valid and loaded on the GPU and so may try to access invalid
	 * memory, prompting repeated GPU hangs.
	 *
	 * If the request was guilty, we still restore the logical state
	 * in case the next request requires it (e.g. the aliasing ppgtt),
	 * but skip over the hung batch.
	 *
	 * If the request was innocent, we try to replay the request with
	 * the restored context.
	 */
	if (request) {
		struct drm_i915_private *dev_priv = request->i915;
		struct intel_context *ce = &request->ctx->engine[engine->id];
		struct i915_hw_ppgtt *ppgtt;

		/* FIXME consider gen8 reset */

		if (ce->state) {
			I915_WRITE(CCID,
				   i915_ggtt_offset(ce->state) |
				   BIT(8) /* must be set! */ |
				   CCID_EXTENDED_STATE_SAVE |
				   CCID_EXTENDED_STATE_RESTORE |
				   CCID_EN);
		}

		ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
		if (ppgtt) {
			u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;

			I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
			I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);

			/* Wait for the PD reload to complete */
			if (intel_wait_for_register(dev_priv,
						    RING_PP_DIR_BASE(engine),
						    BIT(0), 0,
						    10))
				DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
624

625 626 627 628
			ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
		}

		/* If the rq hung, jump to its breadcrumb and skip the batch */
629 630
		if (request->fence.error == -EIO)
			request->ring->head = request->postfix;
631 632 633
	} else {
		engine->legacy_active_context = NULL;
	}
634 635
}

636
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
637 638 639
{
	int ret;

640
	ret = intel_ring_workarounds_emit(req);
641 642 643
	if (ret != 0)
		return ret;

644
	ret = i915_gem_render_state_emit(req);
645
	if (ret)
646
		return ret;
647

648
	return 0;
649 650
}

651
static int init_render_ring(struct intel_engine_cs *engine)
652
{
653
	struct drm_i915_private *dev_priv = engine->i915;
654
	int ret = init_ring_common(engine);
655 656
	if (ret)
		return ret;
657

658
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
659
	if (IS_GEN(dev_priv, 4, 6))
660
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
661 662 663 664

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
665
	 *
666
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
667
	 */
668
	if (IS_GEN(dev_priv, 6, 7))
669 670
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

671
	/* Required for the hardware to program scanline values for waiting */
672
	/* WaEnableFlushTlbInvalidationMode:snb */
673
	if (IS_GEN6(dev_priv))
674
		I915_WRITE(GFX_MODE,
675
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
676

677
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
678
	if (IS_GEN7(dev_priv))
679
		I915_WRITE(GFX_MODE_GEN7,
680
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
681
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
682

683
	if (IS_GEN6(dev_priv)) {
684 685 686 687 688 689
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
690
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
691 692
	}

693
	if (IS_GEN(dev_priv, 6, 7))
694
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
695

696 697
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
698

699
	return init_workarounds_ring(engine);
700 701
}

702
static void render_ring_cleanup(struct intel_engine_cs *engine)
703
{
704
	struct drm_i915_private *dev_priv = engine->i915;
705

706
	i915_vma_unpin_and_release(&dev_priv->semaphore);
707 708
}

709
static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
710
{
711
	struct drm_i915_private *dev_priv = req->i915;
712
	struct intel_engine_cs *waiter;
713
	enum intel_engine_id id;
714

715
	for_each_engine(waiter, dev_priv, id) {
716
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
717 718 719
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

720 721 722 723 724 725 726 727 728 729
		*cs++ = GFX_OP_PIPE_CONTROL(6);
		*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
			PIPE_CONTROL_CS_STALL;
		*cs++ = lower_32_bits(gtt_offset);
		*cs++ = upper_32_bits(gtt_offset);
		*cs++ = req->global_seqno;
		*cs++ = 0;
		*cs++ = MI_SEMAPHORE_SIGNAL |
			MI_SEMAPHORE_TARGET(waiter->hw_id);
		*cs++ = 0;
730 731
	}

732
	return cs;
733 734
}

735
static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
736
{
737
	struct drm_i915_private *dev_priv = req->i915;
738
	struct intel_engine_cs *waiter;
739
	enum intel_engine_id id;
740

741
	for_each_engine(waiter, dev_priv, id) {
742
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
743 744 745
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

746 747 748 749 750 751 752
		*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
		*cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
		*cs++ = upper_32_bits(gtt_offset);
		*cs++ = req->global_seqno;
		*cs++ = MI_SEMAPHORE_SIGNAL |
			MI_SEMAPHORE_TARGET(waiter->hw_id);
		*cs++ = 0;
753 754
	}

755
	return cs;
756 757
}

758
static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
759
{
760
	struct drm_i915_private *dev_priv = req->i915;
761
	struct intel_engine_cs *engine;
762
	enum intel_engine_id id;
C
Chris Wilson 已提交
763
	int num_rings = 0;
764

765
	for_each_engine(engine, dev_priv, id) {
766 767 768 769
		i915_reg_t mbox_reg;

		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
			continue;
770

771
		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
772
		if (i915_mmio_reg_valid(mbox_reg)) {
773 774 775
			*cs++ = MI_LOAD_REGISTER_IMM(1);
			*cs++ = i915_mmio_reg_offset(mbox_reg);
			*cs++ = req->global_seqno;
C
Chris Wilson 已提交
776
			num_rings++;
777 778
		}
	}
C
Chris Wilson 已提交
779
	if (num_rings & 1)
780
		*cs++ = MI_NOOP;
781

782
	return cs;
783 784
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static void cancel_requests(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Mark all submitted requests as skipped. */
	list_for_each_entry(request, &engine->timeline->requests, link) {
		GEM_BUG_ON(!request->global_seqno);
		if (!i915_gem_request_completed(request))
			dma_fence_set_error(&request->fence, -EIO);
	}
	/* Remaining _unready_ requests will be nop'ed when submitted */

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

803 804 805 806
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

807 808
	i915_gem_request_submit(request);

809 810
	I915_WRITE_TAIL(request->engine,
			intel_ring_set_tail(request->ring, request->tail));
811 812
}

813
static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
814
{
815 816 817 818
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
	*cs++ = req->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
819

820
	req->tail = intel_ring_offset(req, cs);
821
	assert_ring_tail_valid(req->ring, req->tail);
822 823
}

824 825
static const int i9xx_emit_breadcrumb_sz = 4;

826
/**
827
 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
828 829 830 831 832 833
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
834
static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
835
{
C
Chris Wilson 已提交
836
	return i9xx_emit_breadcrumb(req,
837
				    req->engine->semaphore.signal(req, cs));
838 839
}

C
Chris Wilson 已提交
840
static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
841
					u32 *cs)
842 843
{
	struct intel_engine_cs *engine = req->engine;
844

C
Chris Wilson 已提交
845
	if (engine->semaphore.signal)
846 847 848 849 850 851 852 853
		cs = engine->semaphore.signal(req, cs);

	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(engine);
	*cs++ = 0;
	*cs++ = req->global_seqno;
854
	/* We're thrashing one dword of HWS. */
855 856 857
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
858

859
	req->tail = intel_ring_offset(req, cs);
860
	assert_ring_tail_valid(req->ring, req->tail);
861 862
}

863 864
static const int gen8_render_emit_breadcrumb_sz = 8;

865 866 867 868 869 870 871
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
872 873

static int
874 875
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
876
{
877 878
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
879
	struct i915_hw_ppgtt *ppgtt;
880
	u32 *cs;
881

882 883 884
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
885

886 887 888 889 890 891
	*cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_SAD_GTE_SDD;
	*cs++ = signal->global_seqno;
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
892 893 894 895 896 897

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
898 899 900
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
901 902 903
	return 0;
}

904
static int
905 906
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
907
{
908 909 910
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
911
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
912
	u32 *cs;
913

914
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
915

916 917 918
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
919

920
	*cs++ = dw1 | wait_mbox;
921 922 923 924
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
925 926 927 928
	*cs++ = signal->global_seqno - 1;
	*cs++ = 0;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
929 930 931 932

	return 0;
}

933
static void
934
gen5_seqno_barrier(struct intel_engine_cs *engine)
935
{
936 937 938
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
939
	 *
940 941 942 943 944 945 946
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
947
	 */
948
	usleep_range(125, 250);
949 950
}

951 952
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
953
{
954
	struct drm_i915_private *dev_priv = engine->i915;
955

956 957
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
958 959 960 961 962 963 964 965 966
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
967 968 969
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
970
	 */
971
	spin_lock_irq(&dev_priv->uncore.lock);
972
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
973
	spin_unlock_irq(&dev_priv->uncore.lock);
974 975
}

976 977
static void
gen5_irq_enable(struct intel_engine_cs *engine)
978
{
979
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
980 981 982
}

static void
983
gen5_irq_disable(struct intel_engine_cs *engine)
984
{
985
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
986 987
}

988 989
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
990
{
991
	struct drm_i915_private *dev_priv = engine->i915;
992

993 994 995
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
996 997
}

998
static void
999
i9xx_irq_disable(struct intel_engine_cs *engine)
1000
{
1001
	struct drm_i915_private *dev_priv = engine->i915;
1002

1003 1004
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1005 1006
}

1007 1008
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1009
{
1010
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1011

1012 1013 1014
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1015 1016 1017
}

static void
1018
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1019
{
1020
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1021

1022 1023
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1024 1025
}

1026
static int
1027
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1028
{
1029
	u32 *cs;
1030

1031 1032 1033
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1034

1035 1036 1037
	*cs++ = MI_FLUSH;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1038
	return 0;
1039 1040
}

1041 1042
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1043
{
1044
	struct drm_i915_private *dev_priv = engine->i915;
1045

1046 1047 1048
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1049
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1050 1051 1052
}

static void
1053
gen6_irq_disable(struct intel_engine_cs *engine)
1054
{
1055
	struct drm_i915_private *dev_priv = engine->i915;
1056

1057
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1058
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1059 1060
}

1061 1062
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1063
{
1064
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1065

1066
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1067
	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1068 1069 1070
}

static void
1071
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1072
{
1073
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1074

1075
	I915_WRITE_IMR(engine, ~0);
1076
	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1077 1078
}

1079 1080
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1081
{
1082
	struct drm_i915_private *dev_priv = engine->i915;
1083

1084 1085 1086
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1087
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1088 1089 1090
}

static void
1091
gen8_irq_disable(struct intel_engine_cs *engine)
1092
{
1093
	struct drm_i915_private *dev_priv = engine->i915;
1094

1095
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1096 1097
}

1098
static int
1099 1100 1101
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1102
{
1103
	u32 *cs;
1104

1105 1106 1107
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1108

1109 1110 1111 1112
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
	*cs++ = offset;
	intel_ring_advance(req, cs);
1113

1114 1115 1116
	return 0;
}

1117 1118
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1119 1120
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1121
static int
1122 1123 1124
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1125
{
1126
	u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1127

1128 1129 1130
	cs = intel_ring_begin(req, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1131

1132
	/* Evict the invalid PTE TLBs */
1133 1134 1135 1136 1137 1138 1139
	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
	*cs++ = cs_offset;
	*cs++ = 0xdeadbeef;
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1140

1141
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1142 1143 1144
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1145 1146 1147
		cs = intel_ring_begin(req, 6 + 2);
		if (IS_ERR(cs))
			return PTR_ERR(cs);
1148 1149 1150 1151 1152

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
		*cs++ = cs_offset;
		*cs++ = 4096;
		*cs++ = offset;

		*cs++ = MI_FLUSH;
		*cs++ = MI_NOOP;
		intel_ring_advance(req, cs);
1163 1164

		/* ... and execute it. */
1165
		offset = cs_offset;
1166
	}
1167

1168 1169 1170
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1171

1172 1173 1174 1175
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
	intel_ring_advance(req, cs);
1176

1177 1178 1179 1180
	return 0;
}

static int
1181 1182 1183
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1184
{
1185
	u32 *cs;
1186

1187 1188 1189
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1190

1191 1192 1193 1194
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
	intel_ring_advance(req, cs);
1195 1196 1197 1198 1199

	return 0;
}


1200

1201 1202 1203
int intel_ring_pin(struct intel_ring *ring,
		   struct drm_i915_private *i915,
		   unsigned int offset_bias)
1204
{
1205
	enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1206
	struct i915_vma *vma = ring->vma;
1207
	unsigned int flags;
1208
	void *addr;
1209 1210
	int ret;

1211
	GEM_BUG_ON(ring->vaddr);
1212

1213

1214 1215 1216
	flags = PIN_GLOBAL;
	if (offset_bias)
		flags |= PIN_OFFSET_BIAS | offset_bias;
1217
	if (vma->obj->stolen)
1218
		flags |= PIN_MAPPABLE;
1219

1220
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1221
		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1222 1223 1224 1225
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1226
			return ret;
1227
	}
1228

1229 1230 1231
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1232

1233
	if (i915_vma_is_map_and_fenceable(vma))
1234 1235
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1236
		addr = i915_gem_object_pin_map(vma->obj, map);
1237 1238
	if (IS_ERR(addr))
		goto err;
1239

1240
	ring->vaddr = addr;
1241
	return 0;
1242

1243 1244 1245
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1246 1247
}

1248 1249 1250 1251 1252 1253 1254 1255 1256
void intel_ring_reset(struct intel_ring *ring, u32 tail)
{
	GEM_BUG_ON(!list_empty(&ring->request_list));
	ring->tail = tail;
	ring->head = tail;
	ring->emit = tail;
	intel_ring_update_space(ring);
}

1257 1258 1259 1260 1261
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1262 1263 1264
	/* Discard any unused bytes beyond that submitted to hw. */
	intel_ring_reset(ring, ring->tail);

1265
	if (i915_vma_is_map_and_fenceable(ring->vma))
1266
		i915_vma_unpin_iomap(ring->vma);
1267 1268
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1269 1270
	ring->vaddr = NULL;

1271
	i915_vma_unpin(ring->vma);
1272 1273
}

1274 1275
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1276
{
1277
	struct drm_i915_gem_object *obj;
1278
	struct i915_vma *vma;
1279

1280
	obj = i915_gem_object_create_stolen(dev_priv, size);
1281
	if (!obj)
1282
		obj = i915_gem_object_create_internal(dev_priv, size);
1283 1284
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1285

1286 1287 1288
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

1289
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1290 1291 1292 1293
	if (IS_ERR(vma))
		goto err;

	return vma;
1294

1295 1296 1297
err:
	i915_gem_object_put(obj);
	return vma;
1298 1299
}

1300 1301
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1302
{
1303
	struct intel_ring *ring;
1304
	struct i915_vma *vma;
1305

1306
	GEM_BUG_ON(!is_power_of_2(size));
1307
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1308

1309
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1310
	if (!ring)
1311 1312
		return ERR_PTR(-ENOMEM);

1313 1314
	INIT_LIST_HEAD(&ring->request_list);

1315 1316 1317 1318 1319 1320
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1321
	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1322 1323 1324 1325
		ring->effective_size -= 2 * CACHELINE_BYTES;

	intel_ring_update_space(ring);

1326 1327
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1328
		kfree(ring);
1329
		return ERR_CAST(vma);
1330
	}
1331
	ring->vma = vma;
1332 1333 1334 1335 1336

	return ring;
}

void
1337
intel_ring_free(struct intel_ring *ring)
1338
{
1339 1340 1341 1342 1343
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1344 1345 1346
	kfree(ring);
}

1347
static int context_pin(struct i915_gem_context *ctx)
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
{
	struct i915_vma *vma = ctx->engine[RCS].state;
	int ret;

	/* Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
		if (ret)
			return ret;
	}

1362 1363
	return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
			    PIN_GLOBAL | PIN_HIGH);
1364 1365
}

1366 1367 1368 1369 1370 1371 1372
static struct i915_vma *
alloc_context_vma(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;

1373
	obj = i915_gem_object_create(i915, engine->context_size);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	if (IS_ERR(obj))
		return ERR_CAST(obj);

	/*
	 * Try to make the context utilize L3 as well as LLC.
	 *
	 * On VLV we don't have L3 controls in the PTEs so we
	 * shouldn't touch the cache level, especially as that
	 * would make the object snooped which might have a
	 * negative performance impact.
	 *
	 * Snooping is required on non-llc platforms in execlist
	 * mode, but since all GGTT accesses use PAT entry 0 we
	 * get snooping anyway regardless of cache_level.
	 *
	 * This is only applicable for Ivy Bridge devices since
	 * later platforms don't have L3 control bits in the PTE.
	 */
	if (IS_IVYBRIDGE(i915)) {
		/* Ignore any error, regard it as a simple optimisation */
		i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
	if (IS_ERR(vma))
		i915_gem_object_put(obj);

	return vma;
}

1404 1405 1406
static struct intel_ring *
intel_ring_context_pin(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
1407 1408 1409 1410
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

1411
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1412

1413 1414
	if (likely(ce->pin_count++))
		goto out;
1415
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1416

1417
	if (!ce->state && engine->context_size) {
1418 1419 1420 1421 1422
		struct i915_vma *vma;

		vma = alloc_context_vma(engine);
		if (IS_ERR(vma)) {
			ret = PTR_ERR(vma);
1423
			goto err;
1424 1425 1426 1427 1428
		}

		ce->state = vma;
	}

1429
	if (ce->state) {
1430
		ret = context_pin(ctx);
1431
		if (ret)
1432
			goto err;
1433 1434

		ce->state->obj->mm.dirty = true;
1435 1436
	}

1437 1438 1439 1440 1441 1442 1443
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
1444
	if (i915_gem_context_is_kernel(ctx))
1445 1446
		ce->initialised = true;

1447
	i915_gem_context_get(ctx);
1448

1449 1450 1451 1452 1453
out:
	/* One ringbuffer to rule them all */
	return engine->buffer;

err:
1454
	ce->pin_count = 0;
1455
	return ERR_PTR(ret);
1456 1457
}

1458 1459
static void intel_ring_context_unpin(struct intel_engine_cs *engine,
				     struct i915_gem_context *ctx)
1460 1461 1462
{
	struct intel_context *ce = &ctx->engine[engine->id];

1463
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1464
	GEM_BUG_ON(ce->pin_count == 0);
1465 1466 1467 1468 1469

	if (--ce->pin_count)
		return;

	if (ce->state)
1470
		i915_vma_unpin(ce->state);
1471

1472
	i915_gem_context_put(ctx);
1473 1474
}

1475
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1476
{
1477
	struct intel_ring *ring;
1478
	int err;
1479

1480 1481
	intel_engine_setup_common(engine);

1482 1483 1484
	err = intel_engine_init_common(engine);
	if (err)
		goto err;
1485

1486 1487
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
1488
		err = PTR_ERR(ring);
1489
		goto err;
1490 1491
	}

1492
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1493 1494 1495 1496 1497
	err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
	if (err)
		goto err_ring;

	GEM_BUG_ON(engine->buffer);
1498
	engine->buffer = ring;
1499

1500
	return 0;
1501

1502 1503 1504 1505 1506
err_ring:
	intel_ring_free(ring);
err:
	intel_engine_cleanup_common(engine);
	return err;
1507 1508
}

1509
void intel_engine_cleanup(struct intel_engine_cs *engine)
1510
{
1511
	struct drm_i915_private *dev_priv = engine->i915;
1512

1513 1514
	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
		(I915_READ_MODE(engine) & MODE_IDLE) == 0);
1515

1516 1517
	intel_ring_unpin(engine->buffer);
	intel_ring_free(engine->buffer);
1518

1519 1520
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
1521

1522
	intel_engine_cleanup_common(engine);
1523

1524 1525
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1526 1527
}

1528 1529 1530
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1531
	enum intel_engine_id id;
1532

1533
	/* Restart from the beginning of the rings for convenience */
1534
	for_each_engine(engine, dev_priv, id)
1535
		intel_ring_reset(engine->buffer, 0);
1536 1537
}

1538
static int ring_request_alloc(struct drm_i915_gem_request *request)
1539
{
1540
	u32 *cs;
1541

1542 1543
	GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);

1544 1545 1546 1547
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1548
	request->reserved_space += LEGACY_REQUEST_SIZE;
1549

1550 1551 1552
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1553

1554
	request->reserved_space -= LEGACY_REQUEST_SIZE;
1555
	return 0;
1556 1557
}

1558 1559
static noinline int wait_for_space(struct drm_i915_gem_request *req,
				   unsigned int bytes)
1560
{
1561
	struct intel_ring *ring = req->ring;
1562
	struct drm_i915_gem_request *target;
1563 1564 1565
	long timeout;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
1566

1567
	if (intel_ring_update_space(ring) >= bytes)
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
1579
	GEM_BUG_ON(!req->reserved_space);
1580

1581
	list_for_each_entry(target, &ring->request_list, ring_link) {
1582
		/* Would completion of this request free enough space? */
1583 1584
		if (bytes <= __intel_ring_space(target->postfix,
						ring->emit, ring->size))
1585
			break;
1586
	}
1587

1588
	if (WARN_ON(&target->ring_link == &ring->request_list))
1589 1590
		return -ENOSPC;

1591 1592 1593 1594 1595
	timeout = i915_wait_request(target,
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
1596 1597 1598 1599 1600 1601

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
1602 1603
}

1604 1605
u32 *intel_ring_begin(struct drm_i915_gem_request *req,
		      unsigned int num_dwords)
M
Mika Kuoppala 已提交
1606
{
1607
	struct intel_ring *ring = req->ring;
1608 1609 1610 1611
	const unsigned int remain_usable = ring->effective_size - ring->emit;
	const unsigned int bytes = num_dwords * sizeof(u32);
	unsigned int need_wrap = 0;
	unsigned int total_bytes;
1612
	u32 *cs;
1613

1614 1615 1616
	/* Packets must be qword aligned. */
	GEM_BUG_ON(num_dwords & 1);

1617
	total_bytes = bytes + req->reserved_space;
1618
	GEM_BUG_ON(total_bytes > ring->effective_size);
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	if (unlikely(total_bytes > remain_usable)) {
		const int remain_actual = ring->size - ring->emit;

		if (bytes > remain_usable) {
			/*
			 * Not enough space for the basic request. So need to
			 * flush out the remainder and then wait for
			 * base + reserved.
			 */
			total_bytes += remain_actual;
			need_wrap = remain_actual | 1;
		} else  {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So we don't need an immediate
			 * wrap and only need to effectively wait for the
			 * reserved size from the start of ringbuffer.
			 */
			total_bytes = req->reserved_space + remain_actual;
		}
M
Mika Kuoppala 已提交
1640 1641
	}

1642 1643
	if (unlikely(total_bytes > ring->space)) {
		int ret = wait_for_space(req, total_bytes);
M
Mika Kuoppala 已提交
1644
		if (unlikely(ret))
1645
			return ERR_PTR(ret);
M
Mika Kuoppala 已提交
1646 1647
	}

1648
	if (unlikely(need_wrap)) {
1649 1650 1651
		need_wrap &= ~1;
		GEM_BUG_ON(need_wrap > ring->space);
		GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1652

1653
		/* Fill the tail with MI_NOOP */
1654
		memset(ring->vaddr + ring->emit, 0, need_wrap);
1655
		ring->emit = 0;
1656
		ring->space -= need_wrap;
1657
	}
1658

1659
	GEM_BUG_ON(ring->emit > ring->size - bytes);
1660
	GEM_BUG_ON(ring->space < bytes);
1661
	cs = ring->vaddr + ring->emit;
1662
	GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1663
	ring->emit += bytes;
1664
	ring->space -= bytes;
1665 1666

	return cs;
1667
}
1668

1669
/* Align the ring tail to a cacheline boundary */
1670
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1671
{
1672
	int num_dwords =
1673
		(req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1674
	u32 *cs;
1675 1676 1677 1678

	if (num_dwords == 0)
		return 0;

1679
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1680 1681 1682
	cs = intel_ring_begin(req, num_dwords);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1683 1684

	while (num_dwords--)
1685
		*cs++ = MI_NOOP;
1686

1687
	intel_ring_advance(req, cs);
1688 1689 1690 1691

	return 0;
}

1692
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1693
{
1694
	struct drm_i915_private *dev_priv = request->i915;
1695

1696 1697
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

1698
       /* Every tail move must follow the sequence below */
1699 1700 1701 1702

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
1703 1704
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1705 1706

	/* Clear the context id. Here be magic! */
1707
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1708

1709
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1710 1711 1712 1713 1714
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_BSD_SLEEP_PSMI_CONTROL,
					 GEN6_BSD_SLEEP_INDICATOR,
					 0,
					 1000, 0, NULL))
1715
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1716

1717
	/* Now that the ring is fully powered up, update the tail */
1718
	i9xx_submit_request(request);
1719 1720 1721 1722

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
1723 1724 1725 1726
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1727 1728
}

1729
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1730
{
1731
	u32 cmd, *cs;
1732

1733 1734 1735
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1736

1737
	cmd = MI_FLUSH_DW;
1738
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
1739
		cmd += 1;
1740 1741 1742 1743 1744 1745 1746 1747

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1748 1749 1750 1751 1752 1753
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1754
	if (mode & EMIT_INVALIDATE)
1755 1756
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

1757 1758
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1759
	if (INTEL_GEN(req->i915) >= 8) {
1760 1761
		*cs++ = 0; /* upper addr */
		*cs++ = 0; /* value */
B
Ben Widawsky 已提交
1762
	} else  {
1763 1764
		*cs++ = 0;
		*cs++ = MI_NOOP;
B
Ben Widawsky 已提交
1765
	}
1766
	intel_ring_advance(req, cs);
1767
	return 0;
1768 1769
}

1770
static int
1771 1772 1773
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1774
{
1775
	bool ppgtt = USES_PPGTT(req->i915) &&
1776
			!(dispatch_flags & I915_DISPATCH_SECURE);
1777
	u32 *cs;
1778

1779 1780 1781
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1782 1783

	/* FIXME(BDW): Address space and security selectors. */
1784 1785 1786 1787 1788 1789
	*cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
		I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1790 1791 1792 1793

	return 0;
}

1794
static int
1795 1796 1797
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
1798
{
1799
	u32 *cs;
1800

1801 1802 1803
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1804

1805 1806 1807 1808
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
		(dispatch_flags & I915_DISPATCH_RS ?
		MI_BATCH_RESOURCE_STREAMER : 0);
1809
	/* bit0-7 is the length on GEN6+ */
1810 1811
	*cs++ = offset;
	intel_ring_advance(req, cs);
1812 1813 1814 1815

	return 0;
}

1816
static int
1817 1818 1819
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1820
{
1821
	u32 *cs;
1822

1823 1824 1825
	cs = intel_ring_begin(req, 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1826

1827 1828
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_NON_SECURE_I965);
1829
	/* bit0-7 is the length on GEN6+ */
1830 1831
	*cs++ = offset;
	intel_ring_advance(req, cs);
1832

1833
	return 0;
1834 1835
}

1836 1837
/* Blitter support (SandyBridge+) */

1838
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
1839
{
1840
	u32 cmd, *cs;
1841

1842 1843 1844
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1845

1846
	cmd = MI_FLUSH_DW;
1847
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
1848
		cmd += 1;
1849 1850 1851 1852 1853 1854 1855 1856

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1857 1858 1859 1860 1861 1862
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1863
	if (mode & EMIT_INVALIDATE)
1864
		cmd |= MI_INVALIDATE_TLB;
1865 1866
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1867
	if (INTEL_GEN(req->i915) >= 8) {
1868 1869
		*cs++ = 0; /* upper addr */
		*cs++ = 0; /* value */
B
Ben Widawsky 已提交
1870
	} else  {
1871 1872
		*cs++ = 0;
		*cs++ = MI_NOOP;
B
Ben Widawsky 已提交
1873
	}
1874
	intel_ring_advance(req, cs);
R
Rodrigo Vivi 已提交
1875

1876
	return 0;
Z
Zou Nan hai 已提交
1877 1878
}

1879 1880 1881
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
1882
	struct drm_i915_gem_object *obj;
1883
	int ret, i;
1884

1885
	if (!i915.semaphores)
1886 1887
		return;

1888 1889 1890
	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
		struct i915_vma *vma;

1891
		obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1892 1893
		if (IS_ERR(obj))
			goto err;
1894

1895
		vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		if (IS_ERR(vma))
			goto err_obj;

		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			goto err_obj;

		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
		if (ret)
			goto err_obj;

		dev_priv->semaphore = vma;
	}
1909 1910

	if (INTEL_GEN(dev_priv) >= 8) {
1911
		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
1912

1913
		engine->semaphore.sync_to = gen8_ring_sync_to;
1914
		engine->semaphore.signal = gen8_xcs_signal;
1915 1916

		for (i = 0; i < I915_NUM_ENGINES; i++) {
1917
			u32 ring_offset;
1918 1919 1920 1921 1922 1923 1924 1925

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
1926
	} else if (INTEL_GEN(dev_priv) >= 6) {
1927
		engine->semaphore.sync_to = gen6_ring_sync_to;
1928
		engine->semaphore.signal = gen6_signal;
1929 1930 1931 1932 1933 1934 1935 1936

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
1937
		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1938 1939 1940
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
1941 1942 1943 1944 1945
			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
				[RCS_HW] = {
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1946
				},
1947 1948 1949 1950
				[VCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1951
				},
1952 1953 1954 1955
				[BCS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1956
				},
1957 1958 1959 1960
				[VECS_HW] = {
					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1961 1962 1963 1964 1965
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

1966
			if (i == engine->hw_id) {
1967 1968 1969
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
1970 1971
				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1972 1973 1974 1975 1976
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
1977
	}
1978 1979 1980 1981 1982 1983 1984 1985

	return;

err_obj:
	i915_gem_object_put(obj);
err:
	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
	i915.semaphores = 0;
1986 1987
}

1988 1989 1990
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
1991 1992
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

1993
	if (INTEL_GEN(dev_priv) >= 8) {
1994 1995
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
1996 1997
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
1998 1999
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2000 2001
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2002 2003
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2004
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2005
	} else if (INTEL_GEN(dev_priv) >= 3) {
2006 2007
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2008
	} else {
2009 2010
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2011 2012 2013
	}
}

2014 2015 2016
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = i9xx_submit_request;
2017
	engine->cancel_requests = cancel_requests;
2018 2019 2020 2021 2022
}

static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = gen6_bsd_submit_request;
2023
	engine->cancel_requests = cancel_requests;
2024 2025
}

2026 2027 2028
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2029 2030 2031
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2032
	engine->init_hw = init_ring_common;
2033
	engine->reset_hw = reset_ring_common;
2034

2035 2036 2037
	engine->context_pin = intel_ring_context_pin;
	engine->context_unpin = intel_ring_context_unpin;

2038 2039
	engine->request_alloc = ring_request_alloc;

2040
	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2041 2042 2043 2044
	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
	if (i915.semaphores) {
		int num_rings;

2045
		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2046

2047
		num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2048 2049 2050 2051 2052 2053 2054 2055
		if (INTEL_GEN(dev_priv) >= 8) {
			engine->emit_breadcrumb_sz += num_rings * 6;
		} else {
			engine->emit_breadcrumb_sz += num_rings * 3;
			if (num_rings & 1)
				engine->emit_breadcrumb_sz++;
		}
	}
2056 2057

	engine->set_default_submission = i9xx_set_default_submission;
2058 2059

	if (INTEL_GEN(dev_priv) >= 8)
2060
		engine->emit_bb_start = gen8_emit_bb_start;
2061
	else if (INTEL_GEN(dev_priv) >= 6)
2062
		engine->emit_bb_start = gen6_emit_bb_start;
2063
	else if (INTEL_GEN(dev_priv) >= 4)
2064
		engine->emit_bb_start = i965_emit_bb_start;
2065
	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2066
		engine->emit_bb_start = i830_emit_bb_start;
2067
	else
2068
		engine->emit_bb_start = i915_emit_bb_start;
2069 2070
}

2071
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2072
{
2073
	struct drm_i915_private *dev_priv = engine->i915;
2074
	int ret;
2075

2076 2077
	intel_ring_default_vfuncs(dev_priv, engine);

2078 2079
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2080

2081
	if (INTEL_GEN(dev_priv) >= 8) {
2082
		engine->init_context = intel_rcs_ctx_init;
2083
		engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2084
		engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2085
		engine->emit_flush = gen8_render_ring_flush;
2086 2087 2088
		if (i915.semaphores) {
			int num_rings;

2089
			engine->semaphore.signal = gen8_rcs_signal;
2090

2091
			num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2092
			engine->emit_breadcrumb_sz += num_rings * 8;
2093
		}
2094
	} else if (INTEL_GEN(dev_priv) >= 6) {
2095
		engine->init_context = intel_rcs_ctx_init;
2096
		engine->emit_flush = gen7_render_ring_flush;
2097
		if (IS_GEN6(dev_priv))
2098
			engine->emit_flush = gen6_render_ring_flush;
2099
	} else if (IS_GEN5(dev_priv)) {
2100
		engine->emit_flush = gen4_render_ring_flush;
2101
	} else {
2102
		if (INTEL_GEN(dev_priv) < 4)
2103
			engine->emit_flush = gen2_render_ring_flush;
2104
		else
2105
			engine->emit_flush = gen4_render_ring_flush;
2106
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2107
	}
B
Ben Widawsky 已提交
2108

2109
	if (IS_HASWELL(dev_priv))
2110
		engine->emit_bb_start = hsw_emit_bb_start;
2111

2112 2113
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2114

2115
	ret = intel_init_ring_buffer(engine);
2116 2117 2118
	if (ret)
		return ret;

2119
	if (INTEL_GEN(dev_priv) >= 6) {
2120
		ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2121 2122 2123
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2124
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2125 2126 2127 2128 2129
		if (ret)
			return ret;
	}

	return 0;
2130 2131
}

2132
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2133
{
2134
	struct drm_i915_private *dev_priv = engine->i915;
2135

2136 2137
	intel_ring_default_vfuncs(dev_priv, engine);

2138
	if (INTEL_GEN(dev_priv) >= 6) {
2139
		/* gen6 bsd needs a special wa for tail updates */
2140
		if (IS_GEN6(dev_priv))
2141
			engine->set_default_submission = gen6_bsd_set_default_submission;
2142
		engine->emit_flush = gen6_bsd_ring_flush;
2143
		if (INTEL_GEN(dev_priv) < 8)
2144
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2145
	} else {
2146
		engine->mmio_base = BSD_RING_BASE;
2147
		engine->emit_flush = bsd_ring_flush;
2148
		if (IS_GEN5(dev_priv))
2149
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2150
		else
2151
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2152 2153
	}

2154
	return intel_init_ring_buffer(engine);
2155
}
2156

2157
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2158
{
2159
	struct drm_i915_private *dev_priv = engine->i915;
2160 2161 2162

	intel_ring_default_vfuncs(dev_priv, engine);

2163
	engine->emit_flush = gen6_ring_flush;
2164
	if (INTEL_GEN(dev_priv) < 8)
2165
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2166

2167
	return intel_init_ring_buffer(engine);
2168
}
2169

2170
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2171
{
2172
	struct drm_i915_private *dev_priv = engine->i915;
2173 2174 2175

	intel_ring_default_vfuncs(dev_priv, engine);

2176
	engine->emit_flush = gen6_ring_flush;
2177

2178
	if (INTEL_GEN(dev_priv) < 8) {
2179
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2180 2181
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2182
	}
B
Ben Widawsky 已提交
2183

2184
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2185
}