slab_common.c 34.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20
#include <linux/debugfs.h>
21 22 23
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
24
#include <linux/memcontrol.h>
25 26

#define CREATE_TRACE_POINTS
27
#include <trace/events/kmem.h>
28

29 30
#include "internal.h"

31 32 33
#include "slab.h"

enum slab_state slab_state;
34 35
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
36
struct kmem_cache *kmem_cache;
37

38 39 40 41 42 43 44 45
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

46 47 48 49 50
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

51 52 53 54
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
55
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
56
		SLAB_FAILSLAB | SLAB_KASAN)
57

V
Vladimir Davydov 已提交
58
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
59
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
60 61 62 63

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
64
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
65 66 67

static int __init setup_slab_nomerge(char *str)
{
68
	slab_nomerge = true;
69 70 71 72 73 74 75 76 77
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

78 79 80 81 82 83 84 85 86
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

87
#ifdef CONFIG_DEBUG_VM
88
static int kmem_cache_sanity_check(const char *name, unsigned int size)
89 90 91
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
92 93
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
94
	}
95

96
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
97 98 99
	return 0;
}
#else
100
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
101 102 103
{
	return 0;
}
104 105
#endif

106 107 108 109
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

110 111 112 113 114 115
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
116 117
}

118
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
119 120 121 122 123 124 125 126
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
127
			return 0;
128 129
		}
	}
130
	return i;
131 132
}

133
#ifdef CONFIG_MEMCG_KMEM
134 135

LIST_HEAD(slab_root_caches);
136

137
void slab_init_memcg_params(struct kmem_cache *s)
138
{
T
Tejun Heo 已提交
139
	s->memcg_params.root_cache = NULL;
140
	s->memcg_params.memcg_cache = NULL;
141 142
}

143 144
static void init_memcg_params(struct kmem_cache *s,
			      struct kmem_cache *root_cache)
145
{
146
	if (root_cache)
147
		s->memcg_params.root_cache = root_cache;
148 149
	else
		slab_init_memcg_params(s);
150 151
}

152
void memcg_link_cache(struct kmem_cache *s)
153
{
154
	if (is_root_cache(s))
155 156 157 158 159
		list_add(&s->root_caches_node, &slab_root_caches);
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
160
	if (is_root_cache(s))
161
		list_del(&s->root_caches_node);
162
}
163
#else
164 165
static inline void init_memcg_params(struct kmem_cache *s,
				     struct kmem_cache *root_cache)
166 167
{
}
168

169
static inline void memcg_unlink_cache(struct kmem_cache *s)
170 171
{
}
172
#endif /* CONFIG_MEMCG_KMEM */
173

174 175 176 177
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
178 179
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
180 181 182 183 184 185 186 187 188
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
189
		unsigned int ralign;
190 191 192 193 194 195 196 197 198 199 200 201 202

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

217 218 219
	if (s->usersize)
		return 1;

220 221 222 223 224 225 226 227 228
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

229
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
230
		slab_flags_t flags, const char *name, void (*ctor)(void *))
231 232 233
{
	struct kmem_cache *s;

234
	if (slab_nomerge)
235 236 237 238 239 240 241 242 243 244
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

245 246 247
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

248
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

267 268 269 270
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

271 272 273 274 275
		return s;
	}
	return NULL;
}

276
static struct kmem_cache *create_cache(const char *name,
277
		unsigned int object_size, unsigned int align,
278 279
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
280
		struct kmem_cache *root_cache)
281 282 283 284
{
	struct kmem_cache *s;
	int err;

285 286 287
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

288 289 290 291 292 293
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
294
	s->size = s->object_size = object_size;
295 296
	s->align = align;
	s->ctor = ctor;
297 298
	s->useroffset = useroffset;
	s->usersize = usersize;
299

300
	init_memcg_params(s, root_cache);
301 302 303 304 305 306
	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
307
	memcg_link_cache(s);
308 309 310 311 312 313
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
314
	kmem_cache_free(kmem_cache, s);
315 316
	goto out;
}
317

318 319 320
/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
321 322 323 324
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
325 326
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
327 328 329 330 331 332 333 334 335 336
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
337
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
338 339 340 341 342
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
343 344
 *
 * Return: a pointer to the cache on success, NULL on failure.
345
 */
346
struct kmem_cache *
347 348
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
349 350
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
351
		  void (*ctor)(void *))
352
{
353
	struct kmem_cache *s = NULL;
354
	const char *cache_name;
355
	int err;
356

357
	get_online_cpus();
358
	get_online_mems();
359
	memcg_get_cache_ids();
360

361
	mutex_lock(&slab_mutex);
362

363
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
364
	if (err) {
365
		goto out_unlock;
A
Andrew Morton 已提交
366
	}
367

368 369 370 371 372 373
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

374 375 376 377 378 379 380
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
381

382 383 384 385 386 387 388
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
389
	if (s)
390
		goto out_unlock;
391

392
	cache_name = kstrdup_const(name, GFP_KERNEL);
393 394 395 396
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
397

398
	s = create_cache(cache_name, size,
399
			 calculate_alignment(flags, align, size),
400
			 flags, useroffset, usersize, ctor, NULL);
401 402
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
403
		kfree_const(cache_name);
404
	}
405 406

out_unlock:
407
	mutex_unlock(&slab_mutex);
408

409
	memcg_put_cache_ids();
410
	put_online_mems();
411 412
	put_online_cpus();

413
	if (err) {
414 415 416 417
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
418
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
419 420 421 422 423
				name, err);
			dump_stack();
		}
		return NULL;
	}
424 425
	return s;
}
426 427
EXPORT_SYMBOL(kmem_cache_create_usercopy);

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
453
struct kmem_cache *
454
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
455 456
		slab_flags_t flags, void (*ctor)(void *))
{
457
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
458 459
					  ctor);
}
460
EXPORT_SYMBOL(kmem_cache_create);
461

462
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
463
{
464 465
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
466

467
	/*
468
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
469 470 471 472 473 474 475 476 477 478
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
479

480 481 482 483 484 485 486 487 488 489 490 491
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
492 493
}

494
static int shutdown_cache(struct kmem_cache *s)
495
{
496 497 498
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

499 500
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
501

502
	memcg_unlink_cache(s);
503
	list_del(&s->list);
504

505
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
506 507 508
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
509 510 511
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
512
#ifdef SLAB_SUPPORTS_SYSFS
513
		sysfs_slab_unlink(s);
514
		sysfs_slab_release(s);
515 516 517 518
#else
		slab_kmem_cache_release(s);
#endif
	}
519 520

	return 0;
521 522
}

523
#ifdef CONFIG_MEMCG_KMEM
524
/*
525
 * memcg_create_kmem_cache - Create a cache for non-root memory cgroups.
526 527 528
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
529 530
 * requests going all non-root memory cgroups to @root_cache. The new cache
 * inherits properties from its parent.
531
 */
532
void memcg_create_kmem_cache(struct kmem_cache *root_cache)
533
{
534
	struct kmem_cache *s = NULL;
535 536 537
	char *cache_name;

	get_online_cpus();
538 539
	get_online_mems();

540 541
	mutex_lock(&slab_mutex);

542
	if (root_cache->memcg_params.memcg_cache)
543 544
		goto out_unlock;

545
	cache_name = kasprintf(GFP_KERNEL, "%s-memcg", root_cache->name);
546 547 548
	if (!cache_name)
		goto out_unlock;

549
	s = create_cache(cache_name, root_cache->object_size,
550
			 root_cache->align,
551
			 root_cache->flags & CACHE_CREATE_MASK,
552
			 root_cache->useroffset, root_cache->usersize,
553
			 root_cache->ctor, root_cache);
554 555 556 557 558
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
559
	if (IS_ERR(s)) {
560
		kfree(cache_name);
561
		goto out_unlock;
562
	}
563

564
	/*
565
	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
566 567 568 569
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
570
	root_cache->memcg_params.memcg_cache = s;
571

572 573
out_unlock:
	mutex_unlock(&slab_mutex);
574 575

	put_online_mems();
576
	put_online_cpus();
577
}
578

579
static int shutdown_memcg_caches(struct kmem_cache *s)
580 581 582
{
	BUG_ON(!is_root_cache(s));

583 584
	if (s->memcg_params.memcg_cache)
		WARN_ON(shutdown_cache(s->memcg_params.memcg_cache));
585 586 587

	return 0;
}
588

589 590
static void flush_memcg_workqueue(struct kmem_cache *s)
{
591 592 593 594 595
	/*
	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
	 * deactivates the memcg kmem_caches through workqueue. Make sure all
	 * previous workitems on workqueue are processed.
	 */
596 597
	if (likely(memcg_kmem_cache_wq))
		flush_workqueue(memcg_kmem_cache_wq);
598
}
599
#else
600
static inline int shutdown_memcg_caches(struct kmem_cache *s)
601 602 603
{
	return 0;
}
604 605 606 607

static inline void flush_memcg_workqueue(struct kmem_cache *s)
{
}
608
#endif /* CONFIG_MEMCG_KMEM */
609

610 611
void slab_kmem_cache_release(struct kmem_cache *s)
{
612
	__kmem_cache_release(s);
613
	kfree_const(s->name);
614 615 616
	kmem_cache_free(kmem_cache, s);
}

617 618
void kmem_cache_destroy(struct kmem_cache *s)
{
619
	int err;
620

621 622 623
	if (unlikely(!s))
		return;

624 625
	flush_memcg_workqueue(s);

626
	get_online_cpus();
627 628
	get_online_mems();

629
	mutex_lock(&slab_mutex);
630

631
	s->refcount--;
632 633 634
	if (s->refcount)
		goto out_unlock;

635
	err = shutdown_memcg_caches(s);
636
	if (!err)
637
		err = shutdown_cache(s);
638

639
	if (err) {
J
Joe Perches 已提交
640 641
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
642 643
		dump_stack();
	}
644 645
out_unlock:
	mutex_unlock(&slab_mutex);
646

647
	put_online_mems();
648 649 650 651
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

652 653 654 655 656 657
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
658 659
 *
 * Return: %0 if all slabs were released, non-zero otherwise
660 661 662 663 664 665 666
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
667
	kasan_cache_shrink(cachep);
668
	ret = __kmem_cache_shrink(cachep);
669 670 671 672 673 674
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

675
/**
676
 * kmem_cache_shrink_all - shrink root and memcg caches
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
 * @s: The cache pointer
 */
void kmem_cache_shrink_all(struct kmem_cache *s)
{
	struct kmem_cache *c;

	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
		kmem_cache_shrink(s);
		return;
	}

	get_online_cpus();
	get_online_mems();
	kasan_cache_shrink(s);
	__kmem_cache_shrink(s);

693 694
	c = memcg_cache(s);
	if (c) {
695 696 697 698 699 700 701
		kasan_cache_shrink(c);
		__kmem_cache_shrink(c);
	}
	put_online_mems();
	put_online_cpus();
}

702
bool slab_is_available(void)
703 704 705
{
	return slab_state >= UP;
}
706

707 708
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
709 710 711
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
712 713
{
	int err;
714
	unsigned int align = ARCH_KMALLOC_MINALIGN;
715 716 717

	s->name = name;
	s->size = s->object_size = size;
718 719 720 721 722 723 724 725 726

	/*
	 * For power of two sizes, guarantee natural alignment for kmalloc
	 * caches, regardless of SL*B debugging options.
	 */
	if (is_power_of_2(size))
		align = max(align, size);
	s->align = calculate_alignment(flags, align, size);

727 728
	s->useroffset = useroffset;
	s->usersize = usersize;
729 730 731

	slab_init_memcg_params(s);

732 733 734
	err = __kmem_cache_create(s, flags);

	if (err)
735
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
736 737 738 739 740
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

741 742 743
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
744 745 746 747 748 749
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

750
	create_boot_cache(s, name, size, flags, useroffset, usersize);
751
	list_add(&s->list, &slab_caches);
752
	memcg_link_cache(s);
753 754 755 756
	s->refcount = 1;
	return s;
}

757
struct kmem_cache *
758 759
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
760 761
EXPORT_SYMBOL(kmalloc_caches);

762 763 764 765 766 767
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
768
static u8 size_index[24] __ro_after_init = {
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

795
static inline unsigned int size_index_elem(unsigned int bytes)
796 797 798 799 800 801 802 803 804 805
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
806
	unsigned int index;
807 808 809 810 811 812

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
813
	} else {
814
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
815
			return NULL;
816
		index = fls(size - 1);
817
	}
818

819
	return kmalloc_caches[kmalloc_type(flags)][index];
820 821
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
#ifdef CONFIG_ZONE_DMA
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
	.size = __size,						\
}
#else
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.size = __size,						\
}
#endif

839 840 841 842 843
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
844
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	INIT_KMALLOC_INFO(0, 0),
	INIT_KMALLOC_INFO(96, 96),
	INIT_KMALLOC_INFO(192, 192),
	INIT_KMALLOC_INFO(8, 8),
	INIT_KMALLOC_INFO(16, 16),
	INIT_KMALLOC_INFO(32, 32),
	INIT_KMALLOC_INFO(64, 64),
	INIT_KMALLOC_INFO(128, 128),
	INIT_KMALLOC_INFO(256, 256),
	INIT_KMALLOC_INFO(512, 512),
	INIT_KMALLOC_INFO(1024, 1k),
	INIT_KMALLOC_INFO(2048, 2k),
	INIT_KMALLOC_INFO(4096, 4k),
	INIT_KMALLOC_INFO(8192, 8k),
	INIT_KMALLOC_INFO(16384, 16k),
	INIT_KMALLOC_INFO(32768, 32k),
	INIT_KMALLOC_INFO(65536, 64k),
	INIT_KMALLOC_INFO(131072, 128k),
	INIT_KMALLOC_INFO(262144, 256k),
	INIT_KMALLOC_INFO(524288, 512k),
	INIT_KMALLOC_INFO(1048576, 1M),
	INIT_KMALLOC_INFO(2097152, 2M),
	INIT_KMALLOC_INFO(4194304, 4M),
	INIT_KMALLOC_INFO(8388608, 8M),
	INIT_KMALLOC_INFO(16777216, 16M),
	INIT_KMALLOC_INFO(33554432, 32M),
	INIT_KMALLOC_INFO(67108864, 64M)
872 873
};

874
/*
875 876 877 878 879 880 881 882 883
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
884
 */
885
void __init setup_kmalloc_cache_index_table(void)
886
{
887
	unsigned int i;
888

889 890 891 892
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
893
		unsigned int elem = size_index_elem(i);
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
919 920
}

921
static void __init
922
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
923
{
924
	if (type == KMALLOC_RECLAIM)
925 926
		flags |= SLAB_RECLAIM_ACCOUNT;

927 928
	kmalloc_caches[type][idx] = create_kmalloc_cache(
					kmalloc_info[idx].name[type],
929 930
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
931 932
}

933 934 935 936 937
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
938
void __init create_kmalloc_caches(slab_flags_t flags)
939
{
940 941
	int i;
	enum kmalloc_cache_type type;
942

943 944 945 946
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
947

948 949 950 951 952 953 954 955 956 957 958 959
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
960 961
	}

962 963 964 965 966
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
967
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
968 969

		if (s) {
970
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
971
				kmalloc_info[i].name[KMALLOC_DMA],
972
				kmalloc_info[i].size,
973 974
				SLAB_CACHE_DMA | flags, 0,
				kmalloc_info[i].size);
975 976 977 978
		}
	}
#endif
}
979 980
#endif /* !CONFIG_SLOB */

981 982 983 984 985 986 987 988 989 990 991 992
gfp_t kmalloc_fix_flags(gfp_t flags)
{
	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;

	flags &= ~GFP_SLAB_BUG_MASK;
	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
			invalid_mask, &invalid_mask, flags, &flags);
	dump_stack();

	return flags;
}

V
Vladimir Davydov 已提交
993 994 995 996 997
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
998 999
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
1000
	void *ret = NULL;
V
Vladimir Davydov 已提交
1001 1002
	struct page *page;

1003 1004 1005
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);

V
Vladimir Davydov 已提交
1006
	flags |= __GFP_COMP;
1007
	page = alloc_pages(flags, order);
1008 1009
	if (likely(page)) {
		ret = page_address(page);
1010 1011
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
				    PAGE_SIZE << order);
1012
	}
1013
	ret = kasan_kmalloc_large(ret, size, flags);
1014
	/* As ret might get tagged, call kmemleak hook after KASAN. */
1015
	kmemleak_alloc(ret, size, 1, flags);
V
Vladimir Davydov 已提交
1016 1017 1018 1019
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1020 1021 1022 1023 1024 1025 1026 1027 1028
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1029

1030 1031 1032
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1033
			       unsigned int count)
1034 1035
{
	unsigned int rand;
1036
	unsigned int i;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1077
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1078
#ifdef CONFIG_SLAB
1079
#define SLABINFO_RIGHTS (0600)
1080
#else
1081
#define SLABINFO_RIGHTS (0400)
1082 1083
#endif

1084
static void print_slabinfo_header(struct seq_file *m)
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1095
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1096 1097 1098
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1099
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1100 1101 1102 1103 1104
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1105
void *slab_start(struct seq_file *m, loff_t *pos)
1106 1107
{
	mutex_lock(&slab_mutex);
1108
	return seq_list_start(&slab_root_caches, *pos);
1109 1110
}

1111
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1112
{
1113
	return seq_list_next(p, &slab_root_caches, pos);
1114 1115
}

1116
void slab_stop(struct seq_file *m, void *p)
1117 1118 1119 1120
{
	mutex_unlock(&slab_mutex);
}

1121 1122 1123 1124 1125 1126 1127 1128 1129
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1130 1131
	c = memcg_cache(s);
	if (c) {
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1143
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1144
{
1145 1146 1147 1148 1149
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1150 1151
	memcg_accumulate_slabinfo(s, &sinfo);

1152
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1153
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1154 1155 1156 1157 1158 1159 1160 1161
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1162 1163
}

1164
static int slab_show(struct seq_file *m, void *p)
1165
{
1166
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1167

1168
	if (p == slab_root_caches.next)
1169
		print_slabinfo_header(m);
1170
	cache_show(s, m);
1171 1172 1173
	return 0;
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

1208
#if defined(CONFIG_MEMCG_KMEM)
1209 1210
int memcg_slab_show(struct seq_file *m, void *p)
{
1211 1212 1213 1214
	/*
	 * Deprecated.
	 * Please, take a look at tools/cgroup/slabinfo.py .
	 */
1215
	return 0;
1216
}
1217
#endif
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1233
	.start = slab_start,
1234 1235
	.next = slab_next,
	.stop = slab_stop,
1236
	.show = slab_show,
1237 1238 1239 1240 1241 1242 1243
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

1244
static const struct proc_ops slabinfo_proc_ops = {
1245
	.proc_flags	= PROC_ENTRY_PERMANENT,
1246 1247 1248 1249 1250
	.proc_open	= slabinfo_open,
	.proc_read	= seq_read,
	.proc_write	= slabinfo_write,
	.proc_lseek	= seq_lseek,
	.proc_release	= seq_release,
1251 1252 1253 1254
};

static int __init slab_proc_init(void)
{
1255
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1256 1257 1258
	return 0;
}
module_init(slab_proc_init);
1259 1260 1261

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
/*
1262
 * Display information about kmem caches that have memcg cache.
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
 */
static int memcg_slabinfo_show(struct seq_file *m, void *unused)
{
	struct kmem_cache *s, *c;
	struct slabinfo sinfo;

	mutex_lock(&slab_mutex);
	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
	seq_puts(m, " <active_slabs> <num_slabs>\n");
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
		/*
1274
		 * Skip kmem caches that don't have the memcg cache.
1275
		 */
1276
		if (!s->memcg_params.memcg_cache)
1277 1278 1279 1280 1281 1282 1283 1284
			continue;

		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(s, &sinfo);
		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
			   sinfo.active_slabs, sinfo.num_slabs);

1285 1286 1287 1288 1289 1290 1291
		c = s->memcg_params.memcg_cache;
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);
		seq_printf(m, "%-17s %4d %6lu %6lu %6lu %6lu\n",
			   cache_name(c), root_mem_cgroup->css.id,
			   sinfo.active_objs, sinfo.num_objs,
			   sinfo.active_slabs, sinfo.num_slabs);
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	}
	mutex_unlock(&slab_mutex);
	return 0;
}
DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);

static int __init memcg_slabinfo_init(void)
{
	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
			    NULL, NULL, &memcg_slabinfo_fops);
	return 0;
}

late_initcall(memcg_slabinfo_init);
#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
Y
Yang Shi 已提交
1307
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1308 1309 1310 1311 1312

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
1313
	size_t ks;
1314

1315
	ks = ksize(p);
1316

1317
	if (ks >= new_size) {
1318
		p = kasan_krealloc((void *)p, new_size, flags);
1319
		return (void *)p;
1320
	}
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
1339 1340
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
1352
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1353 1354 1355 1356 1357 1358 1359
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
1360
 * kfree_sensitive - Clear sensitive information in memory before freeing
1361 1362 1363
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
1364
 * If @p is %NULL, kfree_sensitive() does nothing.
1365 1366 1367 1368 1369
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
1370
void kfree_sensitive(const void *p)
1371 1372 1373 1374 1375
{
	size_t ks;
	void *mem = (void *)p;

	ks = ksize(mem);
1376 1377
	if (ks)
		memzero_explicit(mem, ks);
1378 1379
	kfree(mem);
}
1380
EXPORT_SYMBOL(kfree_sensitive);
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	size_t size;

	/*
	 * We need to check that the pointed to object is valid, and only then
	 * unpoison the shadow memory below. We use __kasan_check_read(), to
	 * generate a more useful report at the time ksize() is called (rather
	 * than later where behaviour is undefined due to potential
	 * use-after-free or double-free).
	 *
	 * If the pointed to memory is invalid we return 0, to avoid users of
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
1413
	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1414 1415 1416
		return 0;

	size = __ksize(objp);
1417 1418 1419 1420 1421 1422 1423 1424 1425
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(objp, size);
	return size;
}
EXPORT_SYMBOL(ksize);

1426 1427 1428 1429 1430 1431 1432
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1433 1434 1435 1436 1437 1438 1439 1440

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);