slab_common.c 44.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20
#include <linux/debugfs.h>
21 22 23
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
24
#include <linux/memcontrol.h>
25 26

#define CREATE_TRACE_POINTS
27
#include <trace/events/kmem.h>
28

29 30
#include "internal.h"

31 32 33
#include "slab.h"

enum slab_state slab_state;
34 35
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
36
struct kmem_cache *kmem_cache;
37

38 39 40 41 42 43 44 45
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

46 47 48 49 50
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

51 52 53 54
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
55
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
56
		SLAB_FAILSLAB | SLAB_KASAN)
57

V
Vladimir Davydov 已提交
58
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
59
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
60 61 62 63

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
64
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
65 66 67

static int __init setup_slab_nomerge(char *str)
{
68
	slab_nomerge = true;
69 70 71 72 73 74 75 76 77
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

78 79 80 81 82 83 84 85 86
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

87
#ifdef CONFIG_DEBUG_VM
88
static int kmem_cache_sanity_check(const char *name, unsigned int size)
89 90 91
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
92 93
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
94
	}
95

96
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
97 98 99
	return 0;
}
#else
100
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
101 102 103
{
	return 0;
}
104 105
#endif

106 107 108 109
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

110 111 112 113 114 115
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
116 117
}

118
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
119 120 121 122 123 124 125 126
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
127
			return 0;
128 129
		}
	}
130
	return i;
131 132
}

133
#ifdef CONFIG_MEMCG_KMEM
134 135

LIST_HEAD(slab_root_caches);
136
static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
137

138 139
static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);

140
void slab_init_memcg_params(struct kmem_cache *s)
141
{
T
Tejun Heo 已提交
142
	s->memcg_params.root_cache = NULL;
143
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
144
	INIT_LIST_HEAD(&s->memcg_params.children);
145
	s->memcg_params.dying = false;
146 147 148
}

static int init_memcg_params(struct kmem_cache *s,
149
			     struct kmem_cache *root_cache)
150 151
{
	struct memcg_cache_array *arr;
152

T
Tejun Heo 已提交
153
	if (root_cache) {
154 155 156 157 158 159
		int ret = percpu_ref_init(&s->memcg_params.refcnt,
					  kmemcg_cache_shutdown,
					  0, GFP_KERNEL);
		if (ret)
			return ret;

160
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
161
		INIT_LIST_HEAD(&s->memcg_params.children_node);
162
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
163
		return 0;
164
	}
165

166
	slab_init_memcg_params(s);
167

168 169
	if (!memcg_nr_cache_ids)
		return 0;
170

171 172 173
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
174 175
	if (!arr)
		return -ENOMEM;
176

177
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
178 179 180
	return 0;
}

181
static void destroy_memcg_params(struct kmem_cache *s)
182
{
183
	if (is_root_cache(s)) {
184
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
185 186 187
	} else {
		mem_cgroup_put(s->memcg_params.memcg);
		WRITE_ONCE(s->memcg_params.memcg, NULL);
188
		percpu_ref_exit(&s->memcg_params.refcnt);
189
	}
190 191 192 193 194 195 196 197
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
198 199
}

200
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
201
{
202
	struct memcg_cache_array *old, *new;
203

204 205
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
206
	if (!new)
207 208
		return -ENOMEM;

209 210 211 212 213
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
214

215 216
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
217
		call_rcu(&old->rcu, free_memcg_params);
218 219 220
	return 0;
}

221 222 223 224 225
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

226
	mutex_lock(&slab_mutex);
227
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
228
		ret = update_memcg_params(s, num_memcgs);
229 230 231 232 233
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
234
			break;
235 236 237 238
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
239

240
void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
241
{
242 243 244
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
245
		css_get(&memcg->css);
246
		s->memcg_params.memcg = memcg;
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
262
}
263
#else
264
static inline int init_memcg_params(struct kmem_cache *s,
265
				    struct kmem_cache *root_cache)
266 267 268 269
{
	return 0;
}

270
static inline void destroy_memcg_params(struct kmem_cache *s)
271 272
{
}
273

274
static inline void memcg_unlink_cache(struct kmem_cache *s)
275 276
{
}
277
#endif /* CONFIG_MEMCG_KMEM */
278

279 280 281 282
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
283 284
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
285 286 287 288 289 290 291 292 293
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
294
		unsigned int ralign;
295 296 297 298 299 300 301 302 303 304 305 306 307

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

322 323 324
	if (s->usersize)
		return 1;

325 326 327 328 329 330
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

331 332 333 334 335 336 337 338
#ifdef CONFIG_MEMCG_KMEM
	/*
	 * Skip the dying kmem_cache.
	 */
	if (s->memcg_params.dying)
		return 1;
#endif

339 340 341
	return 0;
}

342
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
343
		slab_flags_t flags, const char *name, void (*ctor)(void *))
344 345 346
{
	struct kmem_cache *s;

347
	if (slab_nomerge)
348 349 350 351 352 353 354 355 356 357
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

358 359 360
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

361
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

380 381 382 383
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

384 385 386 387 388
		return s;
	}
	return NULL;
}

389
static struct kmem_cache *create_cache(const char *name,
390
		unsigned int object_size, unsigned int align,
391 392
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
393
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
394 395 396 397
{
	struct kmem_cache *s;
	int err;

398 399 400
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

401 402 403 404 405 406
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
407
	s->size = s->object_size = object_size;
408 409
	s->align = align;
	s->ctor = ctor;
410 411
	s->useroffset = useroffset;
	s->usersize = usersize;
412

413
	err = init_memcg_params(s, root_cache);
414 415 416 417 418 419 420 421 422
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
423
	memcg_link_cache(s, memcg);
424 425 426 427 428 429
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
430
	destroy_memcg_params(s);
431
	kmem_cache_free(kmem_cache, s);
432 433
	goto out;
}
434

435 436 437
/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
438 439 440 441
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
442 443
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
444 445 446 447 448 449 450 451 452 453
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
454
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
455 456 457 458 459
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
460 461
 *
 * Return: a pointer to the cache on success, NULL on failure.
462
 */
463
struct kmem_cache *
464 465
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
466 467
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
468
		  void (*ctor)(void *))
469
{
470
	struct kmem_cache *s = NULL;
471
	const char *cache_name;
472
	int err;
473

474
	get_online_cpus();
475
	get_online_mems();
476
	memcg_get_cache_ids();
477

478
	mutex_lock(&slab_mutex);
479

480
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
481
	if (err) {
482
		goto out_unlock;
A
Andrew Morton 已提交
483
	}
484

485 486 487 488 489 490
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

491 492 493 494 495 496 497
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
498

499 500 501 502 503 504 505
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
506
	if (s)
507
		goto out_unlock;
508

509
	cache_name = kstrdup_const(name, GFP_KERNEL);
510 511 512 513
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
514

515
	s = create_cache(cache_name, size,
516
			 calculate_alignment(flags, align, size),
517
			 flags, useroffset, usersize, ctor, NULL, NULL);
518 519
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
520
		kfree_const(cache_name);
521
	}
522 523

out_unlock:
524
	mutex_unlock(&slab_mutex);
525

526
	memcg_put_cache_ids();
527
	put_online_mems();
528 529
	put_online_cpus();

530
	if (err) {
531 532 533 534
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
535
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
536 537 538 539 540
				name, err);
			dump_stack();
		}
		return NULL;
	}
541 542
	return s;
}
543 544
EXPORT_SYMBOL(kmem_cache_create_usercopy);

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
570
struct kmem_cache *
571
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
572 573
		slab_flags_t flags, void (*ctor)(void *))
{
574
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
575 576
					  ctor);
}
577
EXPORT_SYMBOL(kmem_cache_create);
578

579
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
580
{
581 582
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
583

584
	/*
585
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
586 587 588 589 590 591 592 593 594 595
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
596

597 598 599 600 601 602 603 604 605 606 607 608
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
609 610
}

611
static int shutdown_cache(struct kmem_cache *s)
612
{
613 614 615
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

616 617
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
618

619
	memcg_unlink_cache(s);
620
	list_del(&s->list);
621

622
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
623 624 625
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
626 627 628
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
629
#ifdef SLAB_SUPPORTS_SYSFS
630
		sysfs_slab_unlink(s);
631
		sysfs_slab_release(s);
632 633 634 635
#else
		slab_kmem_cache_release(s);
#endif
	}
636 637

	return 0;
638 639
}

640
#ifdef CONFIG_MEMCG_KMEM
641
/*
642
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
643 644 645 646 647 648 649
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
650 651
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
652
{
653
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
654
	struct cgroup_subsys_state *css = &memcg->css;
655
	struct memcg_cache_array *arr;
656
	struct kmem_cache *s = NULL;
657
	char *cache_name;
658
	int idx;
659 660

	get_online_cpus();
661 662
	get_online_mems();

663 664
	mutex_lock(&slab_mutex);

665
	/*
666
	 * The memory cgroup could have been offlined while the cache
667 668
	 * creation work was pending.
	 */
669
	if (memcg->kmem_state != KMEM_ONLINE)
670 671
		goto out_unlock;

672 673 674 675
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

676 677 678 679 680
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
681
	if (arr->entries[idx])
682 683
		goto out_unlock;

684
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
685 686
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
687 688 689
	if (!cache_name)
		goto out_unlock;

690
	s = create_cache(cache_name, root_cache->object_size,
691
			 root_cache->align,
692
			 root_cache->flags & CACHE_CREATE_MASK,
693
			 root_cache->useroffset, root_cache->usersize,
694
			 root_cache->ctor, memcg, root_cache);
695 696 697 698 699
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
700
	if (IS_ERR(s)) {
701
		kfree(cache_name);
702
		goto out_unlock;
703
	}
704

705
	/*
706
	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
707 708 709 710
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
711
	arr->entries[idx] = s;
712

713 714
out_unlock:
	mutex_unlock(&slab_mutex);
715 716

	put_online_mems();
717
	put_online_cpus();
718
}
719

720
static void kmemcg_workfn(struct work_struct *work)
721 722
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
723
					    memcg_params.work);
724 725 726 727 728

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);
729
	s->memcg_params.work_fn(s);
730 731 732 733 734 735
	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();
}

736
static void kmemcg_rcufn(struct rcu_head *head)
737 738
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
739
					    memcg_params.rcu_head);
740 741

	/*
742
	 * We need to grab blocking locks.  Bounce to ->work.  The
743
	 * work item shares the space with the RCU head and can't be
744
	 * initialized earlier.
745
	 */
746 747
	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
748 749
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
{
	WARN_ON(shutdown_cache(s));
}

static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
{
	struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
					    memcg_params.refcnt);
	unsigned long flags;

	spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
	if (s->memcg_params.root_cache->memcg_params.dying)
		goto unlock;

	s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);

unlock:
	spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
}

static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
{
	__kmemcg_cache_deactivate_after_rcu(s);
	percpu_ref_kill(&s->memcg_params.refcnt);
}

779
static void kmemcg_cache_deactivate(struct kmem_cache *s)
780
{
781
	if (WARN_ON_ONCE(is_root_cache(s)))
782 783
		return;

784
	__kmemcg_cache_deactivate(s);
785
	s->flags |= SLAB_DEACTIVATED;
786

787 788 789 790 791 792
	/*
	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
	 * flag and make sure that no new kmem_cache deactivation tasks
	 * are queued (see flush_memcg_workqueue() ).
	 */
	spin_lock_irq(&memcg_kmem_wq_lock);
793
	if (s->memcg_params.root_cache->memcg_params.dying)
794
		goto unlock;
795

796
	s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
797
	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
798 799
unlock:
	spin_unlock_irq(&memcg_kmem_wq_lock);
800 801
}

802 803
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
804 805 806
{
	int idx;
	struct memcg_cache_array *arr;
807
	struct kmem_cache *s, *c;
808
	unsigned int nr_reparented;
809 810 811

	idx = memcg_cache_id(memcg);

812 813 814
	get_online_cpus();
	get_online_mems();

815
	mutex_lock(&slab_mutex);
816
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
817 818
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
819 820 821 822
		c = arr->entries[idx];
		if (!c)
			continue;

823
		kmemcg_cache_deactivate(c);
824 825
		arr->entries[idx] = NULL;
	}
826 827 828 829 830 831 832 833 834 835 836 837
	nr_reparented = 0;
	list_for_each_entry(s, &memcg->kmem_caches,
			    memcg_params.kmem_caches_node) {
		WRITE_ONCE(s->memcg_params.memcg, parent);
		css_put(&memcg->css);
		nr_reparented++;
	}
	if (nr_reparented) {
		list_splice_init(&memcg->kmem_caches,
				 &parent->kmem_caches);
		css_get_many(&parent->css, nr_reparented);
	}
838
	mutex_unlock(&slab_mutex);
839 840 841

	put_online_mems();
	put_online_cpus();
842 843
}

844
static int shutdown_memcg_caches(struct kmem_cache *s)
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
863
		if (shutdown_cache(c))
864 865 866 867 868
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
869
			list_move(&c->memcg_params.children_node, &busy);
870 871 872 873 874 875 876 877 878 879 880 881 882 883
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
884 885
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
886
		shutdown_cache(c);
887

T
Tejun Heo 已提交
888
	list_splice(&busy, &s->memcg_params.children);
889 890 891 892 893

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
894
	if (!list_empty(&s->memcg_params.children))
895 896 897
		return -EBUSY;
	return 0;
}
898

899
static void memcg_set_kmem_cache_dying(struct kmem_cache *s)
900
{
901
	spin_lock_irq(&memcg_kmem_wq_lock);
902
	s->memcg_params.dying = true;
903
	spin_unlock_irq(&memcg_kmem_wq_lock);
904
}
905

906 907
static void flush_memcg_workqueue(struct kmem_cache *s)
{
908
	/*
909
	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
910 911
	 * sure all registered rcu callbacks have been invoked.
	 */
912
	rcu_barrier();
913 914 915 916 917 918

	/*
	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
	 * deactivates the memcg kmem_caches through workqueue. Make sure all
	 * previous workitems on workqueue are processed.
	 */
919 920
	if (likely(memcg_kmem_cache_wq))
		flush_workqueue(memcg_kmem_cache_wq);
921 922 923 924 925 926 927 928 929 930 931 932

	/*
	 * If we're racing with children kmem_cache deactivation, it might
	 * take another rcu grace period to complete their destruction.
	 * At this moment the corresponding percpu_ref_kill() call should be
	 * done, but it might take another rcu grace period to complete
	 * switching to the atomic mode.
	 * Please, note that we check without grabbing the slab_mutex. It's safe
	 * because at this moment the children list can't grow.
	 */
	if (!list_empty(&s->memcg_params.children))
		rcu_barrier();
933
}
934
#else
935
static inline int shutdown_memcg_caches(struct kmem_cache *s)
936 937 938
{
	return 0;
}
939
#endif /* CONFIG_MEMCG_KMEM */
940

941 942
void slab_kmem_cache_release(struct kmem_cache *s)
{
943
	__kmem_cache_release(s);
944
	destroy_memcg_params(s);
945
	kfree_const(s->name);
946 947 948
	kmem_cache_free(kmem_cache, s);
}

949 950
void kmem_cache_destroy(struct kmem_cache *s)
{
951
	int err;
952

953 954 955
	if (unlikely(!s))
		return;

956
	get_online_cpus();
957 958
	get_online_mems();

959
	mutex_lock(&slab_mutex);
960

961
	s->refcount--;
962 963 964
	if (s->refcount)
		goto out_unlock;

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
#ifdef CONFIG_MEMCG_KMEM
	memcg_set_kmem_cache_dying(s);

	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();

	flush_memcg_workqueue(s);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);
#endif

981
	err = shutdown_memcg_caches(s);
982
	if (!err)
983
		err = shutdown_cache(s);
984

985
	if (err) {
J
Joe Perches 已提交
986 987
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
988 989
		dump_stack();
	}
990 991
out_unlock:
	mutex_unlock(&slab_mutex);
992

993
	put_online_mems();
994 995 996 997
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

998 999 1000 1001 1002 1003
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
1004 1005
 *
 * Return: %0 if all slabs were released, non-zero otherwise
1006 1007 1008 1009 1010 1011 1012
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
1013
	kasan_cache_shrink(cachep);
1014
	ret = __kmem_cache_shrink(cachep);
1015 1016 1017 1018 1019 1020
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/**
 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
 * @s: The cache pointer
 */
void kmem_cache_shrink_all(struct kmem_cache *s)
{
	struct kmem_cache *c;

	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
		kmem_cache_shrink(s);
		return;
	}

	get_online_cpus();
	get_online_mems();
	kasan_cache_shrink(s);
	__kmem_cache_shrink(s);

	/*
	 * We have to take the slab_mutex to protect from the memcg list
	 * modification.
	 */
	mutex_lock(&slab_mutex);
	for_each_memcg_cache(c, s) {
		/*
		 * Don't need to shrink deactivated memcg caches.
		 */
		if (s->flags & SLAB_DEACTIVATED)
			continue;
		kasan_cache_shrink(c);
		__kmem_cache_shrink(c);
	}
	mutex_unlock(&slab_mutex);
	put_online_mems();
	put_online_cpus();
}

1058
bool slab_is_available(void)
1059 1060 1061
{
	return slab_state >= UP;
}
1062

1063 1064
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
1065 1066 1067
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
1068 1069
{
	int err;
1070
	unsigned int align = ARCH_KMALLOC_MINALIGN;
1071 1072 1073

	s->name = name;
	s->size = s->object_size = size;
1074 1075 1076 1077 1078 1079 1080 1081 1082

	/*
	 * For power of two sizes, guarantee natural alignment for kmalloc
	 * caches, regardless of SL*B debugging options.
	 */
	if (is_power_of_2(size))
		align = max(align, size);
	s->align = calculate_alignment(flags, align, size);

1083 1084
	s->useroffset = useroffset;
	s->usersize = usersize;
1085 1086 1087

	slab_init_memcg_params(s);

1088 1089 1090
	err = __kmem_cache_create(s, flags);

	if (err)
1091
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1092 1093 1094 1095 1096
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

1097 1098 1099
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
1100 1101 1102 1103 1104 1105
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

1106
	create_boot_cache(s, name, size, flags, useroffset, usersize);
1107
	list_add(&s->list, &slab_caches);
1108
	memcg_link_cache(s, NULL);
1109 1110 1111 1112
	s->refcount = 1;
	return s;
}

1113
struct kmem_cache *
1114 1115
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1116 1117
EXPORT_SYMBOL(kmalloc_caches);

1118 1119 1120 1121 1122 1123
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
1124
static u8 size_index[24] __ro_after_init = {
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

1151
static inline unsigned int size_index_elem(unsigned int bytes)
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
1162
	unsigned int index;
1163 1164 1165 1166 1167 1168

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
1169
	} else {
1170
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1171
			return NULL;
1172
		index = fls(size - 1);
1173
	}
1174

1175
	return kmalloc_caches[kmalloc_type(flags)][index];
1176 1177
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
#ifdef CONFIG_ZONE_DMA
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
	.size = __size,						\
}
#else
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.size = __size,						\
}
#endif

1195 1196 1197 1198 1199
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
1200
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	INIT_KMALLOC_INFO(0, 0),
	INIT_KMALLOC_INFO(96, 96),
	INIT_KMALLOC_INFO(192, 192),
	INIT_KMALLOC_INFO(8, 8),
	INIT_KMALLOC_INFO(16, 16),
	INIT_KMALLOC_INFO(32, 32),
	INIT_KMALLOC_INFO(64, 64),
	INIT_KMALLOC_INFO(128, 128),
	INIT_KMALLOC_INFO(256, 256),
	INIT_KMALLOC_INFO(512, 512),
	INIT_KMALLOC_INFO(1024, 1k),
	INIT_KMALLOC_INFO(2048, 2k),
	INIT_KMALLOC_INFO(4096, 4k),
	INIT_KMALLOC_INFO(8192, 8k),
	INIT_KMALLOC_INFO(16384, 16k),
	INIT_KMALLOC_INFO(32768, 32k),
	INIT_KMALLOC_INFO(65536, 64k),
	INIT_KMALLOC_INFO(131072, 128k),
	INIT_KMALLOC_INFO(262144, 256k),
	INIT_KMALLOC_INFO(524288, 512k),
	INIT_KMALLOC_INFO(1048576, 1M),
	INIT_KMALLOC_INFO(2097152, 2M),
	INIT_KMALLOC_INFO(4194304, 4M),
	INIT_KMALLOC_INFO(8388608, 8M),
	INIT_KMALLOC_INFO(16777216, 16M),
	INIT_KMALLOC_INFO(33554432, 32M),
	INIT_KMALLOC_INFO(67108864, 64M)
1228 1229
};

1230
/*
1231 1232 1233 1234 1235 1236 1237 1238 1239
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1240
 */
1241
void __init setup_kmalloc_cache_index_table(void)
1242
{
1243
	unsigned int i;
1244

1245 1246 1247 1248
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1249
		unsigned int elem = size_index_elem(i);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1275 1276
}

1277
static void __init
1278
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
1279
{
1280
	if (type == KMALLOC_RECLAIM)
1281 1282
		flags |= SLAB_RECLAIM_ACCOUNT;

1283 1284
	kmalloc_caches[type][idx] = create_kmalloc_cache(
					kmalloc_info[idx].name[type],
1285 1286
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
1287 1288
}

1289 1290 1291 1292 1293
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
1294
void __init create_kmalloc_caches(slab_flags_t flags)
1295
{
1296 1297
	int i;
	enum kmalloc_cache_type type;
1298

1299 1300 1301 1302
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
1316 1317
	}

1318 1319 1320 1321 1322
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1323
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1324 1325

		if (s) {
1326
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1327
				kmalloc_info[i].name[KMALLOC_DMA],
1328
				kmalloc_info[i].size,
1329 1330
				SLAB_CACHE_DMA | flags, 0,
				kmalloc_info[i].size);
1331 1332 1333 1334
		}
	}
#endif
}
1335 1336
#endif /* !CONFIG_SLOB */

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
gfp_t kmalloc_fix_flags(gfp_t flags)
{
	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;

	flags &= ~GFP_SLAB_BUG_MASK;
	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
			invalid_mask, &invalid_mask, flags, &flags);
	dump_stack();

	return flags;
}

V
Vladimir Davydov 已提交
1349 1350 1351 1352 1353
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1354 1355
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
1356
	void *ret = NULL;
V
Vladimir Davydov 已提交
1357 1358
	struct page *page;

1359 1360 1361
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);

V
Vladimir Davydov 已提交
1362
	flags |= __GFP_COMP;
1363
	page = alloc_pages(flags, order);
1364 1365 1366 1367 1368
	if (likely(page)) {
		ret = page_address(page);
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    1 << order);
	}
1369
	ret = kasan_kmalloc_large(ret, size, flags);
1370
	/* As ret might get tagged, call kmemleak hook after KASAN. */
1371
	kmemleak_alloc(ret, size, 1, flags);
V
Vladimir Davydov 已提交
1372 1373 1374 1375
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1376 1377 1378 1379 1380 1381 1382 1383 1384
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1385

1386 1387 1388
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1389
			       unsigned int count)
1390 1391
{
	unsigned int rand;
1392
	unsigned int i;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1433
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1434
#ifdef CONFIG_SLAB
1435
#define SLABINFO_RIGHTS (0600)
1436
#else
1437
#define SLABINFO_RIGHTS (0400)
1438 1439
#endif

1440
static void print_slabinfo_header(struct seq_file *m)
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1451
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1452 1453 1454
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1455
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1456 1457 1458 1459 1460
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1461
void *slab_start(struct seq_file *m, loff_t *pos)
1462 1463
{
	mutex_lock(&slab_mutex);
1464
	return seq_list_start(&slab_root_caches, *pos);
1465 1466
}

1467
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1468
{
1469
	return seq_list_next(p, &slab_root_caches, pos);
1470 1471
}

1472
void slab_stop(struct seq_file *m, void *p)
1473 1474 1475 1476
{
	mutex_unlock(&slab_mutex);
}

1477 1478 1479 1480 1481 1482 1483 1484 1485
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1486
	for_each_memcg_cache(c, s) {
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1498
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1499
{
1500 1501 1502 1503 1504
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1505 1506
	memcg_accumulate_slabinfo(s, &sinfo);

1507
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1508
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1509 1510 1511 1512 1513 1514 1515 1516
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1517 1518
}

1519
static int slab_show(struct seq_file *m, void *p)
1520
{
1521
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1522

1523
	if (p == slab_root_caches.next)
1524
		print_slabinfo_header(m);
1525
	cache_show(s, m);
1526 1527 1528
	return 0;
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

1563
#if defined(CONFIG_MEMCG_KMEM)
1564 1565
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
1566
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1567 1568 1569 1570 1571 1572 1573

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
1574
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1575 1576 1577 1578 1579 1580 1581 1582 1583

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1584 1585
int memcg_slab_show(struct seq_file *m, void *p)
{
1586 1587
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1588
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1589

1590
	if (p == memcg->kmem_caches.next)
1591
		print_slabinfo_header(m);
1592
	cache_show(s, m);
1593
	return 0;
1594
}
1595
#endif
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1611
	.start = slab_start,
1612 1613
	.next = slab_next,
	.stop = slab_stop,
1614
	.show = slab_show,
1615 1616 1617 1618 1619 1620 1621
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

1622
static const struct proc_ops slabinfo_proc_ops = {
1623
	.proc_flags	= PROC_ENTRY_PERMANENT,
1624 1625 1626 1627 1628
	.proc_open	= slabinfo_open,
	.proc_read	= seq_read,
	.proc_write	= slabinfo_write,
	.proc_lseek	= seq_lseek,
	.proc_release	= seq_release,
1629 1630 1631 1632
};

static int __init slab_proc_init(void)
{
1633
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1634 1635 1636
	return 0;
}
module_init(slab_proc_init);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
/*
 * Display information about kmem caches that have child memcg caches.
 */
static int memcg_slabinfo_show(struct seq_file *m, void *unused)
{
	struct kmem_cache *s, *c;
	struct slabinfo sinfo;

	mutex_lock(&slab_mutex);
	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
	seq_puts(m, " <active_slabs> <num_slabs>\n");
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
		/*
		 * Skip kmem caches that don't have any memcg children.
		 */
		if (list_empty(&s->memcg_params.children))
			continue;

		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(s, &sinfo);
		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
			   sinfo.active_slabs, sinfo.num_slabs);

		for_each_memcg_cache(c, s) {
			struct cgroup_subsys_state *css;
			char *status = "";

			css = &c->memcg_params.memcg->css;
			if (!(css->flags & CSS_ONLINE))
				status = ":dead";
			else if (c->flags & SLAB_DEACTIVATED)
				status = ":deact";

			memset(&sinfo, 0, sizeof(sinfo));
			get_slabinfo(c, &sinfo);
			seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
				   cache_name(c), css->id, status,
				   sinfo.active_objs, sinfo.num_objs,
				   sinfo.active_slabs, sinfo.num_slabs);
		}
	}
	mutex_unlock(&slab_mutex);
	return 0;
}
DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);

static int __init memcg_slabinfo_init(void)
{
	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
			    NULL, NULL, &memcg_slabinfo_fops);
	return 0;
}

late_initcall(memcg_slabinfo_init);
#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
Y
Yang Shi 已提交
1695
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1696 1697 1698 1699 1700

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
1701
	size_t ks;
1702

1703
	ks = ksize(p);
1704

1705
	if (ks >= new_size) {
1706
		p = kasan_krealloc((void *)p, new_size, flags);
1707
		return (void *)p;
1708
	}
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
1727 1728
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
1740
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1741 1742 1743 1744 1745 1746 1747
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
1748
 * kfree_sensitive - Clear sensitive information in memory before freeing
1749 1750 1751
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
1752
 * If @p is %NULL, kfree_sensitive() does nothing.
1753 1754 1755 1756 1757
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
1758
void kfree_sensitive(const void *p)
1759 1760 1761 1762 1763
{
	size_t ks;
	void *mem = (void *)p;

	ks = ksize(mem);
1764 1765
	if (ks)
		memzero_explicit(mem, ks);
1766 1767
	kfree(mem);
}
1768
EXPORT_SYMBOL(kfree_sensitive);
1769

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	size_t size;

	/*
	 * We need to check that the pointed to object is valid, and only then
	 * unpoison the shadow memory below. We use __kasan_check_read(), to
	 * generate a more useful report at the time ksize() is called (rather
	 * than later where behaviour is undefined due to potential
	 * use-after-free or double-free).
	 *
	 * If the pointed to memory is invalid we return 0, to avoid users of
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
1801
	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1802 1803 1804
		return 0;

	size = __ksize(objp);
1805 1806 1807 1808 1809 1810 1811 1812 1813
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(objp, size);
	return size;
}
EXPORT_SYMBOL(ksize);

1814 1815 1816 1817 1818 1819 1820
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1821 1822 1823 1824 1825 1826 1827 1828

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);