slab_common.c 40.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20 21 22
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
23
#include <linux/memcontrol.h>
24 25

#define CREATE_TRACE_POINTS
26
#include <trace/events/kmem.h>
27

28 29 30
#include "slab.h"

enum slab_state slab_state;
31 32
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
33
struct kmem_cache *kmem_cache;
34

35 36 37 38 39 40 41 42
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

43 44 45 46 47
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

48 49 50 51
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
53
		SLAB_FAILSLAB | SLAB_KASAN)
54

V
Vladimir Davydov 已提交
55
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
57 58 59 60

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
61
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62 63 64

static int __init setup_slab_nomerge(char *str)
{
65
	slab_nomerge = true;
66 67 68 69 70 71 72 73 74
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

75 76 77 78 79 80 81 82 83
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

84
#ifdef CONFIG_DEBUG_VM
85
static int kmem_cache_sanity_check(const char *name, unsigned int size)
86 87 88
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
89 90
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
91
	}
92

93
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
94 95 96
	return 0;
}
#else
97
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
98 99 100
{
	return 0;
}
101 102
#endif

103 104 105 106
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

107 108 109 110 111 112
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
113 114
}

115
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
116 117 118 119 120 121 122 123
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
124
			return 0;
125 126
		}
	}
127
	return i;
128 129
}

130
#ifdef CONFIG_MEMCG_KMEM
131 132

LIST_HEAD(slab_root_caches);
133
static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
134

135
void slab_init_memcg_params(struct kmem_cache *s)
136
{
T
Tejun Heo 已提交
137
	s->memcg_params.root_cache = NULL;
138
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
139
	INIT_LIST_HEAD(&s->memcg_params.children);
140
	s->memcg_params.dying = false;
141 142 143
}

static int init_memcg_params(struct kmem_cache *s,
144
			     struct kmem_cache *root_cache)
145 146
{
	struct memcg_cache_array *arr;
147

T
Tejun Heo 已提交
148
	if (root_cache) {
149
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
150
		INIT_LIST_HEAD(&s->memcg_params.children_node);
151
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
152
		return 0;
153
	}
154

155
	slab_init_memcg_params(s);
156

157 158
	if (!memcg_nr_cache_ids)
		return 0;
159

160 161 162
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
163 164
	if (!arr)
		return -ENOMEM;
165

166
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
167 168 169
	return 0;
}

170
static void destroy_memcg_params(struct kmem_cache *s)
171
{
172
	if (is_root_cache(s))
173 174 175 176 177 178 179 180 181
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
182 183
}

184
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
185
{
186
	struct memcg_cache_array *old, *new;
187

188 189
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
190
	if (!new)
191 192
		return -ENOMEM;

193 194 195 196 197
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
198

199 200
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
201
		call_rcu(&old->rcu, free_memcg_params);
202 203 204
	return 0;
}

205 206 207 208 209
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

210
	mutex_lock(&slab_mutex);
211
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
212
		ret = update_memcg_params(s, num_memcgs);
213 214 215 216 217
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
218
			break;
219 220 221 222
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
223

224
void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
225
{
226 227 228
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
229
		s->memcg_params.memcg = memcg;
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
245
}
246
#else
247
static inline int init_memcg_params(struct kmem_cache *s,
248
				    struct kmem_cache *root_cache)
249 250 251 252
{
	return 0;
}

253
static inline void destroy_memcg_params(struct kmem_cache *s)
254 255
{
}
256

257
static inline void memcg_unlink_cache(struct kmem_cache *s)
258 259
{
}
260
#endif /* CONFIG_MEMCG_KMEM */
261

262 263 264 265
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
266 267
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
268 269 270 271 272 273 274 275 276
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
277
		unsigned int ralign;
278 279 280 281 282 283 284 285 286 287 288 289 290

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

305 306 307
	if (s->usersize)
		return 1;

308 309 310 311 312 313 314 315 316
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

317
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
318
		slab_flags_t flags, const char *name, void (*ctor)(void *))
319 320 321
{
	struct kmem_cache *s;

322
	if (slab_nomerge)
323 324 325 326 327 328 329 330 331 332
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

333 334 335
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

336
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

355 356 357 358
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

359 360 361 362 363
		return s;
	}
	return NULL;
}

364
static struct kmem_cache *create_cache(const char *name,
365
		unsigned int object_size, unsigned int align,
366 367
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
368
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
369 370 371 372
{
	struct kmem_cache *s;
	int err;

373 374 375
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

376 377 378 379 380 381
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
382
	s->size = s->object_size = object_size;
383 384
	s->align = align;
	s->ctor = ctor;
385 386
	s->useroffset = useroffset;
	s->usersize = usersize;
387

388
	err = init_memcg_params(s, root_cache);
389 390 391 392 393 394 395 396 397
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
398
	memcg_link_cache(s, memcg);
399 400 401 402 403 404
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
405
	destroy_memcg_params(s);
406
	kmem_cache_free(kmem_cache, s);
407 408
	goto out;
}
409

410 411 412
/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
413 414 415 416
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
417 418
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
419 420 421 422 423 424 425 426 427 428
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
429
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
430 431 432 433 434
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
435 436
 *
 * Return: a pointer to the cache on success, NULL on failure.
437
 */
438
struct kmem_cache *
439 440
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
441 442
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
443
		  void (*ctor)(void *))
444
{
445
	struct kmem_cache *s = NULL;
446
	const char *cache_name;
447
	int err;
448

449
	get_online_cpus();
450
	get_online_mems();
451
	memcg_get_cache_ids();
452

453
	mutex_lock(&slab_mutex);
454

455
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
456
	if (err) {
457
		goto out_unlock;
A
Andrew Morton 已提交
458
	}
459

460 461 462 463 464 465
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

466 467 468 469 470 471 472
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
473

474 475 476 477 478 479 480
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
481
	if (s)
482
		goto out_unlock;
483

484
	cache_name = kstrdup_const(name, GFP_KERNEL);
485 486 487 488
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
489

490
	s = create_cache(cache_name, size,
491
			 calculate_alignment(flags, align, size),
492
			 flags, useroffset, usersize, ctor, NULL, NULL);
493 494
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
495
		kfree_const(cache_name);
496
	}
497 498

out_unlock:
499
	mutex_unlock(&slab_mutex);
500

501
	memcg_put_cache_ids();
502
	put_online_mems();
503 504
	put_online_cpus();

505
	if (err) {
506 507 508 509
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
510
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
511 512 513 514 515
				name, err);
			dump_stack();
		}
		return NULL;
	}
516 517
	return s;
}
518 519
EXPORT_SYMBOL(kmem_cache_create_usercopy);

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
545
struct kmem_cache *
546
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
547 548
		slab_flags_t flags, void (*ctor)(void *))
{
549
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
550 551
					  ctor);
}
552
EXPORT_SYMBOL(kmem_cache_create);
553

554
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
555
{
556 557
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
558

559
	/*
560
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
561 562 563 564 565 566 567 568 569 570
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
571

572 573 574 575 576 577 578 579 580 581 582 583
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
584 585
}

586
static int shutdown_cache(struct kmem_cache *s)
587
{
588 589 590
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

591 592
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
593

594
	memcg_unlink_cache(s);
595
	list_del(&s->list);
596

597
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
598 599 600
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
601 602 603
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
604
#ifdef SLAB_SUPPORTS_SYSFS
605
		sysfs_slab_unlink(s);
606
		sysfs_slab_release(s);
607 608 609 610
#else
		slab_kmem_cache_release(s);
#endif
	}
611 612

	return 0;
613 614
}

615
#ifdef CONFIG_MEMCG_KMEM
616
/*
617
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
618 619 620 621 622 623 624
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
625 626
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
627
{
628
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
629
	struct cgroup_subsys_state *css = &memcg->css;
630
	struct memcg_cache_array *arr;
631
	struct kmem_cache *s = NULL;
632
	char *cache_name;
633
	int idx;
634 635

	get_online_cpus();
636 637
	get_online_mems();

638 639
	mutex_lock(&slab_mutex);

640
	/*
641
	 * The memory cgroup could have been offlined while the cache
642 643
	 * creation work was pending.
	 */
644
	if (memcg->kmem_state != KMEM_ONLINE)
645 646
		goto out_unlock;

647 648 649 650
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

651 652 653 654 655
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
656
	if (arr->entries[idx])
657 658
		goto out_unlock;

659
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
660 661
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
662 663 664
	if (!cache_name)
		goto out_unlock;

665
	s = create_cache(cache_name, root_cache->object_size,
666
			 root_cache->align,
667
			 root_cache->flags & CACHE_CREATE_MASK,
668
			 root_cache->useroffset, root_cache->usersize,
669
			 root_cache->ctor, memcg, root_cache);
670 671 672 673 674
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
675
	if (IS_ERR(s)) {
676
		kfree(cache_name);
677
		goto out_unlock;
678
	}
679

680 681 682 683 684 685
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
686
	arr->entries[idx] = s;
687

688 689
out_unlock:
	mutex_unlock(&slab_mutex);
690 691

	put_online_mems();
692
	put_online_cpus();
693
}
694

695
static void kmemcg_workfn(struct work_struct *work)
696 697
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
698
					    memcg_params.work);
699 700 701 702 703 704

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);

705
	s->memcg_params.work_fn(s);
706 707 708 709 710 711

	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();

712
	/* done, put the ref from kmemcg_cache_deactivate() */
713 714 715
	css_put(&s->memcg_params.memcg->css);
}

716
static void kmemcg_rcufn(struct rcu_head *head)
717 718
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
719
					    memcg_params.rcu_head);
720 721

	/*
722
	 * We need to grab blocking locks.  Bounce to ->work.  The
723 724 725
	 * work item shares the space with the RCU head and can't be
	 * initialized eariler.
	 */
726 727
	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
728 729
}

730
static void kmemcg_cache_deactivate(struct kmem_cache *s)
731 732
{
	if (WARN_ON_ONCE(is_root_cache(s)) ||
733
	    WARN_ON_ONCE(s->memcg_params.work_fn))
734 735
		return;

736 737
	__kmemcg_cache_deactivate(s);

738 739 740 741 742 743
	/*
	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
	 * flag and make sure that no new kmem_cache deactivation tasks
	 * are queued (see flush_memcg_workqueue() ).
	 */
	spin_lock_irq(&memcg_kmem_wq_lock);
744
	if (s->memcg_params.root_cache->memcg_params.dying)
745
		goto unlock;
746

747 748 749
	/* pin memcg so that @s doesn't get destroyed in the middle */
	css_get(&s->memcg_params.memcg->css);

750
	s->memcg_params.work_fn = __kmemcg_cache_deactivate_after_rcu;
751
	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
752 753
unlock:
	spin_unlock_irq(&memcg_kmem_wq_lock);
754 755
}

756 757 758 759
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
760
	struct kmem_cache *s, *c;
761 762 763

	idx = memcg_cache_id(memcg);

764 765 766
	get_online_cpus();
	get_online_mems();

767
	mutex_lock(&slab_mutex);
768
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
769 770
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
771 772 773 774
		c = arr->entries[idx];
		if (!c)
			continue;

775
		kmemcg_cache_deactivate(c);
776 777 778
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
779 780 781

	put_online_mems();
	put_online_cpus();
782 783
}

784
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
785
{
786
	struct kmem_cache *s, *s2;
787

788 789
	get_online_cpus();
	get_online_mems();
790 791

	mutex_lock(&slab_mutex);
792 793
	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
				 memcg_params.kmem_caches_node) {
794 795 796 797
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
798
		BUG_ON(shutdown_cache(s));
799 800
	}
	mutex_unlock(&slab_mutex);
801

802 803
	put_online_mems();
	put_online_cpus();
804
}
805

806
static int shutdown_memcg_caches(struct kmem_cache *s)
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
825
		if (shutdown_cache(c))
826 827 828 829 830
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
831
			list_move(&c->memcg_params.children_node, &busy);
832 833 834 835 836 837 838 839 840 841 842 843 844 845
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
846 847
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
848
		shutdown_cache(c);
849

T
Tejun Heo 已提交
850
	list_splice(&busy, &s->memcg_params.children);
851 852 853 854 855

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
856
	if (!list_empty(&s->memcg_params.children))
857 858 859
		return -EBUSY;
	return 0;
}
860 861 862

static void flush_memcg_workqueue(struct kmem_cache *s)
{
863
	spin_lock_irq(&memcg_kmem_wq_lock);
864
	s->memcg_params.dying = true;
865
	spin_unlock_irq(&memcg_kmem_wq_lock);
866 867

	/*
868
	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
869 870
	 * sure all registered rcu callbacks have been invoked.
	 */
871
	rcu_barrier();
872 873 874 875 876 877 878 879

	/*
	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
	 * deactivates the memcg kmem_caches through workqueue. Make sure all
	 * previous workitems on workqueue are processed.
	 */
	flush_workqueue(memcg_kmem_cache_wq);
}
880
#else
881
static inline int shutdown_memcg_caches(struct kmem_cache *s)
882 883 884
{
	return 0;
}
885 886 887 888

static inline void flush_memcg_workqueue(struct kmem_cache *s)
{
}
889
#endif /* CONFIG_MEMCG_KMEM */
890

891 892
void slab_kmem_cache_release(struct kmem_cache *s)
{
893
	__kmem_cache_release(s);
894
	destroy_memcg_params(s);
895
	kfree_const(s->name);
896 897 898
	kmem_cache_free(kmem_cache, s);
}

899 900
void kmem_cache_destroy(struct kmem_cache *s)
{
901
	int err;
902

903 904 905
	if (unlikely(!s))
		return;

906 907
	flush_memcg_workqueue(s);

908
	get_online_cpus();
909 910
	get_online_mems();

911
	mutex_lock(&slab_mutex);
912

913
	s->refcount--;
914 915 916
	if (s->refcount)
		goto out_unlock;

917
	err = shutdown_memcg_caches(s);
918
	if (!err)
919
		err = shutdown_cache(s);
920

921
	if (err) {
J
Joe Perches 已提交
922 923
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
924 925
		dump_stack();
	}
926 927
out_unlock:
	mutex_unlock(&slab_mutex);
928

929
	put_online_mems();
930 931 932 933
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

934 935 936 937 938 939
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
940 941
 *
 * Return: %0 if all slabs were released, non-zero otherwise
942 943 944 945 946 947 948
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
949
	kasan_cache_shrink(cachep);
950
	ret = __kmem_cache_shrink(cachep);
951 952 953 954 955 956
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

957
bool slab_is_available(void)
958 959 960
{
	return slab_state >= UP;
}
961

962 963
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
964 965 966
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
967 968 969 970 971
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
972
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
973 974
	s->useroffset = useroffset;
	s->usersize = usersize;
975 976 977

	slab_init_memcg_params(s);

978 979 980
	err = __kmem_cache_create(s, flags);

	if (err)
981
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
982 983 984 985 986
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

987 988 989
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
990 991 992 993 994 995
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

996
	create_boot_cache(s, name, size, flags, useroffset, usersize);
997
	list_add(&s->list, &slab_caches);
998
	memcg_link_cache(s, NULL);
999 1000 1001 1002
	s->refcount = 1;
	return s;
}

1003 1004
struct kmem_cache *
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
1005 1006
EXPORT_SYMBOL(kmalloc_caches);

1007 1008 1009 1010 1011 1012
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
1013
static u8 size_index[24] __ro_after_init = {
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

1040
static inline unsigned int size_index_elem(unsigned int bytes)
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
1051
	unsigned int index;
1052 1053 1054 1055 1056 1057

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
1058
	} else {
1059
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1060
			return NULL;
1061
		index = fls(size - 1);
1062
	}
1063

1064
	return kmalloc_caches[kmalloc_type(flags)][index];
1065 1066
}

1067 1068 1069 1070 1071
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
1072
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1073 1074 1075 1076 1077
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
1078 1079 1080 1081 1082 1083 1084 1085 1086
	{"kmalloc-1k",           1024},		{"kmalloc-2k",           2048},
	{"kmalloc-4k",           4096},		{"kmalloc-8k",           8192},
	{"kmalloc-16k",         16384},		{"kmalloc-32k",         32768},
	{"kmalloc-64k",         65536},		{"kmalloc-128k",       131072},
	{"kmalloc-256k",       262144},		{"kmalloc-512k",       524288},
	{"kmalloc-1M",        1048576},		{"kmalloc-2M",        2097152},
	{"kmalloc-4M",        4194304},		{"kmalloc-8M",        8388608},
	{"kmalloc-16M",      16777216},		{"kmalloc-32M",      33554432},
	{"kmalloc-64M",      67108864}
1087 1088
};

1089
/*
1090 1091 1092 1093 1094 1095 1096 1097 1098
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1099
 */
1100
void __init setup_kmalloc_cache_index_table(void)
1101
{
1102
	unsigned int i;
1103

1104 1105 1106 1107
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1108
		unsigned int elem = size_index_elem(i);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1134 1135
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static const char *
kmalloc_cache_name(const char *prefix, unsigned int size)
{

	static const char units[3] = "\0kM";
	int idx = 0;

	while (size >= 1024 && (size % 1024 == 0)) {
		size /= 1024;
		idx++;
	}

	return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
}

1151 1152
static void __init
new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1153
{
1154 1155 1156 1157
	const char *name;

	if (type == KMALLOC_RECLAIM) {
		flags |= SLAB_RECLAIM_ACCOUNT;
1158
		name = kmalloc_cache_name("kmalloc-rcl",
1159 1160 1161 1162 1163 1164 1165
						kmalloc_info[idx].size);
		BUG_ON(!name);
	} else {
		name = kmalloc_info[idx].name;
	}

	kmalloc_caches[type][idx] = create_kmalloc_cache(name,
1166 1167
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
1168 1169
}

1170 1171 1172 1173 1174
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
1175
void __init create_kmalloc_caches(slab_flags_t flags)
1176
{
1177
	int i, type;
1178

1179 1180 1181 1182
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
1196 1197
	}

1198 1199 1200 1201 1202
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1203
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1204 1205

		if (s) {
1206
			unsigned int size = kmalloc_size(i);
1207
			const char *n = kmalloc_cache_name("dma-kmalloc", size);
1208 1209

			BUG_ON(!n);
1210 1211
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
				n, size, SLAB_CACHE_DMA | flags, 0, 0);
1212 1213 1214 1215
		}
	}
#endif
}
1216 1217
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1218 1219 1220 1221 1222
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1223 1224 1225 1226 1227 1228
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1229
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1230
	ret = page ? page_address(page) : NULL;
1231
	ret = kasan_kmalloc_large(ret, size, flags);
1232
	/* As ret might get tagged, call kmemleak hook after KASAN. */
1233
	kmemleak_alloc(ret, size, 1, flags);
V
Vladimir Davydov 已提交
1234 1235 1236 1237
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1238 1239 1240 1241 1242 1243 1244 1245 1246
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1247

1248 1249 1250
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1251
			       unsigned int count)
1252 1253
{
	unsigned int rand;
1254
	unsigned int i;
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1295
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1296
#ifdef CONFIG_SLAB
1297
#define SLABINFO_RIGHTS (0600)
1298
#else
1299
#define SLABINFO_RIGHTS (0400)
1300 1301
#endif

1302
static void print_slabinfo_header(struct seq_file *m)
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1313
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1314 1315 1316
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1317
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1318 1319 1320 1321 1322
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1323
void *slab_start(struct seq_file *m, loff_t *pos)
1324 1325
{
	mutex_lock(&slab_mutex);
1326
	return seq_list_start(&slab_root_caches, *pos);
1327 1328
}

1329
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1330
{
1331
	return seq_list_next(p, &slab_root_caches, pos);
1332 1333
}

1334
void slab_stop(struct seq_file *m, void *p)
1335 1336 1337 1338
{
	mutex_unlock(&slab_mutex);
}

1339 1340 1341 1342 1343 1344 1345 1346 1347
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1348
	for_each_memcg_cache(c, s) {
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1360
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1361
{
1362 1363 1364 1365 1366
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1367 1368
	memcg_accumulate_slabinfo(s, &sinfo);

1369
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1370
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1371 1372 1373 1374 1375 1376 1377 1378
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1379 1380
}

1381
static int slab_show(struct seq_file *m, void *p)
1382
{
1383
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1384

1385
	if (p == slab_root_caches.next)
1386
		print_slabinfo_header(m);
1387
	cache_show(s, m);
1388 1389 1390
	return 0;
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

Y
Yang Shi 已提交
1425
#if defined(CONFIG_MEMCG)
1426 1427
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
1428
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1429 1430 1431 1432 1433 1434 1435

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
1436
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1437 1438 1439 1440 1441 1442 1443 1444 1445

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1446 1447
int memcg_slab_show(struct seq_file *m, void *p)
{
1448 1449
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1450
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1451

1452
	if (p == memcg->kmem_caches.next)
1453
		print_slabinfo_header(m);
1454
	cache_show(s, m);
1455
	return 0;
1456
}
1457
#endif
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1473
	.start = slab_start,
1474 1475
	.next = slab_next,
	.stop = slab_stop,
1476
	.show = slab_show,
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1494 1495
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1496 1497 1498
	return 0;
}
module_init(slab_proc_init);
Y
Yang Shi 已提交
1499
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1510
	if (ks >= new_size) {
1511
		p = kasan_krealloc((void *)p, new_size, flags);
1512
		return (void *)p;
1513
	}
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
1531 1532
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
1554 1555
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
1567
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	size_t size;

	if (WARN_ON_ONCE(!objp))
		return 0;
	/*
	 * We need to check that the pointed to object is valid, and only then
	 * unpoison the shadow memory below. We use __kasan_check_read(), to
	 * generate a more useful report at the time ksize() is called (rather
	 * than later where behaviour is undefined due to potential
	 * use-after-free or double-free).
	 *
	 * If the pointed to memory is invalid we return 0, to avoid users of
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
	if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
		return 0;

	size = __ksize(objp);
1635 1636 1637 1638 1639 1640 1641 1642 1643
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(objp, size);
	return size;
}
EXPORT_SYMBOL(ksize);

1644 1645 1646 1647 1648 1649 1650
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1651 1652 1653 1654 1655 1656 1657 1658

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);