chip.c 101.5 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21 22 23
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
24
#include <linux/jiffies.h>
25
#include <linux/list.h>
26
#include <linux/mdio.h>
27
#include <linux/module.h>
28
#include <linux/of_device.h>
29
#include <linux/of_irq.h>
30
#include <linux/of_mdio.h>
31
#include <linux/netdevice.h>
32
#include <linux/gpio/consumer.h>
33
#include <linux/phy.h>
34
#include <net/dsa.h>
35
#include <net/switchdev.h>
36

37
#include "mv88e6xxx.h"
38
#include "global1.h"
39
#include "global2.h"
40
#include "port.h"
41

42
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
43
{
44 45
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
46 47 48 49
		dump_stack();
	}
}

50 51 52 53 54 55 56 57 58 59
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
60
 */
61

62
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
63 64
			      int addr, int reg, u16 *val)
{
65
	if (!chip->smi_ops)
66 67
		return -EOPNOTSUPP;

68
	return chip->smi_ops->read(chip, addr, reg, val);
69 70
}

71
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
72 73
			       int addr, int reg, u16 val)
{
74
	if (!chip->smi_ops)
75 76
		return -EOPNOTSUPP;

77
	return chip->smi_ops->write(chip, addr, reg, val);
78 79
}

80
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
81 82 83 84
					  int addr, int reg, u16 *val)
{
	int ret;

85
	ret = mdiobus_read_nested(chip->bus, addr, reg);
86 87 88 89 90 91 92 93
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

94
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
95 96 97 98
					   int addr, int reg, u16 val)
{
	int ret;

99
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
100 101 102 103 104 105
	if (ret < 0)
		return ret;

	return 0;
}

106
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_single_chip_ops = {
107 108 109 110
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

111
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
112 113 114 115 116
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
117
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
118 119 120
		if (ret < 0)
			return ret;

121
		if ((ret & SMI_CMD_BUSY) == 0)
122 123 124 125 126 127
			return 0;
	}

	return -ETIMEDOUT;
}

128
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
129
					 int addr, int reg, u16 *val)
130 131 132
{
	int ret;

133
	/* Wait for the bus to become free. */
134
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
135 136 137
	if (ret < 0)
		return ret;

138
	/* Transmit the read command. */
139
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
140
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
141 142 143
	if (ret < 0)
		return ret;

144
	/* Wait for the read command to complete. */
145
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
146 147 148
	if (ret < 0)
		return ret;

149
	/* Read the data. */
150
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
151 152 153
	if (ret < 0)
		return ret;

154
	*val = ret & 0xffff;
155

156
	return 0;
157 158
}

159
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
160
					  int addr, int reg, u16 val)
161 162 163
{
	int ret;

164
	/* Wait for the bus to become free. */
165
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
166 167 168
	if (ret < 0)
		return ret;

169
	/* Transmit the data to write. */
170
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
171 172 173
	if (ret < 0)
		return ret;

174
	/* Transmit the write command. */
175
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
176
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
177 178 179
	if (ret < 0)
		return ret;

180
	/* Wait for the write command to complete. */
181
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
182 183 184 185 186 187
	if (ret < 0)
		return ret;

	return 0;
}

188
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_multi_chip_ops = {
189 190 191 192
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

193
int mv88e6xxx_read(struct mv88e6xxx_chip *chip, int addr, int reg, u16 *val)
194 195 196
{
	int err;

197
	assert_reg_lock(chip);
198

199
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
200 201 202
	if (err)
		return err;

203
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
204 205 206 207 208
		addr, reg, *val);

	return 0;
}

209
int mv88e6xxx_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val)
210
{
211 212
	int err;

213
	assert_reg_lock(chip);
214

215
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
216 217 218
	if (err)
		return err;

219
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
220 221
		addr, reg, val);

222 223 224
	return 0;
}

225 226 227 228 229
static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
			      int reg, u16 *val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

230
	if (!chip->info->ops->phy_read)
231 232
		return -EOPNOTSUPP;

233
	return chip->info->ops->phy_read(chip, addr, reg, val);
234 235 236 237 238 239 240
}

static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
			       int reg, u16 val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

241
	if (!chip->info->ops->phy_write)
242 243
		return -EOPNOTSUPP;

244
	return chip->info->ops->phy_write(chip, addr, reg, val);
245 246
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
{
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
		return -EOPNOTSUPP;

	return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
}

static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
{
	int err;

	/* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
	err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
	if (unlikely(err)) {
		dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
			phy, err);
	}
}

static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
				   u8 page, int reg, u16 *val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_read(chip, phy, reg, val);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
				    u8 page, int reg, u16 val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
{
	return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
				       reg, val);
}

static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
{
	return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
					reg, val);
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static void mv88e6xxx_g1_irq_mask(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	unsigned int n = d->hwirq;

	chip->g1_irq.masked |= (1 << n);
}

static void mv88e6xxx_g1_irq_unmask(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	unsigned int n = d->hwirq;

	chip->g1_irq.masked &= ~(1 << n);
}

static irqreturn_t mv88e6xxx_g1_irq_thread_fn(int irq, void *dev_id)
{
	struct mv88e6xxx_chip *chip = dev_id;
	unsigned int nhandled = 0;
	unsigned int sub_irq;
	unsigned int n;
	u16 reg;
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &reg);
	mutex_unlock(&chip->reg_lock);

	if (err)
		goto out;

	for (n = 0; n < chip->g1_irq.nirqs; ++n) {
		if (reg & (1 << n)) {
			sub_irq = irq_find_mapping(chip->g1_irq.domain, n);
			handle_nested_irq(sub_irq);
			++nhandled;
		}
	}
out:
	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
}

static void mv88e6xxx_g1_irq_bus_lock(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);

	mutex_lock(&chip->reg_lock);
}

static void mv88e6xxx_g1_irq_bus_sync_unlock(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	u16 mask = GENMASK(chip->g1_irq.nirqs, 0);
	u16 reg;
	int err;

	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err)
		goto out;

	reg &= ~mask;
	reg |= (~chip->g1_irq.masked & mask);

	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
	if (err)
		goto out;

out:
	mutex_unlock(&chip->reg_lock);
}

static struct irq_chip mv88e6xxx_g1_irq_chip = {
	.name			= "mv88e6xxx-g1",
	.irq_mask		= mv88e6xxx_g1_irq_mask,
	.irq_unmask		= mv88e6xxx_g1_irq_unmask,
	.irq_bus_lock		= mv88e6xxx_g1_irq_bus_lock,
	.irq_bus_sync_unlock	= mv88e6xxx_g1_irq_bus_sync_unlock,
};

static int mv88e6xxx_g1_irq_domain_map(struct irq_domain *d,
				       unsigned int irq,
				       irq_hw_number_t hwirq)
{
	struct mv88e6xxx_chip *chip = d->host_data;

	irq_set_chip_data(irq, d->host_data);
	irq_set_chip_and_handler(irq, &chip->g1_irq.chip, handle_level_irq);
	irq_set_noprobe(irq);

	return 0;
}

static const struct irq_domain_ops mv88e6xxx_g1_irq_domain_ops = {
	.map	= mv88e6xxx_g1_irq_domain_map,
	.xlate	= irq_domain_xlate_twocell,
};

static void mv88e6xxx_g1_irq_free(struct mv88e6xxx_chip *chip)
{
	int irq, virq;
416 417 418 419 420 421 422
	u16 mask;

	mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &mask);
	mask |= GENMASK(chip->g1_irq.nirqs, 0);
	mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, mask);

	free_irq(chip->irq, chip);
423 424

	for (irq = 0; irq < 16; irq++) {
425
		virq = irq_find_mapping(chip->g1_irq.domain, irq);
426 427 428
		irq_dispose_mapping(virq);
	}

429
	irq_domain_remove(chip->g1_irq.domain);
430 431 432 433
}

static int mv88e6xxx_g1_irq_setup(struct mv88e6xxx_chip *chip)
{
434 435
	int err, irq, virq;
	u16 reg, mask;
436 437 438 439 440 441 442 443 444 445 446 447 448 449

	chip->g1_irq.nirqs = chip->info->g1_irqs;
	chip->g1_irq.domain = irq_domain_add_simple(
		NULL, chip->g1_irq.nirqs, 0,
		&mv88e6xxx_g1_irq_domain_ops, chip);
	if (!chip->g1_irq.domain)
		return -ENOMEM;

	for (irq = 0; irq < chip->g1_irq.nirqs; irq++)
		irq_create_mapping(chip->g1_irq.domain, irq);

	chip->g1_irq.chip = mv88e6xxx_g1_irq_chip;
	chip->g1_irq.masked = ~0;

450
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &mask);
451
	if (err)
452
		goto out_mapping;
453

454
	mask &= ~GENMASK(chip->g1_irq.nirqs, 0);
455

456
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, mask);
457
	if (err)
458
		goto out_disable;
459 460 461 462

	/* Reading the interrupt status clears (most of) them */
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &reg);
	if (err)
463
		goto out_disable;
464 465 466 467 468 469

	err = request_threaded_irq(chip->irq, NULL,
				   mv88e6xxx_g1_irq_thread_fn,
				   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
				   dev_name(chip->dev), chip);
	if (err)
470
		goto out_disable;
471 472 473

	return 0;

474 475 476 477 478 479 480 481 482 483 484
out_disable:
	mask |= GENMASK(chip->g1_irq.nirqs, 0);
	mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, mask);

out_mapping:
	for (irq = 0; irq < 16; irq++) {
		virq = irq_find_mapping(chip->g1_irq.domain, irq);
		irq_dispose_mapping(virq);
	}

	irq_domain_remove(chip->g1_irq.domain);
485 486 487 488

	return err;
}

489
int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg, u16 mask)
490
{
491
	int i;
492

493
	for (i = 0; i < 16; i++) {
494 495 496 497 498 499 500 501 502 503 504 505 506
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

507
	dev_err(chip->dev, "Timeout while waiting for switch\n");
508 509 510
	return -ETIMEDOUT;
}

511
/* Indirect write to single pointer-data register with an Update bit */
512
int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg, u16 update)
513 514
{
	u16 val;
515
	int err;
516 517

	/* Wait until the previous operation is completed */
518 519 520
	err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
	if (err)
		return err;
521 522 523 524 525 526 527

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

528
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
529 530
{
	u16 val;
531
	int i, err;
532

533
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
534 535 536
	if (err)
		return err;

537 538 539 540
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val & ~GLOBAL_CONTROL_PPU_ENABLE);
	if (err)
		return err;
541

542
	for (i = 0; i < 16; i++) {
543 544 545
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
546

547
		usleep_range(1000, 2000);
548
		if ((val & GLOBAL_STATUS_PPU_MASK) != GLOBAL_STATUS_PPU_POLLING)
549
			return 0;
550 551 552 553 554
	}

	return -ETIMEDOUT;
}

555
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
556
{
557 558
	u16 val;
	int i, err;
559

560 561 562
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
	if (err)
		return err;
563

564 565
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val | GLOBAL_CONTROL_PPU_ENABLE);
566 567
	if (err)
		return err;
568

569
	for (i = 0; i < 16; i++) {
570 571 572
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
573

574
		usleep_range(1000, 2000);
575
		if ((val & GLOBAL_STATUS_PPU_MASK) == GLOBAL_STATUS_PPU_POLLING)
576
			return 0;
577 578 579 580 581 582 583
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
584
	struct mv88e6xxx_chip *chip;
585

586
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
587

588
	mutex_lock(&chip->reg_lock);
589

590 591 592 593
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
594
	}
595

596
	mutex_unlock(&chip->reg_lock);
597 598 599 600
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
601
	struct mv88e6xxx_chip *chip = (void *)_ps;
602

603
	schedule_work(&chip->ppu_work);
604 605
}

606
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
607 608 609
{
	int ret;

610
	mutex_lock(&chip->ppu_mutex);
611

612
	/* If the PHY polling unit is enabled, disable it so that
613 614 615 616
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
617 618
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
619
		if (ret < 0) {
620
			mutex_unlock(&chip->ppu_mutex);
621 622
			return ret;
		}
623
		chip->ppu_disabled = 1;
624
	} else {
625
		del_timer(&chip->ppu_timer);
626
		ret = 0;
627 628 629 630 631
	}

	return ret;
}

632
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
633
{
634
	/* Schedule a timer to re-enable the PHY polling unit. */
635 636
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
637 638
}

639
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
640
{
641 642
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
643 644
	setup_timer(&chip->ppu_timer, mv88e6xxx_ppu_reenable_timer,
		    (unsigned long)chip);
645 646
}

647 648 649 650 651
static void mv88e6xxx_ppu_state_destroy(struct mv88e6xxx_chip *chip)
{
	del_timer_sync(&chip->ppu_timer);
}

652 653
static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
				  int reg, u16 *val)
654
{
655
	int err;
656

657 658 659
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_read(chip, addr, reg, val);
660
		mv88e6xxx_ppu_access_put(chip);
661 662
	}

663
	return err;
664 665
}

666 667
static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
				   int reg, u16 val)
668
{
669
	int err;
670

671 672 673
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_write(chip, addr, reg, val);
674
		mv88e6xxx_ppu_access_put(chip);
675 676
	}

677
	return err;
678 679
}

680
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
681
{
682
	return chip->info->family == MV88E6XXX_FAMILY_6065;
683 684
}

685
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
686
{
687
	return chip->info->family == MV88E6XXX_FAMILY_6095;
688 689
}

690
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
691
{
692
	return chip->info->family == MV88E6XXX_FAMILY_6097;
693 694
}

695
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
696
{
697
	return chip->info->family == MV88E6XXX_FAMILY_6165;
698 699
}

700
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
701
{
702
	return chip->info->family == MV88E6XXX_FAMILY_6185;
703 704
}

705
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
706
{
707
	return chip->info->family == MV88E6XXX_FAMILY_6320;
708 709
}

710
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
711
{
712
	return chip->info->family == MV88E6XXX_FAMILY_6351;
713 714
}

715
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
716
{
717
	return chip->info->family == MV88E6XXX_FAMILY_6352;
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static int mv88e6xxx_port_setup_mac(struct mv88e6xxx_chip *chip, int port,
				    int link, int speed, int duplex,
				    phy_interface_t mode)
{
	int err;

	if (!chip->info->ops->port_set_link)
		return 0;

	/* Port's MAC control must not be changed unless the link is down */
	err = chip->info->ops->port_set_link(chip, port, 0);
	if (err)
		return err;

	if (chip->info->ops->port_set_speed) {
		err = chip->info->ops->port_set_speed(chip, port, speed);
		if (err && err != -EOPNOTSUPP)
			goto restore_link;
	}

	if (chip->info->ops->port_set_duplex) {
		err = chip->info->ops->port_set_duplex(chip, port, duplex);
		if (err && err != -EOPNOTSUPP)
			goto restore_link;
	}

	if (chip->info->ops->port_set_rgmii_delay) {
		err = chip->info->ops->port_set_rgmii_delay(chip, port, mode);
		if (err && err != -EOPNOTSUPP)
			goto restore_link;
	}

	err = 0;
restore_link:
	if (chip->info->ops->port_set_link(chip, port, link))
		netdev_err(chip->ds->ports[port].netdev,
			   "failed to restore MAC's link\n");

	return err;
}

761 762 763 764
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
765 766
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
767
{
V
Vivien Didelot 已提交
768
	struct mv88e6xxx_chip *chip = ds->priv;
769
	int err;
770 771 772 773

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

774
	mutex_lock(&chip->reg_lock);
775 776
	err = mv88e6xxx_port_setup_mac(chip, port, phydev->link, phydev->speed,
				       phydev->duplex, phydev->interface);
777
	mutex_unlock(&chip->reg_lock);
778 779 780

	if (err && err != -EOPNOTSUPP)
		netdev_err(ds->ports[port].netdev, "failed to configure MAC\n");
781 782
}

783
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
784
{
785 786
	u16 val;
	int i, err;
787 788

	for (i = 0; i < 10; i++) {
789
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_OP, &val);
790 791 792
		if (err)
			return err;

793
		if ((val & GLOBAL_STATS_OP_BUSY) == 0)
794 795 796 797 798 799
			return 0;
	}

	return -ETIMEDOUT;
}

800
static int mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
801
{
802 803
	if (!chip->info->ops->stats_snapshot)
		return -EOPNOTSUPP;
804

805
	return chip->info->ops->stats_snapshot(chip, port);
806 807
}

808
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
809
				  int stat, u32 *val)
810
{
811 812 813
	u32 value;
	u16 reg;
	int err;
814 815 816

	*val = 0;

817 818 819 820
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_READ_CAPTURED |
				 GLOBAL_STATS_OP_HIST_RX_TX | stat);
	if (err)
821 822
		return;

823 824
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
825 826
		return;

827 828
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_32, &reg);
	if (err)
829 830
		return;

831
	value = reg << 16;
832

833 834
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_01, &reg);
	if (err)
835 836
		return;

837
	*val = value | reg;
838 839
}

840
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
900 901
};

902
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
903
			       struct mv88e6xxx_hw_stat *stat)
904
{
905 906
	switch (stat->type) {
	case BANK0:
907
		return true;
908
	case BANK1:
909
		return mv88e6xxx_6320_family(chip);
910
	case PORT:
911 912 913 914 915 916
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
917
	}
918
	return false;
919 920
}

921
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
922
					    struct mv88e6xxx_hw_stat *s,
923 924 925 926
					    int port)
{
	u32 low;
	u32 high = 0;
927 928
	int err;
	u16 reg;
929 930
	u64 value;

931 932
	switch (s->type) {
	case PORT:
933 934
		err = mv88e6xxx_port_read(chip, port, s->reg, &reg);
		if (err)
935 936
			return UINT64_MAX;

937
		low = reg;
938
		if (s->sizeof_stat == 4) {
939 940
			err = mv88e6xxx_port_read(chip, port, s->reg + 1, &reg);
			if (err)
941
				return UINT64_MAX;
942
			high = reg;
943
		}
944 945 946
		break;
	case BANK0:
	case BANK1:
947
		_mv88e6xxx_stats_read(chip, s->reg, &low);
948
		if (s->sizeof_stat == 8)
949
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
950 951 952 953 954
	}
	value = (((u64)high) << 16) | low;
	return value;
}

955 956
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
957
{
V
Vivien Didelot 已提交
958
	struct mv88e6xxx_chip *chip = ds->priv;
959 960
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
961

962 963
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
964
		if (mv88e6xxx_has_stat(chip, stat)) {
965 966 967 968
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
969
	}
970 971
}

972
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
973
{
V
Vivien Didelot 已提交
974
	struct mv88e6xxx_chip *chip = ds->priv;
975 976 977 978 979
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
980
		if (mv88e6xxx_has_stat(chip, stat))
981 982 983
			j++;
	}
	return j;
984 985
}

986 987
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
988
{
V
Vivien Didelot 已提交
989
	struct mv88e6xxx_chip *chip = ds->priv;
990 991 992 993
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

994
	mutex_lock(&chip->reg_lock);
995

996
	ret = mv88e6xxx_stats_snapshot(chip, port);
997
	if (ret < 0) {
998
		mutex_unlock(&chip->reg_lock);
999 1000 1001 1002
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
1003 1004
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
1005 1006 1007 1008
			j++;
		}
	}

1009
	mutex_unlock(&chip->reg_lock);
1010 1011
}

1012
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
1013 1014 1015 1016
{
	return 32 * sizeof(u16);
}

1017 1018
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
1019
{
V
Vivien Didelot 已提交
1020
	struct mv88e6xxx_chip *chip = ds->priv;
1021 1022
	int err;
	u16 reg;
1023 1024 1025 1026 1027 1028 1029
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

1030
	mutex_lock(&chip->reg_lock);
1031

1032 1033
	for (i = 0; i < 32; i++) {

1034 1035 1036
		err = mv88e6xxx_port_read(chip, port, i, &reg);
		if (!err)
			p[i] = reg;
1037
	}
1038

1039
	mutex_unlock(&chip->reg_lock);
1040 1041
}

1042
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
1043
{
1044
	return mv88e6xxx_g1_wait(chip, GLOBAL_ATU_OP, GLOBAL_ATU_OP_BUSY);
1045 1046
}

1047 1048
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
1049
{
V
Vivien Didelot 已提交
1050
	struct mv88e6xxx_chip *chip = ds->priv;
1051 1052
	u16 reg;
	int err;
1053

1054
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1055 1056
		return -EOPNOTSUPP;

1057
	mutex_lock(&chip->reg_lock);
1058

1059 1060
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
1061
		goto out;
1062 1063 1064 1065

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

1066
	err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
1067
	if (err)
1068
		goto out;
1069

1070
	e->eee_active = !!(reg & PORT_STATUS_EEE);
1071
out:
1072
	mutex_unlock(&chip->reg_lock);
1073 1074

	return err;
1075 1076
}

1077 1078
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
1079
{
V
Vivien Didelot 已提交
1080
	struct mv88e6xxx_chip *chip = ds->priv;
1081 1082
	u16 reg;
	int err;
1083

1084
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1085 1086
		return -EOPNOTSUPP;

1087
	mutex_lock(&chip->reg_lock);
1088

1089 1090
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
1091 1092
		goto out;

1093
	reg &= ~0x0300;
1094 1095 1096 1097 1098
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

1099
	err = mv88e6xxx_phy_write(chip, port, 16, reg);
1100
out:
1101
	mutex_unlock(&chip->reg_lock);
1102

1103
	return err;
1104 1105
}

1106
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
1107
{
1108 1109
	u16 val;
	int err;
1110

1111
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_ATU_FID)) {
1112 1113 1114
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_FID, fid);
		if (err)
			return err;
1115
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1116
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
1117 1118 1119
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
		if (err)
			return err;
1120

1121 1122 1123 1124
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
					 (val & 0xfff) | ((fid << 8) & 0xf000));
		if (err)
			return err;
1125 1126 1127

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
1128 1129
	}

1130 1131 1132
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_OP, cmd);
	if (err)
		return err;
1133

1134
	return _mv88e6xxx_atu_wait(chip);
1135 1136
}

1137
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1157
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_DATA, data);
1158 1159
}

1160
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1161 1162
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1163
{
1164 1165
	int op;
	int err;
1166

1167
	err = _mv88e6xxx_atu_wait(chip);
1168 1169
	if (err)
		return err;
1170

1171
	err = _mv88e6xxx_atu_data_write(chip, entry);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1183
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1184 1185
}

1186
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1187
				u16 fid, bool static_too)
1188 1189 1190 1191 1192
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1193

1194
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1195 1196
}

1197
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1198
			       int from_port, int to_port, bool static_too)
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1212
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1213 1214
}

1215
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1216
				 int port, bool static_too)
1217 1218
{
	/* Destination port 0xF means remove the entries */
1219
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1220 1221
}

1222
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1223
{
1224 1225
	struct net_device *bridge = chip->ports[port].bridge_dev;
	struct dsa_switch *ds = chip->ds;
1226 1227 1228 1229 1230
	u16 output_ports = 0;
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1231
		output_ports = ~0;
1232
	} else {
1233
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1234
			/* allow sending frames to every group member */
1235
			if (bridge && chip->ports[i].bridge_dev == bridge)
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1246

1247
	return mv88e6xxx_port_set_vlan_map(chip, port, output_ports);
1248 1249
}

1250 1251
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1252
{
V
Vivien Didelot 已提交
1253
	struct mv88e6xxx_chip *chip = ds->priv;
1254
	int stp_state;
1255
	int err;
1256 1257 1258

	switch (state) {
	case BR_STATE_DISABLED:
1259
		stp_state = PORT_CONTROL_STATE_DISABLED;
1260 1261 1262
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1263
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1264 1265
		break;
	case BR_STATE_LEARNING:
1266
		stp_state = PORT_CONTROL_STATE_LEARNING;
1267 1268 1269
		break;
	case BR_STATE_FORWARDING:
	default:
1270
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1271 1272 1273
		break;
	}

1274
	mutex_lock(&chip->reg_lock);
1275
	err = mv88e6xxx_port_set_state(chip, port, stp_state);
1276
	mutex_unlock(&chip->reg_lock);
1277 1278

	if (err)
1279
		netdev_err(ds->ports[port].netdev, "failed to update state\n");
1280 1281
}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
static void mv88e6xxx_port_fast_age(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_chip *chip = ds->priv;
	int err;

	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_atu_remove(chip, 0, port, false);
	mutex_unlock(&chip->reg_lock);

	if (err)
		netdev_err(ds->ports[port].netdev, "failed to flush ATU\n");
}

1295
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1296
{
1297
	return mv88e6xxx_g1_wait(chip, GLOBAL_VTU_OP, GLOBAL_VTU_OP_BUSY);
1298 1299
}

1300
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1301
{
1302
	int err;
1303

1304 1305 1306
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_OP, op);
	if (err)
		return err;
1307

1308
	return _mv88e6xxx_vtu_wait(chip);
1309 1310
}

1311
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1312 1313 1314
{
	int ret;

1315
	ret = _mv88e6xxx_vtu_wait(chip);
1316 1317 1318
	if (ret < 0)
		return ret;

1319
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1320 1321
}

1322
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1323
					struct mv88e6xxx_vtu_entry *entry,
1324 1325 1326
					unsigned int nibble_offset)
{
	u16 regs[3];
1327
	int i, err;
1328 1329

	for (i = 0; i < 3; ++i) {
1330
		u16 *reg = &regs[i];
1331

1332 1333 1334
		err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1335 1336
	}

1337
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1338 1339 1340 1341 1342 1343 1344 1345 1346
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1347
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1348
				   struct mv88e6xxx_vtu_entry *entry)
1349
{
1350
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1351 1352
}

1353
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1354
				   struct mv88e6xxx_vtu_entry *entry)
1355
{
1356
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1357 1358
}

1359
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1360
					 struct mv88e6xxx_vtu_entry *entry,
1361 1362 1363
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
1364
	int i, err;
1365

1366
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1367 1368 1369 1370 1371 1372 1373
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1374 1375 1376 1377 1378
		u16 reg = regs[i];

		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1379 1380 1381 1382 1383
	}

	return 0;
}

1384
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1385
				    struct mv88e6xxx_vtu_entry *entry)
1386
{
1387
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1388 1389
}

1390
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1391
				    struct mv88e6xxx_vtu_entry *entry)
1392
{
1393
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1394 1395
}

1396
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1397
{
1398 1399
	return mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID,
				  vid & GLOBAL_VTU_VID_MASK);
1400 1401
}

1402
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1403
				  struct mv88e6xxx_vtu_entry *entry)
1404
{
1405
	struct mv88e6xxx_vtu_entry next = { 0 };
1406 1407
	u16 val;
	int err;
1408

1409 1410 1411
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1412

1413 1414 1415
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (err)
		return err;
1416

1417 1418 1419
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1420

1421 1422
	next.vid = val & GLOBAL_VTU_VID_MASK;
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1423 1424

	if (next.valid) {
1425 1426 1427
		err = mv88e6xxx_vtu_data_read(chip, &next);
		if (err)
			return err;
1428

1429
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1430 1431 1432
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_FID, &val);
			if (err)
				return err;
1433

1434
			next.fid = val & GLOBAL_VTU_FID_MASK;
1435
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1436 1437 1438
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1439 1440 1441
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_OP, &val);
			if (err)
				return err;
1442

1443 1444
			next.fid = (val & 0xf00) >> 4;
			next.fid |= val & 0xf;
1445
		}
1446

1447
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1448 1449 1450
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
			if (err)
				return err;
1451

1452
			next.sid = val & GLOBAL_VTU_SID_MASK;
1453 1454 1455 1456 1457 1458 1459
		}
	}

	*entry = next;
	return 0;
}

1460 1461 1462
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1463
{
V
Vivien Didelot 已提交
1464
	struct mv88e6xxx_chip *chip = ds->priv;
1465
	struct mv88e6xxx_vtu_entry next;
1466 1467 1468
	u16 pvid;
	int err;

1469
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1470 1471
		return -EOPNOTSUPP;

1472
	mutex_lock(&chip->reg_lock);
1473

1474
	err = mv88e6xxx_port_get_pvid(chip, port, &pvid);
1475 1476 1477
	if (err)
		goto unlock;

1478
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1479 1480 1481 1482
	if (err)
		goto unlock;

	do {
1483
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1494 1495
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1510
	mutex_unlock(&chip->reg_lock);
1511 1512 1513 1514

	return err;
}

1515
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1516
				    struct mv88e6xxx_vtu_entry *entry)
1517
{
1518
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1519
	u16 reg = 0;
1520
	int err;
1521

1522 1523 1524
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1525 1526 1527 1528 1529

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1530 1531 1532
	err = mv88e6xxx_vtu_data_write(chip, entry);
	if (err)
		return err;
1533

1534
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1535
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1536 1537 1538
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
		if (err)
			return err;
1539
	}
1540

1541
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1542
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1543 1544 1545
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_FID, reg);
		if (err)
			return err;
1546
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1547 1548 1549 1550 1551
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1552 1553 1554 1555 1556
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1557 1558 1559
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1560

1561
	return _mv88e6xxx_vtu_cmd(chip, op);
1562 1563
}

1564
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1565
				  struct mv88e6xxx_vtu_entry *entry)
1566
{
1567
	struct mv88e6xxx_vtu_entry next = { 0 };
1568 1569
	u16 val;
	int err;
1570

1571 1572 1573
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1574

1575 1576 1577 1578
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID,
				 sid & GLOBAL_VTU_SID_MASK);
	if (err)
		return err;
1579

1580 1581 1582
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (err)
		return err;
1583

1584 1585 1586
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
	if (err)
		return err;
1587

1588
	next.sid = val & GLOBAL_VTU_SID_MASK;
1589

1590 1591 1592
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1593

1594
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1595 1596

	if (next.valid) {
1597 1598 1599
		err = mv88e6xxx_stu_data_read(chip, &next);
		if (err)
			return err;
1600 1601 1602 1603 1604 1605
	}

	*entry = next;
	return 0;
}

1606
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1607
				    struct mv88e6xxx_vtu_entry *entry)
1608 1609
{
	u16 reg = 0;
1610
	int err;
1611

1612 1613 1614
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1615 1616 1617 1618 1619

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1620 1621 1622
	err = mv88e6xxx_stu_data_write(chip, entry);
	if (err)
		return err;
1623 1624 1625

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1626 1627 1628
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1629 1630

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1631 1632 1633
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
	if (err)
		return err;
1634

1635
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1636 1637
}

1638
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1639 1640
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1641
	struct mv88e6xxx_vtu_entry vlan;
1642
	int i, err;
1643 1644 1645

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1646
	/* Set every FID bit used by the (un)bridged ports */
1647
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1648
		err = mv88e6xxx_port_get_fid(chip, i, fid);
1649 1650 1651 1652 1653 1654
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1655
	/* Set every FID bit used by the VLAN entries */
1656
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1657 1658 1659 1660
	if (err)
		return err;

	do {
1661
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1675
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1676 1677 1678
		return -ENOSPC;

	/* Clear the database */
1679
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1680 1681
}

1682
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1683
			      struct mv88e6xxx_vtu_entry *entry)
1684
{
1685
	struct dsa_switch *ds = chip->ds;
1686
	struct mv88e6xxx_vtu_entry vlan = {
1687 1688 1689
		.valid = true,
		.vid = vid,
	};
1690 1691
	int i, err;

1692
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1693 1694
	if (err)
		return err;
1695

1696
	/* exclude all ports except the CPU and DSA ports */
1697
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
1698 1699 1700
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1701

1702 1703
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1704
		struct mv88e6xxx_vtu_entry vstp;
1705 1706 1707 1708 1709 1710

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1711
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1712 1713 1714 1715 1716 1717 1718 1719
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1720
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1721 1722 1723 1724 1725 1726 1727 1728 1729
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1730
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1731
			      struct mv88e6xxx_vtu_entry *entry, bool creat)
1732 1733 1734 1735 1736 1737
{
	int err;

	if (!vid)
		return -EINVAL;

1738
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1739 1740 1741
	if (err)
		return err;

1742
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1753
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1754 1755 1756 1757 1758
	}

	return err;
}

1759 1760 1761
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
V
Vivien Didelot 已提交
1762
	struct mv88e6xxx_chip *chip = ds->priv;
1763
	struct mv88e6xxx_vtu_entry vlan;
1764 1765 1766 1767 1768
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1769
	mutex_lock(&chip->reg_lock);
1770

1771
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1772 1773 1774 1775
	if (err)
		goto unlock;

	do {
1776
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1777 1778 1779 1780 1781 1782 1783 1784 1785
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1786
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1787 1788 1789 1790 1791 1792 1793
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1794 1795
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1796 1797
				break; /* same bridge, check next VLAN */

1798
			netdev_warn(ds->ports[port].netdev,
1799 1800
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1801
				    netdev_name(chip->ports[i].bridge_dev));
1802 1803 1804 1805 1806 1807
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1808
	mutex_unlock(&chip->reg_lock);
1809 1810 1811 1812

	return err;
}

1813 1814
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1815
{
V
Vivien Didelot 已提交
1816
	struct mv88e6xxx_chip *chip = ds->priv;
1817
	u16 mode = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
1818
		PORT_CONTROL_2_8021Q_DISABLED;
1819
	int err;
1820

1821
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1822 1823
		return -EOPNOTSUPP;

1824
	mutex_lock(&chip->reg_lock);
1825
	err = mv88e6xxx_port_set_8021q_mode(chip, port, mode);
1826
	mutex_unlock(&chip->reg_lock);
1827

1828
	return err;
1829 1830
}

1831 1832 1833 1834
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1835
{
V
Vivien Didelot 已提交
1836
	struct mv88e6xxx_chip *chip = ds->priv;
1837 1838
	int err;

1839
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1840 1841
		return -EOPNOTSUPP;

1842 1843 1844 1845 1846 1847 1848 1849
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1850 1851 1852 1853 1854 1855
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1856
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1857
				    u16 vid, bool untagged)
1858
{
1859
	struct mv88e6xxx_vtu_entry vlan;
1860 1861
	int err;

1862
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1863
	if (err)
1864
		return err;
1865 1866 1867 1868 1869

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1870
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1871 1872
}

1873 1874 1875
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
1876
{
V
Vivien Didelot 已提交
1877
	struct mv88e6xxx_chip *chip = ds->priv;
1878 1879 1880 1881
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

1882
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1883 1884
		return;

1885
	mutex_lock(&chip->reg_lock);
1886

1887
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1888
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1889 1890
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
1891
				   vid, untagged ? 'u' : 't');
1892

1893
	if (pvid && mv88e6xxx_port_set_pvid(chip, port, vlan->vid_end))
1894
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1895
			   vlan->vid_end);
1896

1897
	mutex_unlock(&chip->reg_lock);
1898 1899
}

1900
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1901
				    int port, u16 vid)
1902
{
1903
	struct dsa_switch *ds = chip->ds;
1904
	struct mv88e6xxx_vtu_entry vlan;
1905 1906
	int i, err;

1907
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1908
	if (err)
1909
		return err;
1910

1911 1912
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1913
		return -EOPNOTSUPP;
1914 1915 1916 1917

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1918
	vlan.valid = false;
1919
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1920
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1921 1922 1923
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1924
			vlan.valid = true;
1925 1926 1927 1928
			break;
		}
	}

1929
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1930 1931 1932
	if (err)
		return err;

1933
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
1934 1935
}

1936 1937
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
1938
{
V
Vivien Didelot 已提交
1939
	struct mv88e6xxx_chip *chip = ds->priv;
1940 1941 1942
	u16 pvid, vid;
	int err = 0;

1943
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1944 1945
		return -EOPNOTSUPP;

1946
	mutex_lock(&chip->reg_lock);
1947

1948
	err = mv88e6xxx_port_get_pvid(chip, port, &pvid);
1949 1950 1951
	if (err)
		goto unlock;

1952
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1953
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
1954 1955 1956 1957
		if (err)
			goto unlock;

		if (vid == pvid) {
1958
			err = mv88e6xxx_port_set_pvid(chip, port, 0);
1959 1960 1961 1962 1963
			if (err)
				goto unlock;
		}
	}

1964
unlock:
1965
	mutex_unlock(&chip->reg_lock);
1966 1967 1968 1969

	return err;
}

1970
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
1971
				    const unsigned char *addr)
1972
{
1973
	int i, err;
1974 1975

	for (i = 0; i < 3; i++) {
1976 1977 1978 1979
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_MAC_01 + i,
					 (addr[i * 2] << 8) | addr[i * 2 + 1]);
		if (err)
			return err;
1980 1981 1982 1983 1984
	}

	return 0;
}

1985
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
1986
				   unsigned char *addr)
1987
{
1988 1989
	u16 val;
	int i, err;
1990 1991

	for (i = 0; i < 3; i++) {
1992 1993 1994 1995 1996 1997
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_MAC_01 + i, &val);
		if (err)
			return err;

		addr[i * 2] = val >> 8;
		addr[i * 2 + 1] = val & 0xff;
1998 1999 2000 2001 2002
	}

	return 0;
}

2003
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2004
			       struct mv88e6xxx_atu_entry *entry)
2005
{
2006 2007
	int ret;

2008
	ret = _mv88e6xxx_atu_wait(chip);
2009 2010 2011
	if (ret < 0)
		return ret;

2012
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2013 2014 2015
	if (ret < 0)
		return ret;

2016
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2017
	if (ret < 0)
2018 2019
		return ret;

2020
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2021
}
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
				  struct mv88e6xxx_atu_entry *entry);

static int mv88e6xxx_atu_get(struct mv88e6xxx_chip *chip, int fid,
			     const u8 *addr, struct mv88e6xxx_atu_entry *entry)
{
	struct mv88e6xxx_atu_entry next;
	int err;

	eth_broadcast_addr(next.mac);

	err = _mv88e6xxx_atu_mac_write(chip, next.mac);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_atu_getnext(chip, fid, &next);
		if (err)
			return err;

		if (next.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (ether_addr_equal(next.mac, addr)) {
			*entry = next;
			return 0;
		}
	} while (!is_broadcast_ether_addr(next.mac));

	memset(entry, 0, sizeof(*entry));
	entry->fid = fid;
	ether_addr_copy(entry->mac, addr);

	return 0;
}

2059 2060 2061
static int mv88e6xxx_port_db_load_purge(struct mv88e6xxx_chip *chip, int port,
					const unsigned char *addr, u16 vid,
					u8 state)
2062
{
2063
	struct mv88e6xxx_vtu_entry vlan;
2064
	struct mv88e6xxx_atu_entry entry;
2065 2066
	int err;

2067 2068
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2069
		err = mv88e6xxx_port_get_fid(chip, port, &vlan.fid);
2070
	else
2071
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2072 2073
	if (err)
		return err;
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	err = mv88e6xxx_atu_get(chip, vlan.fid, addr, &entry);
	if (err)
		return err;

	/* Purge the ATU entry only if no port is using it anymore */
	if (state == GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.portv_trunkid &= ~BIT(port);
		if (!entry.portv_trunkid)
			entry.state = GLOBAL_ATU_DATA_STATE_UNUSED;
	} else {
		entry.portv_trunkid |= BIT(port);
		entry.state = state;
2087 2088
	}

2089
	return _mv88e6xxx_atu_load(chip, &entry);
2090 2091
}

2092 2093 2094
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2095 2096 2097 2098 2099 2100 2101
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2102 2103 2104
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2105
{
V
Vivien Didelot 已提交
2106
	struct mv88e6xxx_chip *chip = ds->priv;
2107

2108
	mutex_lock(&chip->reg_lock);
2109 2110 2111
	if (mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					 GLOBAL_ATU_DATA_STATE_UC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load unicast MAC address\n");
2112
	mutex_unlock(&chip->reg_lock);
2113 2114
}

2115 2116
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2117
{
V
Vivien Didelot 已提交
2118
	struct mv88e6xxx_chip *chip = ds->priv;
2119
	int err;
2120

2121
	mutex_lock(&chip->reg_lock);
2122 2123
	err = mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
2124
	mutex_unlock(&chip->reg_lock);
2125

2126
	return err;
2127 2128
}

2129
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2130
				  struct mv88e6xxx_atu_entry *entry)
2131
{
2132
	struct mv88e6xxx_atu_entry next = { 0 };
2133 2134
	u16 val;
	int err;
2135 2136

	next.fid = fid;
2137

2138 2139 2140
	err = _mv88e6xxx_atu_wait(chip);
	if (err)
		return err;
2141

2142 2143 2144
	err = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
	if (err)
		return err;
2145

2146 2147 2148
	err = _mv88e6xxx_atu_mac_read(chip, next.mac);
	if (err)
		return err;
2149

2150 2151 2152
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_DATA, &val);
	if (err)
		return err;
2153

2154
	next.state = val & GLOBAL_ATU_DATA_STATE_MASK;
2155 2156 2157
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

2158
		if (val & GLOBAL_ATU_DATA_TRUNK) {
2159 2160 2161 2162 2163 2164 2165 2166 2167
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

2168
		next.portv_trunkid = (val & mask) >> shift;
2169
	}
2170

2171
	*entry = next;
2172 2173 2174
	return 0;
}

2175 2176 2177 2178
static int mv88e6xxx_port_db_dump_fid(struct mv88e6xxx_chip *chip,
				      u16 fid, u16 vid, int port,
				      struct switchdev_obj *obj,
				      int (*cb)(struct switchdev_obj *obj))
2179 2180 2181 2182 2183 2184
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2185
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2186 2187 2188 2189
	if (err)
		return err;

	do {
2190
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2191
		if (err)
2192
			return err;
2193 2194 2195 2196

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

2197 2198 2199 2200 2201
		if (addr.trunk || (addr.portv_trunkid & BIT(port)) == 0)
			continue;

		if (obj->id == SWITCHDEV_OBJ_ID_PORT_FDB) {
			struct switchdev_obj_port_fdb *fdb;
2202

2203 2204 2205 2206
			if (!is_unicast_ether_addr(addr.mac))
				continue;

			fdb = SWITCHDEV_OBJ_PORT_FDB(obj);
2207 2208
			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
2209 2210 2211 2212
			if (addr.state == GLOBAL_ATU_DATA_STATE_UC_STATIC)
				fdb->ndm_state = NUD_NOARP;
			else
				fdb->ndm_state = NUD_REACHABLE;
2213 2214 2215 2216 2217 2218 2219 2220 2221
		} else if (obj->id == SWITCHDEV_OBJ_ID_PORT_MDB) {
			struct switchdev_obj_port_mdb *mdb;

			if (!is_multicast_ether_addr(addr.mac))
				continue;

			mdb = SWITCHDEV_OBJ_PORT_MDB(obj);
			mdb->vid = vid;
			ether_addr_copy(mdb->addr, addr.mac);
2222 2223
		} else {
			return -EOPNOTSUPP;
2224
		}
2225 2226 2227 2228

		err = cb(obj);
		if (err)
			return err;
2229 2230 2231 2232 2233
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2234 2235 2236
static int mv88e6xxx_port_db_dump(struct mv88e6xxx_chip *chip, int port,
				  struct switchdev_obj *obj,
				  int (*cb)(struct switchdev_obj *obj))
2237
{
2238
	struct mv88e6xxx_vtu_entry vlan = {
2239 2240
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2241
	u16 fid;
2242 2243
	int err;

2244
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2245
	err = mv88e6xxx_port_get_fid(chip, port, &fid);
2246
	if (err)
2247
		return err;
2248

2249
	err = mv88e6xxx_port_db_dump_fid(chip, fid, 0, port, obj, cb);
2250
	if (err)
2251
		return err;
2252

2253
	/* Dump VLANs' Filtering Information Databases */
2254
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2255
	if (err)
2256
		return err;
2257 2258

	do {
2259
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2260
		if (err)
2261
			return err;
2262 2263 2264 2265

		if (!vlan.valid)
			break;

2266 2267
		err = mv88e6xxx_port_db_dump_fid(chip, vlan.fid, vlan.vid, port,
						 obj, cb);
2268
		if (err)
2269
			return err;
2270 2271
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

2272 2273 2274 2275 2276 2277 2278
	return err;
}

static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
2279
	struct mv88e6xxx_chip *chip = ds->priv;
2280 2281 2282 2283
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &fdb->obj, cb);
2284
	mutex_unlock(&chip->reg_lock);
2285 2286 2287 2288

	return err;
}

2289 2290
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2291
{
V
Vivien Didelot 已提交
2292
	struct mv88e6xxx_chip *chip = ds->priv;
2293
	int i, err = 0;
2294

2295
	mutex_lock(&chip->reg_lock);
2296

2297
	/* Assign the bridge and remap each port's VLANTable */
2298
	chip->ports[port].bridge_dev = bridge;
2299

2300
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
2301 2302
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2303 2304 2305 2306 2307
			if (err)
				break;
		}
	}

2308
	mutex_unlock(&chip->reg_lock);
2309

2310
	return err;
2311 2312
}

2313
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2314
{
V
Vivien Didelot 已提交
2315
	struct mv88e6xxx_chip *chip = ds->priv;
2316
	struct net_device *bridge = chip->ports[port].bridge_dev;
2317
	int i;
2318

2319
	mutex_lock(&chip->reg_lock);
2320

2321
	/* Unassign the bridge and remap each port's VLANTable */
2322
	chip->ports[port].bridge_dev = NULL;
2323

2324
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
2325 2326
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2327 2328
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2329

2330
	mutex_unlock(&chip->reg_lock);
2331 2332
}

2333
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2334
{
2335
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2336
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2337
	struct gpio_desc *gpiod = chip->reset;
2338
	unsigned long timeout;
2339
	u16 reg;
2340
	int err;
2341 2342 2343
	int i;

	/* Set all ports to the disabled state. */
2344
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2345 2346
		err = mv88e6xxx_port_set_state(chip, i,
					       PORT_CONTROL_STATE_DISABLED);
2347 2348
		if (err)
			return err;
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2367
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc000);
2368
	else
2369
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc400);
2370 2371
	if (err)
		return err;
2372 2373 2374 2375

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2376 2377 2378
		err = mv88e6xxx_g1_read(chip, 0x00, &reg);
		if (err)
			return err;
2379

2380
		if ((reg & is_reset) == is_reset)
2381 2382 2383 2384
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
2385
		err = -ETIMEDOUT;
2386
	else
2387
		err = 0;
2388

2389
	return err;
2390 2391
}

2392
static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2393
{
2394 2395
	u16 val;
	int err;
2396

2397 2398 2399 2400
	/* Clear Power Down bit */
	err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
	if (err)
		return err;
2401

2402 2403 2404
	if (val & BMCR_PDOWN) {
		val &= ~BMCR_PDOWN;
		err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2405 2406
	}

2407
	return err;
2408 2409
}

2410
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2411
{
2412
	struct dsa_switch *ds = chip->ds;
2413
	int err;
2414
	u16 reg;
2415

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	/* MAC Forcing register: don't force link, speed, duplex or flow control
	 * state to any particular values on physical ports, but force the CPU
	 * port and all DSA ports to their maximum bandwidth and full duplex.
	 */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
		err = mv88e6xxx_port_setup_mac(chip, port, LINK_FORCED_UP,
					       SPEED_MAX, DUPLEX_FULL,
					       PHY_INTERFACE_MODE_NA);
	else
		err = mv88e6xxx_port_setup_mac(chip, port, LINK_UNFORCED,
					       SPEED_UNFORCED, DUPLEX_UNFORCED,
					       PHY_INTERFACE_MODE_NA);
	if (err)
		return err;
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2446 2447 2448 2449
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2450 2451 2452 2453
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2454
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2455
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2456
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2457 2458
		else
			reg |= PORT_CONTROL_DSA_TAG;
2459 2460
		reg |= PORT_CONTROL_EGRESS_ADD_TAG |
			PORT_CONTROL_FORWARD_UNKNOWN;
2461
	}
2462
	if (dsa_is_dsa_port(ds, port)) {
2463 2464
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2465
			reg |= PORT_CONTROL_DSA_TAG;
2466 2467 2468 2469 2470
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2471
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2472 2473
		}

2474 2475 2476 2477 2478
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2479 2480 2481
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL, reg);
		if (err)
			return err;
2482 2483
	}

2484 2485 2486
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2487
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
		err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
		if (err)
			return err;
		reg &= PORT_STATUS_CMODE_MASK;
		if ((reg == PORT_STATUS_CMODE_100BASE_X) ||
		    (reg == PORT_STATUS_CMODE_1000BASE_X) ||
		    (reg == PORT_STATUS_CMODE_SGMII)) {
			err = mv88e6xxx_serdes_power_on(chip);
			if (err < 0)
				return err;
2498 2499 2500
		}
	}

2501
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2502
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2503 2504 2505
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2506 2507
	 */
	reg = 0;
2508 2509 2510 2511
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2512 2513
		reg = PORT_CONTROL_2_MAP_DA;

2514 2515
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2516 2517
		reg |= PORT_CONTROL_2_JUMBO_10240;

2518
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2519 2520 2521 2522 2523 2524 2525 2526 2527
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2528
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2529

2530
	if (reg) {
2531 2532 2533
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_2, reg);
		if (err)
			return err;
2534 2535 2536 2537 2538 2539 2540
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2541
	reg = 1 << port;
2542 2543
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2544
		reg = 0;
2545

2546 2547 2548
	err = mv88e6xxx_port_write(chip, port, PORT_ASSOC_VECTOR, reg);
	if (err)
		return err;
2549 2550

	/* Egress rate control 2: disable egress rate control. */
2551 2552 2553
	err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL_2, 0x0000);
	if (err)
		return err;
2554

2555 2556 2557
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2558 2559 2560 2561
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2562 2563 2564
		err = mv88e6xxx_port_write(chip, port, PORT_PAUSE_CTRL, 0x0000);
		if (err)
			return err;
2565 2566 2567 2568 2569

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2570 2571
		err = mv88e6xxx_port_write(chip, port, PORT_ATU_CONTROL,
					   0x0000);
2572 2573 2574
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2575 2576 2577 2578
		err = mv88e6xxx_port_write(chip, port, PORT_PRI_OVERRIDE,
					   0x0000);
		if (err)
			return err;
2579 2580 2581 2582

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2583
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
2584 2585 2586 2587
			err = mv88e6xxx_port_write(chip, port, PORT_ETH_TYPE,
						   ETH_P_EDSA);
			if (err)
				return err;
2588 2589
		}

2590 2591 2592
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2593 2594 2595 2596
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_0123,
					   0x3210);
		if (err)
			return err;
2597 2598 2599 2600

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2601 2602 2603 2604
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_4567,
					   0x7654);
		if (err)
			return err;
2605 2606
	}

2607
	/* Rate Control: disable ingress rate limiting. */
2608 2609 2610
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2611 2612 2613 2614
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0001);
		if (err)
			return err;
2615
	} else if (mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip)) {
2616 2617 2618 2619
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0000);
		if (err)
			return err;
2620 2621
	}

2622 2623
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2624
	 */
2625 2626 2627
	err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_1, 0x0000);
	if (err)
		return err;
2628

2629
	/* Port based VLAN map: give each port the same default address
2630 2631
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2632
	 */
2633
	err = mv88e6xxx_port_set_fid(chip, port, 0);
2634 2635
	if (err)
		return err;
2636

2637 2638 2639
	err = _mv88e6xxx_port_based_vlan_map(chip, port);
	if (err)
		return err;
2640 2641 2642 2643

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2644
	return mv88e6xxx_port_write(chip, port, PORT_DEFAULT_VLAN, 0x0000);
2645 2646
}

2647
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2648 2649 2650
{
	int err;

2651
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
2652 2653 2654
	if (err)
		return err;

2655
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
2656 2657 2658
	if (err)
		return err;

2659 2660 2661 2662 2663
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
	if (err)
		return err;

	return 0;
2664 2665
}

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

2682
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
2683 2684 2685 2686 2687 2688 2689
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

2690
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL, val);
2691 2692
}

2693 2694 2695
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
V
Vivien Didelot 已提交
2696
	struct mv88e6xxx_chip *chip = ds->priv;
2697 2698 2699 2700 2701 2702 2703 2704 2705
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2706
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2707
{
2708
	struct dsa_switch *ds = chip->ds;
2709
	u32 upstream_port = dsa_upstream_port(ds);
2710
	u16 reg;
2711
	int err;
2712

2713 2714 2715
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
2716 2717 2718 2719 2720
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err < 0)
		return err;

	reg &= ~GLOBAL_CONTROL_PPU_ENABLE;
2721 2722
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2723 2724
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2725
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
2726 2727 2728
	if (err)
		return err;

2729 2730 2731 2732 2733 2734
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2735
	err = mv88e6xxx_g1_write(chip, GLOBAL_MONITOR_CONTROL, reg);
2736 2737 2738
	if (err)
		return err;

2739
	/* Disable remote management, and set the switch's DSA device number. */
2740 2741 2742
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL_2,
				 GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				 (ds->index & 0x1f));
2743 2744 2745
	if (err)
		return err;

2746 2747 2748 2749 2750
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2751 2752 2753 2754
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2755 2756
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
				 GLOBAL_ATU_CONTROL_LEARN2ALL);
2757
	if (err)
2758
		return err;
2759

2760 2761
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2762 2763 2764 2765 2766 2767 2768
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2769
	/* Configure the IP ToS mapping registers. */
2770
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_0, 0x0000);
2771
	if (err)
2772
		return err;
2773
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_1, 0x0000);
2774
	if (err)
2775
		return err;
2776
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_2, 0x5555);
2777
	if (err)
2778
		return err;
2779
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_3, 0x5555);
2780
	if (err)
2781
		return err;
2782
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_4, 0xaaaa);
2783
	if (err)
2784
		return err;
2785
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_5, 0xaaaa);
2786
	if (err)
2787
		return err;
2788
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_6, 0xffff);
2789
	if (err)
2790
		return err;
2791
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_7, 0xffff);
2792
	if (err)
2793
		return err;
2794 2795

	/* Configure the IEEE 802.1p priority mapping register. */
2796
	err = mv88e6xxx_g1_write(chip, GLOBAL_IEEE_PRI, 0xfa41);
2797
	if (err)
2798
		return err;
2799

2800
	/* Clear the statistics counters for all ports */
2801 2802
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_FLUSH_ALL);
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2814
static int mv88e6xxx_setup(struct dsa_switch *ds)
2815
{
V
Vivien Didelot 已提交
2816
	struct mv88e6xxx_chip *chip = ds->priv;
2817
	int err;
2818 2819
	int i;

2820 2821
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
2822

2823
	mutex_lock(&chip->reg_lock);
2824

2825
	/* Setup Switch Port Registers */
2826
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2827 2828 2829 2830 2831 2832 2833
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
2834 2835 2836
	if (err)
		goto unlock;

2837 2838 2839
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
2840 2841 2842
		if (err)
			goto unlock;
	}
2843

2844
unlock:
2845
	mutex_unlock(&chip->reg_lock);
2846

2847
	return err;
2848 2849
}

2850 2851
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
V
Vivien Didelot 已提交
2852
	struct mv88e6xxx_chip *chip = ds->priv;
2853 2854
	int err;

2855 2856
	if (!chip->info->ops->set_switch_mac)
		return -EOPNOTSUPP;
2857

2858 2859
	mutex_lock(&chip->reg_lock);
	err = chip->info->ops->set_switch_mac(chip, addr);
2860 2861 2862 2863 2864
	mutex_unlock(&chip->reg_lock);

	return err;
}

2865
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
2866
{
2867
	struct mv88e6xxx_chip *chip = bus->priv;
2868 2869
	u16 val;
	int err;
2870

2871
	if (phy >= mv88e6xxx_num_ports(chip))
2872
		return 0xffff;
2873

2874
	mutex_lock(&chip->reg_lock);
2875
	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
2876
	mutex_unlock(&chip->reg_lock);
2877 2878

	return err ? err : val;
2879 2880
}

2881
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
2882
{
2883
	struct mv88e6xxx_chip *chip = bus->priv;
2884
	int err;
2885

2886
	if (phy >= mv88e6xxx_num_ports(chip))
2887
		return 0xffff;
2888

2889
	mutex_lock(&chip->reg_lock);
2890
	err = mv88e6xxx_phy_write(chip, phy, reg, val);
2891
	mutex_unlock(&chip->reg_lock);
2892 2893

	return err;
2894 2895
}

2896
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
2897 2898 2899 2900 2901 2902 2903
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

	if (np)
2904
		chip->mdio_np = of_get_child_by_name(np, "mdio");
2905

2906
	bus = devm_mdiobus_alloc(chip->dev);
2907 2908 2909
	if (!bus)
		return -ENOMEM;

2910
	bus->priv = (void *)chip;
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
2921
	bus->parent = chip->dev;
2922

2923 2924
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
2925 2926 2927
	else
		err = mdiobus_register(bus);
	if (err) {
2928
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
2929 2930
		goto out;
	}
2931
	chip->mdio_bus = bus;
2932 2933 2934 2935

	return 0;

out:
2936 2937
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
2938 2939 2940 2941

	return err;
}

2942
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
2943 2944

{
2945
	struct mii_bus *bus = chip->mdio_bus;
2946 2947 2948

	mdiobus_unregister(bus);

2949 2950
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
2951 2952
}

2953 2954 2955 2956
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
2957
	struct mv88e6xxx_chip *chip = ds->priv;
2958
	u16 val;
2959 2960 2961 2962
	int ret;

	*temp = 0;

2963
	mutex_lock(&chip->reg_lock);
2964

2965
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
2966 2967 2968 2969
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
2970
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
2971 2972 2973
	if (ret < 0)
		goto error;

2974
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
2975 2976 2977 2978 2979 2980
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

2981 2982
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
	if (ret < 0)
2983 2984 2985
		goto error;

	/* Disable temperature sensor */
2986
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
2987 2988 2989 2990 2991 2992
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
2993
	mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
2994
	mutex_unlock(&chip->reg_lock);
2995 2996 2997 2998 2999
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
3000
	struct mv88e6xxx_chip *chip = ds->priv;
3001
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3002
	u16 val;
3003 3004 3005 3006
	int ret;

	*temp = 0;

3007 3008 3009
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
	mutex_unlock(&chip->reg_lock);
3010 3011 3012
	if (ret < 0)
		return ret;

3013
	*temp = (val & 0xff) - 25;
3014 3015 3016 3017

	return 0;
}

3018
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3019
{
V
Vivien Didelot 已提交
3020
	struct mv88e6xxx_chip *chip = ds->priv;
3021

3022
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3023 3024
		return -EOPNOTSUPP;

3025
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3026 3027 3028 3029 3030
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3031
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3032
{
V
Vivien Didelot 已提交
3033
	struct mv88e6xxx_chip *chip = ds->priv;
3034
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3035
	u16 val;
3036 3037
	int ret;

3038
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3039 3040 3041 3042
		return -EOPNOTSUPP;

	*temp = 0;

3043 3044 3045
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3046 3047 3048
	if (ret < 0)
		return ret;

3049
	*temp = (((val >> 8) & 0x1f) * 5) - 25;
3050 3051 3052 3053

	return 0;
}

3054
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3055
{
V
Vivien Didelot 已提交
3056
	struct mv88e6xxx_chip *chip = ds->priv;
3057
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3058 3059
	u16 val;
	int err;
3060

3061
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3062 3063
		return -EOPNOTSUPP;

3064 3065 3066 3067
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	if (err)
		goto unlock;
3068
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3069 3070 3071 3072 3073 3074
	err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
				       (val & 0xe0ff) | (temp << 8));
unlock:
	mutex_unlock(&chip->reg_lock);

	return err;
3075 3076
}

3077
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3078
{
V
Vivien Didelot 已提交
3079
	struct mv88e6xxx_chip *chip = ds->priv;
3080
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3081
	u16 val;
3082 3083
	int ret;

3084
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3085 3086 3087 3088
		return -EOPNOTSUPP;

	*alarm = false;

3089 3090 3091
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3092 3093 3094
	if (ret < 0)
		return ret;

3095
	*alarm = !!(val & 0x40);
3096 3097 3098 3099 3100

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3101 3102
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3103
	struct mv88e6xxx_chip *chip = ds->priv;
3104 3105 3106 3107 3108 3109 3110

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3111
	struct mv88e6xxx_chip *chip = ds->priv;
3112 3113
	int err;

3114 3115
	if (!chip->info->ops->get_eeprom)
		return -EOPNOTSUPP;
3116

3117 3118
	mutex_lock(&chip->reg_lock);
	err = chip->info->ops->get_eeprom(chip, eeprom, data);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3132
	struct mv88e6xxx_chip *chip = ds->priv;
3133 3134
	int err;

3135 3136 3137
	if (!chip->info->ops->set_eeprom)
		return -EOPNOTSUPP;

3138 3139 3140 3141
	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);
3142
	err = chip->info->ops->set_eeprom(chip, eeprom, data);
3143 3144 3145 3146 3147
	mutex_unlock(&chip->reg_lock);

	return err;
}

3148
static const struct mv88e6xxx_ops mv88e6085_ops = {
3149
	/* MV88E6XXX_FAMILY_6097 */
3150
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3151 3152
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
3153
	.port_set_link = mv88e6xxx_port_set_link,
3154
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3155
	.port_set_speed = mv88e6185_port_set_speed,
3156
	.stats_snapshot = mv88e6xxx_g1_stats_snapshot,
3157 3158 3159
};

static const struct mv88e6xxx_ops mv88e6095_ops = {
3160
	/* MV88E6XXX_FAMILY_6095 */
3161
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3162 3163
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
3164
	.port_set_link = mv88e6xxx_port_set_link,
3165
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3166
	.port_set_speed = mv88e6185_port_set_speed,
3167
	.stats_snapshot = mv88e6xxx_g1_stats_snapshot,
3168 3169 3170
};

static const struct mv88e6xxx_ops mv88e6123_ops = {
3171
	/* MV88E6XXX_FAMILY_6165 */
3172
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3173 3174
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
3175
	.port_set_link = mv88e6xxx_port_set_link,
3176
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3177
	.port_set_speed = mv88e6185_port_set_speed,
3178
	.stats_snapshot = mv88e6xxx_g1_stats_snapshot,
3179 3180 3181
};

static const struct mv88e6xxx_ops mv88e6131_ops = {
3182
	/* MV88E6XXX_FAMILY_6185 */
3183
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3184 3185
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
3186
	.port_set_link = mv88e6xxx_port_set_link,
3187
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3188
	.port_set_speed = mv88e6185_port_set_speed,
3189
	.stats_snapshot = mv88e6xxx_g1_stats_snapshot,
3190 3191 3192
};

static const struct mv88e6xxx_ops mv88e6161_ops = {
3193
	/* MV88E6XXX_FAMILY_6165 */
3194
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3195 3196
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
3197
	.port_set_link = mv88e6xxx_port_set_link,
3198
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3199
	.port_set_speed = mv88e6185_port_set_speed,
3200
	.stats_snapshot = mv88e6xxx_g1_stats_snapshot,
3201 3202 3203
};

static const struct mv88e6xxx_ops mv88e6165_ops = {
3204
	/* MV88E6XXX_FAMILY_6165 */
3205
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3206 3207
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
3208
	.port_set_link = mv88e6xxx_port_set_link,
3209
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3210
	.port_set_speed = mv88e6185_port_set_speed,
3211
	.stats_snapshot = mv88e6xxx_g1_stats_snapshot,
3212 3213 3214
};

static const struct mv88e6xxx_ops mv88e6171_ops = {
3215
	/* MV88E6XXX_FAMILY_6351 */
3216
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3217 3218
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3219
	.port_set_link = mv88e6xxx_port_set_link,
3220
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3221
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3222
	.port_set_speed = mv88e6185_port_set_speed,
3223
	.stats_snapshot = mv88e6320_g1_stats_snapshot,
3224 3225 3226
};

static const struct mv88e6xxx_ops mv88e6172_ops = {
3227
	/* MV88E6XXX_FAMILY_6352 */
3228 3229
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3230
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3231 3232
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3233
	.port_set_link = mv88e6xxx_port_set_link,
3234
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3235
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3236
	.port_set_speed = mv88e6352_port_set_speed,
3237
	.stats_snapshot = mv88e6320_g1_stats_snapshot,
3238 3239 3240
};

static const struct mv88e6xxx_ops mv88e6175_ops = {
3241
	/* MV88E6XXX_FAMILY_6351 */
3242
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3243 3244
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3245
	.port_set_link = mv88e6xxx_port_set_link,
3246
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3247
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3248
	.port_set_speed = mv88e6185_port_set_speed,
3249
	.stats_snapshot = mv88e6320_g1_stats_snapshot,
3250 3251 3252
};

static const struct mv88e6xxx_ops mv88e6176_ops = {
3253
	/* MV88E6XXX_FAMILY_6352 */
3254 3255
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3256
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3257 3258
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3259
	.port_set_link = mv88e6xxx_port_set_link,
3260
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3261
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3262
	.port_set_speed = mv88e6352_port_set_speed,
3263
	.stats_snapshot = mv88e6320_g1_stats_snapshot,
3264 3265 3266
};

static const struct mv88e6xxx_ops mv88e6185_ops = {
3267
	/* MV88E6XXX_FAMILY_6185 */
3268
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3269 3270
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
3271
	.port_set_link = mv88e6xxx_port_set_link,
3272
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3273
	.port_set_speed = mv88e6185_port_set_speed,
3274
	.stats_snapshot = mv88e6xxx_g1_stats_snapshot,
3275 3276
};

3277
static const struct mv88e6xxx_ops mv88e6190_ops = {
3278
	/* MV88E6XXX_FAMILY_6390 */
3279 3280 3281 3282 3283 3284 3285
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390_port_set_speed,
3286
	.stats_snapshot = mv88e6390_g1_stats_snapshot,
3287 3288 3289
};

static const struct mv88e6xxx_ops mv88e6190x_ops = {
3290
	/* MV88E6XXX_FAMILY_6390 */
3291 3292 3293 3294 3295 3296 3297
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390x_port_set_speed,
3298
	.stats_snapshot = mv88e6390_g1_stats_snapshot,
3299 3300 3301
};

static const struct mv88e6xxx_ops mv88e6191_ops = {
3302
	/* MV88E6XXX_FAMILY_6390 */
3303 3304 3305 3306 3307 3308 3309
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390_port_set_speed,
3310
	.stats_snapshot = mv88e6390_g1_stats_snapshot,
3311 3312
};

3313
static const struct mv88e6xxx_ops mv88e6240_ops = {
3314
	/* MV88E6XXX_FAMILY_6352 */
3315 3316
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3317
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3318 3319
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3320
	.port_set_link = mv88e6xxx_port_set_link,
3321
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3322
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3323
	.port_set_speed = mv88e6352_port_set_speed,
3324
	.stats_snapshot = mv88e6320_g1_stats_snapshot,
3325 3326
};

3327
static const struct mv88e6xxx_ops mv88e6290_ops = {
3328
	/* MV88E6XXX_FAMILY_6390 */
3329 3330 3331 3332 3333 3334 3335
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390_port_set_speed,
3336
	.stats_snapshot = mv88e6390_g1_stats_snapshot,
3337 3338
};

3339
static const struct mv88e6xxx_ops mv88e6320_ops = {
3340
	/* MV88E6XXX_FAMILY_6320 */
3341 3342
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3343
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3344 3345
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3346
	.port_set_link = mv88e6xxx_port_set_link,
3347
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3348
	.port_set_speed = mv88e6185_port_set_speed,
3349
	.stats_snapshot = mv88e6320_g1_stats_snapshot,
3350 3351 3352
};

static const struct mv88e6xxx_ops mv88e6321_ops = {
3353
	/* MV88E6XXX_FAMILY_6321 */
3354 3355
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3356
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3357 3358
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3359
	.port_set_link = mv88e6xxx_port_set_link,
3360
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3361
	.port_set_speed = mv88e6185_port_set_speed,
3362
	.stats_snapshot = mv88e6320_g1_stats_snapshot,
3363 3364 3365
};

static const struct mv88e6xxx_ops mv88e6350_ops = {
3366
	/* MV88E6XXX_FAMILY_6351 */
3367
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3368 3369
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3370
	.port_set_link = mv88e6xxx_port_set_link,
3371
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3372
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3373
	.port_set_speed = mv88e6185_port_set_speed,
3374
	.stats_snapshot = mv88e6320_g1_stats_snapshot,
3375 3376 3377
};

static const struct mv88e6xxx_ops mv88e6351_ops = {
3378
	/* MV88E6XXX_FAMILY_6351 */
3379
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3380 3381
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3382
	.port_set_link = mv88e6xxx_port_set_link,
3383
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3384
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3385
	.port_set_speed = mv88e6185_port_set_speed,
3386
	.stats_snapshot = mv88e6320_g1_stats_snapshot,
3387 3388 3389
};

static const struct mv88e6xxx_ops mv88e6352_ops = {
3390
	/* MV88E6XXX_FAMILY_6352 */
3391 3392
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3393
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3394 3395
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3396
	.port_set_link = mv88e6xxx_port_set_link,
3397
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3398
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3399
	.port_set_speed = mv88e6352_port_set_speed,
3400
	.stats_snapshot = mv88e6320_g1_stats_snapshot,
3401 3402
};

3403
static const struct mv88e6xxx_ops mv88e6390_ops = {
3404
	/* MV88E6XXX_FAMILY_6390 */
3405 3406 3407 3408 3409 3410 3411
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390_port_set_speed,
3412
	.stats_snapshot = mv88e6390_g1_stats_snapshot,
3413 3414 3415
};

static const struct mv88e6xxx_ops mv88e6390x_ops = {
3416
	/* MV88E6XXX_FAMILY_6390 */
3417 3418 3419 3420 3421 3422 3423
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390x_port_set_speed,
3424
	.stats_snapshot = mv88e6390_g1_stats_snapshot,
3425 3426 3427
};

static const struct mv88e6xxx_ops mv88e6391_ops = {
3428
	/* MV88E6XXX_FAMILY_6390 */
3429 3430 3431 3432 3433 3434 3435
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390_port_set_speed,
3436
	.stats_snapshot = mv88e6390_g1_stats_snapshot,
3437 3438
};

3439 3440 3441 3442 3443 3444 3445
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3446
		.port_base_addr = 0x10,
3447
		.global1_addr = 0x1b,
3448
		.age_time_coeff = 15000,
3449
		.g1_irqs = 8,
3450
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
3451
		.ops = &mv88e6085_ops,
3452 3453 3454 3455 3456 3457 3458 3459
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3460
		.port_base_addr = 0x10,
3461
		.global1_addr = 0x1b,
3462
		.age_time_coeff = 15000,
3463
		.g1_irqs = 8,
3464
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
3465
		.ops = &mv88e6095_ops,
3466 3467 3468 3469 3470 3471 3472 3473
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3474
		.port_base_addr = 0x10,
3475
		.global1_addr = 0x1b,
3476
		.age_time_coeff = 15000,
3477
		.g1_irqs = 9,
3478
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3479
		.ops = &mv88e6123_ops,
3480 3481 3482 3483 3484 3485 3486 3487
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3488
		.port_base_addr = 0x10,
3489
		.global1_addr = 0x1b,
3490
		.age_time_coeff = 15000,
3491
		.g1_irqs = 9,
3492
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3493
		.ops = &mv88e6131_ops,
3494 3495 3496 3497 3498 3499 3500 3501
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3502
		.port_base_addr = 0x10,
3503
		.global1_addr = 0x1b,
3504
		.age_time_coeff = 15000,
3505
		.g1_irqs = 9,
3506
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3507
		.ops = &mv88e6161_ops,
3508 3509 3510 3511 3512 3513 3514 3515
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3516
		.port_base_addr = 0x10,
3517
		.global1_addr = 0x1b,
3518
		.age_time_coeff = 15000,
3519
		.g1_irqs = 9,
3520
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3521
		.ops = &mv88e6165_ops,
3522 3523 3524 3525 3526 3527 3528 3529
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3530
		.port_base_addr = 0x10,
3531
		.global1_addr = 0x1b,
3532
		.age_time_coeff = 15000,
3533
		.g1_irqs = 9,
3534
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3535
		.ops = &mv88e6171_ops,
3536 3537 3538 3539 3540 3541 3542 3543
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3544
		.port_base_addr = 0x10,
3545
		.global1_addr = 0x1b,
3546
		.age_time_coeff = 15000,
3547
		.g1_irqs = 9,
3548
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3549
		.ops = &mv88e6172_ops,
3550 3551 3552 3553 3554 3555 3556 3557
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3558
		.port_base_addr = 0x10,
3559
		.global1_addr = 0x1b,
3560
		.age_time_coeff = 15000,
3561
		.g1_irqs = 9,
3562
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3563
		.ops = &mv88e6175_ops,
3564 3565 3566 3567 3568 3569 3570 3571
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3572
		.port_base_addr = 0x10,
3573
		.global1_addr = 0x1b,
3574
		.age_time_coeff = 15000,
3575
		.g1_irqs = 9,
3576
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3577
		.ops = &mv88e6176_ops,
3578 3579 3580 3581 3582 3583 3584 3585
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3586
		.port_base_addr = 0x10,
3587
		.global1_addr = 0x1b,
3588
		.age_time_coeff = 15000,
3589
		.g1_irqs = 8,
3590
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3591
		.ops = &mv88e6185_ops,
3592 3593
	},

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
	[MV88E6190] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6190,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6190",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.g1_irqs = 9,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6190_ops,
	},

	[MV88E6190X] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6190X,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6190X",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.g1_irqs = 9,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6190x_ops,
	},

	[MV88E6191] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6191,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6191",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6391_ops,
	},

3635 3636 3637 3638 3639 3640
	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3641
		.port_base_addr = 0x10,
3642
		.global1_addr = 0x1b,
3643
		.age_time_coeff = 15000,
3644
		.g1_irqs = 9,
3645
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3646
		.ops = &mv88e6240_ops,
3647 3648
	},

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	[MV88E6290] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6290,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6290",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.g1_irqs = 9,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6290_ops,
	},

3663 3664 3665 3666 3667 3668
	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3669
		.port_base_addr = 0x10,
3670
		.global1_addr = 0x1b,
3671
		.age_time_coeff = 15000,
3672
		.g1_irqs = 8,
3673
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3674
		.ops = &mv88e6320_ops,
3675 3676 3677 3678 3679 3680 3681 3682
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3683
		.port_base_addr = 0x10,
3684
		.global1_addr = 0x1b,
3685
		.age_time_coeff = 15000,
3686
		.g1_irqs = 8,
3687
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3688
		.ops = &mv88e6321_ops,
3689 3690 3691 3692 3693 3694 3695 3696
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3697
		.port_base_addr = 0x10,
3698
		.global1_addr = 0x1b,
3699
		.age_time_coeff = 15000,
3700
		.g1_irqs = 9,
3701
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3702
		.ops = &mv88e6350_ops,
3703 3704 3705 3706 3707 3708 3709 3710
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3711
		.port_base_addr = 0x10,
3712
		.global1_addr = 0x1b,
3713
		.age_time_coeff = 15000,
3714
		.g1_irqs = 9,
3715
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3716
		.ops = &mv88e6351_ops,
3717 3718 3719 3720 3721 3722 3723 3724
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3725
		.port_base_addr = 0x10,
3726
		.global1_addr = 0x1b,
3727
		.age_time_coeff = 15000,
3728
		.g1_irqs = 9,
3729
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3730
		.ops = &mv88e6352_ops,
3731
	},
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	[MV88E6390] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6390,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6390",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.g1_irqs = 9,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6390_ops,
	},
	[MV88E6390X] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6390X,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6390X",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.g1_irqs = 9,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6390x_ops,
	},
3758 3759
};

3760
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3761
{
3762
	int i;
3763

3764 3765 3766
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3767 3768 3769 3770

	return NULL;
}

3771
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3772 3773
{
	const struct mv88e6xxx_info *info;
3774 3775 3776
	unsigned int prod_num, rev;
	u16 id;
	int err;
3777

3778 3779 3780 3781 3782
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3783 3784 3785 3786 3787 3788 3789 3790

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3791
	/* Update the compatible info with the probed one */
3792
	chip->info = info;
3793

3794 3795 3796 3797
	err = mv88e6xxx_g2_require(chip);
	if (err)
		return err;

3798 3799
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3800 3801 3802 3803

	return 0;
}

3804
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3805
{
3806
	struct mv88e6xxx_chip *chip;
3807

3808 3809
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3810 3811
		return NULL;

3812
	chip->dev = dev;
3813

3814
	mutex_init(&chip->reg_lock);
3815

3816
	return chip;
3817 3818
}

3819 3820
static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
{
3821
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3822 3823 3824
		mv88e6xxx_ppu_state_init(chip);
}

3825 3826
static void mv88e6xxx_phy_destroy(struct mv88e6xxx_chip *chip)
{
3827
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3828 3829 3830
		mv88e6xxx_ppu_state_destroy(chip);
}

3831
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3832 3833 3834 3835 3836 3837
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3838
	if (sw_addr == 0)
3839
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3840
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3841
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3842 3843 3844
	else
		return -EINVAL;

3845 3846
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3847 3848 3849 3850

	return 0;
}

3851 3852
static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3853
	struct mv88e6xxx_chip *chip = ds->priv;
3854 3855 3856 3857 3858

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
		return DSA_TAG_PROTO_EDSA;

	return DSA_TAG_PROTO_DSA;
3859 3860
}

3861 3862 3863
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3864
{
3865
	struct mv88e6xxx_chip *chip;
3866
	struct mii_bus *bus;
3867
	int err;
3868

3869
	bus = dsa_host_dev_to_mii_bus(host_dev);
3870 3871 3872
	if (!bus)
		return NULL;

3873 3874
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3875 3876
		return NULL;

3877
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3878
	chip->info = &mv88e6xxx_table[MV88E6085];
3879

3880
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3881 3882 3883
	if (err)
		goto free;

3884
	err = mv88e6xxx_detect(chip);
3885
	if (err)
3886
		goto free;
3887

3888 3889 3890 3891 3892 3893
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_switch_reset(chip);
	mutex_unlock(&chip->reg_lock);
	if (err)
		goto free;

3894 3895
	mv88e6xxx_phy_init(chip);

3896
	err = mv88e6xxx_mdio_register(chip, NULL);
3897
	if (err)
3898
		goto free;
3899

3900
	*priv = chip;
3901

3902
	return chip->info->name;
3903
free:
3904
	devm_kfree(dsa_dev, chip);
3905 3906

	return NULL;
3907 3908
}

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
static int mv88e6xxx_port_mdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_mdb *mdb,
				      struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */

	return 0;
}

static void mv88e6xxx_port_mdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_mdb *mdb,
				   struct switchdev_trans *trans)
{
V
Vivien Didelot 已提交
3924
	struct mv88e6xxx_chip *chip = ds->priv;
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935

	mutex_lock(&chip->reg_lock);
	if (mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					 GLOBAL_ATU_DATA_STATE_MC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load multicast MAC address\n");
	mutex_unlock(&chip->reg_lock);
}

static int mv88e6xxx_port_mdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_mdb *mdb)
{
V
Vivien Didelot 已提交
3936
	struct mv88e6xxx_chip *chip = ds->priv;
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
	mutex_unlock(&chip->reg_lock);

	return err;
}

static int mv88e6xxx_port_mdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_mdb *mdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
3951
	struct mv88e6xxx_chip *chip = ds->priv;
3952 3953 3954 3955 3956 3957 3958 3959 3960
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &mdb->obj, cb);
	mutex_unlock(&chip->reg_lock);

	return err;
}

3961
static struct dsa_switch_ops mv88e6xxx_switch_ops = {
3962
	.probe			= mv88e6xxx_drv_probe,
3963
	.get_tag_protocol	= mv88e6xxx_get_tag_protocol,
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
3978
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
3979 3980 3981 3982
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
3983
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
3984 3985 3986
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
3987
	.port_fast_age		= mv88e6xxx_port_fast_age,
3988 3989 3990 3991 3992 3993 3994 3995 3996
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
3997 3998 3999 4000
	.port_mdb_prepare       = mv88e6xxx_port_mdb_prepare,
	.port_mdb_add           = mv88e6xxx_port_mdb_add,
	.port_mdb_del           = mv88e6xxx_port_mdb_del,
	.port_mdb_dump          = mv88e6xxx_port_mdb_dump,
4001 4002
};

4003
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
4004 4005
				     struct device_node *np)
{
4006
	struct device *dev = chip->dev;
4007 4008 4009 4010 4011 4012 4013
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
4014
	ds->priv = chip;
4015
	ds->ops = &mv88e6xxx_switch_ops;
4016 4017 4018 4019 4020 4021

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

4022
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
4023
{
4024
	dsa_unregister_switch(chip->ds);
4025 4026
}

4027
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4028
{
4029
	struct device *dev = &mdiodev->dev;
4030
	struct device_node *np = dev->of_node;
4031
	const struct mv88e6xxx_info *compat_info;
4032
	struct mv88e6xxx_chip *chip;
4033
	u32 eeprom_len;
4034
	int err;
4035

4036 4037 4038 4039
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

4040 4041
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
4042 4043
		return -ENOMEM;

4044
	chip->info = compat_info;
4045

4046
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4047 4048
	if (err)
		return err;
4049

4050 4051 4052 4053
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);

4054
	err = mv88e6xxx_detect(chip);
4055 4056
	if (err)
		return err;
4057

4058 4059
	mv88e6xxx_phy_init(chip);

4060
	if (chip->info->ops->get_eeprom &&
4061
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4062
		chip->eeprom_len = eeprom_len;
4063

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_switch_reset(chip);
	mutex_unlock(&chip->reg_lock);
	if (err)
		goto out;

	chip->irq = of_irq_get(np, 0);
	if (chip->irq == -EPROBE_DEFER) {
		err = chip->irq;
		goto out;
	}

	if (chip->irq > 0) {
		/* Has to be performed before the MDIO bus is created,
		 * because the PHYs will link there interrupts to these
		 * interrupt controllers
		 */
		mutex_lock(&chip->reg_lock);
		err = mv88e6xxx_g1_irq_setup(chip);
		mutex_unlock(&chip->reg_lock);

		if (err)
			goto out;

		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT)) {
			err = mv88e6xxx_g2_irq_setup(chip);
			if (err)
				goto out_g1_irq;
		}
	}

4095
	err = mv88e6xxx_mdio_register(chip, np);
4096
	if (err)
4097
		goto out_g2_irq;
4098

4099
	err = mv88e6xxx_register_switch(chip, np);
4100 4101
	if (err)
		goto out_mdio;
4102

4103
	return 0;
4104 4105 4106 4107

out_mdio:
	mv88e6xxx_mdio_unregister(chip);
out_g2_irq:
4108
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT) && chip->irq > 0)
4109 4110
		mv88e6xxx_g2_irq_free(chip);
out_g1_irq:
4111 4112
	if (chip->irq > 0) {
		mutex_lock(&chip->reg_lock);
4113
		mv88e6xxx_g1_irq_free(chip);
4114 4115
		mutex_unlock(&chip->reg_lock);
	}
4116 4117
out:
	return err;
4118
}
4119 4120 4121 4122

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
V
Vivien Didelot 已提交
4123
	struct mv88e6xxx_chip *chip = ds->priv;
4124

4125
	mv88e6xxx_phy_destroy(chip);
4126 4127
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
4128

4129 4130 4131 4132 4133
	if (chip->irq > 0) {
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT))
			mv88e6xxx_g2_irq_free(chip);
		mv88e6xxx_g1_irq_free(chip);
	}
4134 4135 4136
}

static const struct of_device_id mv88e6xxx_of_match[] = {
4137 4138 4139 4140
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
4141 4142 4143 4144
	{
		.compatible = "marvell,mv88e6190",
		.data = &mv88e6xxx_table[MV88E6190],
	},
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
4161
	register_switch_driver(&mv88e6xxx_switch_ops);
4162 4163
	return mdio_driver_register(&mv88e6xxx_driver);
}
4164 4165 4166 4167
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
4168
	mdio_driver_unregister(&mv88e6xxx_driver);
4169
	unregister_switch_driver(&mv88e6xxx_switch_ops);
4170 4171
}
module_exit(mv88e6xxx_cleanup);
4172 4173 4174 4175

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");