chip.c 97.5 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21
#include <linux/jiffies.h>
22
#include <linux/list.h>
23
#include <linux/mdio.h>
24
#include <linux/module.h>
25
#include <linux/of_device.h>
26
#include <linux/of_mdio.h>
27
#include <linux/netdevice.h>
28
#include <linux/gpio/consumer.h>
29
#include <linux/phy.h>
30
#include <net/dsa.h>
31
#include <net/switchdev.h>
32 33
#include "mv88e6xxx.h"

34
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35
{
36 37
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
38 39 40 41
		dump_stack();
	}
}

42 43 44 45 46 47 48 49 50 51
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
52
 */
53

54
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55 56
			      int addr, int reg, u16 *val)
{
57
	if (!chip->smi_ops)
58 59
		return -EOPNOTSUPP;

60
	return chip->smi_ops->read(chip, addr, reg, val);
61 62
}

63
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64 65
			       int addr, int reg, u16 val)
{
66
	if (!chip->smi_ops)
67 68
		return -EOPNOTSUPP;

69
	return chip->smi_ops->write(chip, addr, reg, val);
70 71
}

72
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73 74 75 76
					  int addr, int reg, u16 *val)
{
	int ret;

77
	ret = mdiobus_read_nested(chip->bus, addr, reg);
78 79 80 81 82 83 84 85
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

86
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87 88 89 90
					   int addr, int reg, u16 val)
{
	int ret;

91
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92 93 94 95 96 97 98 99 100 101 102
	if (ret < 0)
		return ret;

	return 0;
}

static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

103
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 105 106 107 108
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
109
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110 111 112
		if (ret < 0)
			return ret;

113
		if ((ret & SMI_CMD_BUSY) == 0)
114 115 116 117 118 119
			return 0;
	}

	return -ETIMEDOUT;
}

120
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121
					 int addr, int reg, u16 *val)
122 123 124
{
	int ret;

125
	/* Wait for the bus to become free. */
126
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
127 128 129
	if (ret < 0)
		return ret;

130
	/* Transmit the read command. */
131
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
133 134 135
	if (ret < 0)
		return ret;

136
	/* Wait for the read command to complete. */
137
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
138 139 140
	if (ret < 0)
		return ret;

141
	/* Read the data. */
142
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143 144 145
	if (ret < 0)
		return ret;

146
	*val = ret & 0xffff;
147

148
	return 0;
149 150
}

151
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152
					  int addr, int reg, u16 val)
153 154 155
{
	int ret;

156
	/* Wait for the bus to become free. */
157
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
158 159 160
	if (ret < 0)
		return ret;

161
	/* Transmit the data to write. */
162
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163 164 165
	if (ret < 0)
		return ret;

166
	/* Transmit the write command. */
167
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169 170 171
	if (ret < 0)
		return ret;

172
	/* Wait for the write command to complete. */
173
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
174 175 176 177 178 179
	if (ret < 0)
		return ret;

	return 0;
}

180 181 182 183 184
static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

185
static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186 187 188 189
			  int addr, int reg, u16 *val)
{
	int err;

190
	assert_reg_lock(chip);
191

192
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
193 194 195
	if (err)
		return err;

196
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197 198 199 200 201
		addr, reg, *val);

	return 0;
}

202
static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203
			   int addr, int reg, u16 val)
204
{
205 206
	int err;

207
	assert_reg_lock(chip);
208

209
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
210 211 212
	if (err)
		return err;

213
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214 215
		addr, reg, val);

216 217 218
	return 0;
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
			      int reg, u16 *val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

	if (!chip->phy_ops)
		return -EOPNOTSUPP;

	return chip->phy_ops->read(chip, addr, reg, val);
}

static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
			       int reg, u16 val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

	if (!chip->phy_ops)
		return -EOPNOTSUPP;

	return chip->phy_ops->write(chip, addr, reg, val);
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
{
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
		return -EOPNOTSUPP;

	return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
}

static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
{
	int err;

	/* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
	err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
	if (unlikely(err)) {
		dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
			phy, err);
	}
}

static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
				   u8 page, int reg, u16 *val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_read(chip, phy, reg, val);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
				    u8 page, int reg, u16 val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
{
	return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
				       reg, val);
}

static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
{
	return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
					reg, val);
}

309 310 311
static int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg,
			  u16 mask)
{
312
	int i;
313

314
	for (i = 0; i < 16; i++) {
315 316 317 318 319 320 321 322 323 324 325 326 327
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

328
	dev_err(chip->dev, "Timeout while waiting for switch\n");
329 330 331
	return -ETIMEDOUT;
}

332 333 334 335 336
/* Indirect write to single pointer-data register with an Update bit */
static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
			    u16 update)
{
	u16 val;
337
	int err;
338 339

	/* Wait until the previous operation is completed */
340 341 342
	err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
	if (err)
		return err;
343 344 345 346 347 348 349

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

350
static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
351 352 353 354
{
	u16 val;
	int err;

355
	err = mv88e6xxx_read(chip, addr, reg, &val);
356 357 358 359 360 361
	if (err)
		return err;

	return val;
}

362
static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
363 364
				int reg, u16 val)
{
365
	return mv88e6xxx_write(chip, addr, reg, val);
366 367
}

368
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
369 370
{
	int ret;
371
	int i;
372

373
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
374 375 376
	if (ret < 0)
		return ret;

377
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
378
				   ret & ~GLOBAL_CONTROL_PPU_ENABLE);
379 380
	if (ret)
		return ret;
381

382
	for (i = 0; i < 16; i++) {
383
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
384 385 386
		if (ret < 0)
			return ret;

387
		usleep_range(1000, 2000);
388 389
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
390
			return 0;
391 392 393 394 395
	}

	return -ETIMEDOUT;
}

396
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
397
{
398
	int ret, err, i;
399

400
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
401 402 403
	if (ret < 0)
		return ret;

404
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
405
				   ret | GLOBAL_CONTROL_PPU_ENABLE);
406 407
	if (err)
		return err;
408

409
	for (i = 0; i < 16; i++) {
410
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
411 412 413
		if (ret < 0)
			return ret;

414
		usleep_range(1000, 2000);
415 416
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
417
			return 0;
418 419 420 421 422 423 424
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
425
	struct mv88e6xxx_chip *chip;
426

427
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
428

429
	mutex_lock(&chip->reg_lock);
430

431 432 433 434
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
435
	}
436

437
	mutex_unlock(&chip->reg_lock);
438 439 440 441
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
442
	struct mv88e6xxx_chip *chip = (void *)_ps;
443

444
	schedule_work(&chip->ppu_work);
445 446
}

447
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
448 449 450
{
	int ret;

451
	mutex_lock(&chip->ppu_mutex);
452

453
	/* If the PHY polling unit is enabled, disable it so that
454 455 456 457
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
458 459
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
460
		if (ret < 0) {
461
			mutex_unlock(&chip->ppu_mutex);
462 463
			return ret;
		}
464
		chip->ppu_disabled = 1;
465
	} else {
466
		del_timer(&chip->ppu_timer);
467
		ret = 0;
468 469 470 471 472
	}

	return ret;
}

473
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
474
{
475
	/* Schedule a timer to re-enable the PHY polling unit. */
476 477
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
478 479
}

480
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
481
{
482 483 484 485 486
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&chip->ppu_timer);
	chip->ppu_timer.data = (unsigned long)chip;
	chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
487 488
}

489 490 491 492 493
static void mv88e6xxx_ppu_state_destroy(struct mv88e6xxx_chip *chip)
{
	del_timer_sync(&chip->ppu_timer);
}

494 495
static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
				  int reg, u16 *val)
496
{
497
	int err;
498

499 500 501
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_read(chip, addr, reg, val);
502
		mv88e6xxx_ppu_access_put(chip);
503 504
	}

505
	return err;
506 507
}

508 509
static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
				   int reg, u16 val)
510
{
511
	int err;
512

513 514 515
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_write(chip, addr, reg, val);
516
		mv88e6xxx_ppu_access_put(chip);
517 518
	}

519
	return err;
520 521
}

522 523 524 525 526
static const struct mv88e6xxx_ops mv88e6xxx_phy_ppu_ops = {
	.read = mv88e6xxx_phy_ppu_read,
	.write = mv88e6xxx_phy_ppu_write,
};

527
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
528
{
529
	return chip->info->family == MV88E6XXX_FAMILY_6065;
530 531
}

532
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
533
{
534
	return chip->info->family == MV88E6XXX_FAMILY_6095;
535 536
}

537
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
538
{
539
	return chip->info->family == MV88E6XXX_FAMILY_6097;
540 541
}

542
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
543
{
544
	return chip->info->family == MV88E6XXX_FAMILY_6165;
545 546
}

547
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
548
{
549
	return chip->info->family == MV88E6XXX_FAMILY_6185;
550 551
}

552
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
553
{
554
	return chip->info->family == MV88E6XXX_FAMILY_6320;
555 556
}

557
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
558
{
559
	return chip->info->family == MV88E6XXX_FAMILY_6351;
560 561
}

562
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
563
{
564
	return chip->info->family == MV88E6XXX_FAMILY_6352;
565 566
}

567
static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
568
{
569
	return chip->info->num_databases;
570 571
}

572
static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
573 574
{
	/* Does the device have dedicated FID registers for ATU and VTU ops? */
575 576
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
577 578 579 580 581
		return true;

	return false;
}

582 583 584 585
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
586 587
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
588
{
589
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
590 591
	u32 reg;
	int ret;
592 593 594 595

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

596
	mutex_lock(&chip->reg_lock);
597

598
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
599 600 601 602 603 604 605 606 607 608 609
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
610
		reg |= PORT_PCS_CTRL_LINK_UP;
611

612
	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

634 635
	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
	    (port >= chip->info->num_ports - 2)) {
636 637 638 639 640 641 642 643
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
644
	_mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
645 646

out:
647
	mutex_unlock(&chip->reg_lock);
648 649
}

650
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
651 652 653 654 655
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
656
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
657
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
658 659 660 661 662 663
			return 0;
	}

	return -ETIMEDOUT;
}

664
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
665 666 667
{
	int ret;

668
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
669 670
		port = (port + 1) << 5;

671
	/* Snapshot the hardware statistics counters for this port. */
672
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
673 674 675 676
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
677

678
	/* Wait for the snapshotting to complete. */
679
	ret = _mv88e6xxx_stats_wait(chip);
680 681 682 683 684 685
	if (ret < 0)
		return ret;

	return 0;
}

686
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
687
				  int stat, u32 *val)
688 689 690 691 692 693
{
	u32 _val;
	int ret;

	*val = 0;

694
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
695 696
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
697 698 699
	if (ret < 0)
		return;

700
	ret = _mv88e6xxx_stats_wait(chip);
701 702 703
	if (ret < 0)
		return;

704
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
705 706 707 708 709
	if (ret < 0)
		return;

	_val = ret << 16;

710
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
711 712 713 714 715 716
	if (ret < 0)
		return;

	*val = _val | ret;
}

717
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
777 778
};

779
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
780
			       struct mv88e6xxx_hw_stat *stat)
781
{
782 783
	switch (stat->type) {
	case BANK0:
784
		return true;
785
	case BANK1:
786
		return mv88e6xxx_6320_family(chip);
787
	case PORT:
788 789 790 791 792 793
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
794
	}
795
	return false;
796 797
}

798
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
799
					    struct mv88e6xxx_hw_stat *s,
800 801 802 803 804 805 806
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

807 808
	switch (s->type) {
	case PORT:
809
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
810 811 812 813 814
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
815
			ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
816
						  s->reg + 1);
817 818 819 820
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
821 822 823
		break;
	case BANK0:
	case BANK1:
824
		_mv88e6xxx_stats_read(chip, s->reg, &low);
825
		if (s->sizeof_stat == 8)
826
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
827 828 829 830 831
	}
	value = (((u64)high) << 16) | low;
	return value;
}

832 833
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
834
{
835
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
836 837
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
838

839 840
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
841
		if (mv88e6xxx_has_stat(chip, stat)) {
842 843 844 845
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
846
	}
847 848
}

849
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
850
{
851
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
852 853 854 855 856
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
857
		if (mv88e6xxx_has_stat(chip, stat))
858 859 860
			j++;
	}
	return j;
861 862
}

863 864
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
865
{
866
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
867 868 869 870
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

871
	mutex_lock(&chip->reg_lock);
872

873
	ret = _mv88e6xxx_stats_snapshot(chip, port);
874
	if (ret < 0) {
875
		mutex_unlock(&chip->reg_lock);
876 877 878 879
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
880 881
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
882 883 884 885
			j++;
		}
	}

886
	mutex_unlock(&chip->reg_lock);
887 888
}

889
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
890 891 892 893
{
	return 32 * sizeof(u16);
}

894 895
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
896
{
897
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
898 899 900 901 902 903 904
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

905
	mutex_lock(&chip->reg_lock);
906

907 908 909
	for (i = 0; i < 32; i++) {
		int ret;

910
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
911 912 913
		if (ret >= 0)
			p[i] = ret;
	}
914

915
	mutex_unlock(&chip->reg_lock);
916 917
}

918
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
919
{
920 921
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
			      GLOBAL_ATU_OP_BUSY);
922 923
}

924 925
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
926
{
927
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
928 929
	u16 reg;
	int err;
930

931
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
932 933
		return -EOPNOTSUPP;

934
	mutex_lock(&chip->reg_lock);
935

936 937
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
938
		goto out;
939 940 941 942

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

943 944
	err = mv88e6xxx_read(chip, REG_PORT(port), PORT_STATUS, &reg);
	if (err)
945
		goto out;
946

947
	e->eee_active = !!(reg & PORT_STATUS_EEE);
948
out:
949
	mutex_unlock(&chip->reg_lock);
950 951

	return err;
952 953
}

954 955
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
956
{
957
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
958 959
	u16 reg;
	int err;
960

961
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
962 963
		return -EOPNOTSUPP;

964
	mutex_lock(&chip->reg_lock);
965

966 967
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
968 969
		goto out;

970
	reg &= ~0x0300;
971 972 973 974 975
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

976
	err = mv88e6xxx_phy_write(chip, port, 16, reg);
977
out:
978
	mutex_unlock(&chip->reg_lock);
979

980
	return err;
981 982
}

983
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
984 985 986
{
	int ret;

987 988 989
	if (mv88e6xxx_has_fid_reg(chip)) {
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
					   fid);
990 991
		if (ret < 0)
			return ret;
992
	} else if (mv88e6xxx_num_databases(chip) == 256) {
993
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
994
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
995 996 997
		if (ret < 0)
			return ret;

998
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
999 1000 1001 1002 1003 1004 1005
					   (ret & 0xfff) |
					   ((fid << 8) & 0xf000));
		if (ret < 0)
			return ret;

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
1006 1007
	}

1008
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
1009 1010 1011
	if (ret < 0)
		return ret;

1012
	return _mv88e6xxx_atu_wait(chip);
1013 1014
}

1015
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1035
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1036 1037
}

1038
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1039 1040
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1041
{
1042 1043
	int op;
	int err;
1044

1045
	err = _mv88e6xxx_atu_wait(chip);
1046 1047
	if (err)
		return err;
1048

1049
	err = _mv88e6xxx_atu_data_write(chip, entry);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1061
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1062 1063
}

1064
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1065
				u16 fid, bool static_too)
1066 1067 1068 1069 1070
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1071

1072
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1073 1074
}

1075
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1076
			       int from_port, int to_port, bool static_too)
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1090
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1091 1092
}

1093
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1094
				 int port, bool static_too)
1095 1096
{
	/* Destination port 0xF means remove the entries */
1097
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1098 1099
}

1100 1101 1102 1103 1104 1105 1106
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

1107
static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1108
				 u8 state)
1109
{
1110
	struct dsa_switch *ds = chip->ds;
1111
	int reg, ret = 0;
1112 1113
	u8 oldstate;

1114
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1115 1116
	if (reg < 0)
		return reg;
1117

1118
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1119

1120 1121 1122 1123 1124
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1125
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1126 1127 1128
		     oldstate == PORT_CONTROL_STATE_FORWARDING) &&
		    (state == PORT_CONTROL_STATE_DISABLED ||
		     state == PORT_CONTROL_STATE_BLOCKING)) {
1129
			ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1130
			if (ret)
1131
				return ret;
1132
		}
1133

1134
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1135
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1136
					   reg);
1137 1138 1139
		if (ret)
			return ret;

1140
		netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1141 1142
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1143 1144 1145 1146 1147
	}

	return ret;
}

1148
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1149
{
1150 1151 1152
	struct net_device *bridge = chip->ports[port].bridge_dev;
	const u16 mask = (1 << chip->info->num_ports) - 1;
	struct dsa_switch *ds = chip->ds;
1153
	u16 output_ports = 0;
1154
	int reg;
1155 1156 1157 1158 1159 1160
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
1161
		for (i = 0; i < chip->info->num_ports; ++i) {
1162
			/* allow sending frames to every group member */
1163
			if (bridge && chip->ports[i].bridge_dev == bridge)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1174

1175
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1176 1177
	if (reg < 0)
		return reg;
1178

1179 1180
	reg &= ~mask;
	reg |= output_ports & mask;
1181

1182
	return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1183 1184
}

1185 1186
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1187
{
1188
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1189
	int stp_state;
1190
	int err;
1191 1192 1193

	switch (state) {
	case BR_STATE_DISABLED:
1194
		stp_state = PORT_CONTROL_STATE_DISABLED;
1195 1196 1197
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1198
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1199 1200
		break;
	case BR_STATE_LEARNING:
1201
		stp_state = PORT_CONTROL_STATE_LEARNING;
1202 1203 1204
		break;
	case BR_STATE_FORWARDING:
	default:
1205
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1206 1207 1208
		break;
	}

1209 1210 1211
	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_port_state(chip, port, stp_state);
	mutex_unlock(&chip->reg_lock);
1212 1213

	if (err)
1214 1215
		netdev_err(ds->ports[port].netdev,
			   "failed to update state to %s\n",
1216
			   mv88e6xxx_port_state_names[stp_state]);
1217 1218
}

1219
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1220
				u16 *new, u16 *old)
1221
{
1222
	struct dsa_switch *ds = chip->ds;
1223
	u16 pvid;
1224 1225
	int ret;

1226
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1227 1228 1229
	if (ret < 0)
		return ret;

1230 1231 1232 1233 1234 1235
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

1236
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1237 1238 1239 1240
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

1241 1242
		netdev_dbg(ds->ports[port].netdev,
			   "DefaultVID %d (was %d)\n", *new, pvid);
1243 1244 1245 1246
	}

	if (old)
		*old = pvid;
1247 1248 1249 1250

	return 0;
}

1251
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1252
				    int port, u16 *pvid)
1253
{
1254
	return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1255 1256
}

1257
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1258
				    int port, u16 pvid)
1259
{
1260
	return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1261 1262
}

1263
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1264
{
1265 1266
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
			      GLOBAL_VTU_OP_BUSY);
1267 1268
}

1269
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1270 1271 1272
{
	int ret;

1273
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1274 1275 1276
	if (ret < 0)
		return ret;

1277
	return _mv88e6xxx_vtu_wait(chip);
1278 1279
}

1280
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1281 1282 1283
{
	int ret;

1284
	ret = _mv88e6xxx_vtu_wait(chip);
1285 1286 1287
	if (ret < 0)
		return ret;

1288
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1289 1290
}

1291
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1292 1293 1294 1295 1296 1297 1298 1299
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
1300
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1301 1302 1303 1304 1305 1306 1307
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

1308
	for (i = 0; i < chip->info->num_ports; ++i) {
1309 1310 1311 1312 1313 1314 1315 1316 1317
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1318
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1319 1320
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1321
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1322 1323
}

1324
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1325 1326
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1327
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1328 1329
}

1330
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1331 1332 1333 1334 1335 1336 1337
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
	int i;
	int ret;

1338
	for (i = 0; i < chip->info->num_ports; ++i) {
1339 1340 1341 1342 1343 1344 1345
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1346
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1347 1348 1349 1350 1351 1352 1353 1354
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1355
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1356 1357
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1358
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1359 1360
}

1361
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1362 1363
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1364
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1365 1366
}

1367
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1368
{
1369
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1370 1371 1372
				    vid & GLOBAL_VTU_VID_MASK);
}

1373
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1374 1375 1376 1377 1378
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1379
	ret = _mv88e6xxx_vtu_wait(chip);
1380 1381 1382
	if (ret < 0)
		return ret;

1383
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1384 1385 1386
	if (ret < 0)
		return ret;

1387
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1388 1389 1390 1391 1392 1393 1394
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1395
		ret = mv88e6xxx_vtu_data_read(chip, &next);
1396 1397 1398
		if (ret < 0)
			return ret;

1399 1400
		if (mv88e6xxx_has_fid_reg(chip)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1401 1402 1403 1404 1405
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;
1406
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1407 1408 1409
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1410
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1411 1412 1413 1414 1415 1416
						  GLOBAL_VTU_OP);
			if (ret < 0)
				return ret;

			next.fid = (ret & 0xf00) >> 4;
			next.fid |= ret & 0xf;
1417
		}
1418

1419 1420
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1433 1434 1435
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1436
{
1437
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1438 1439 1440 1441
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

1442
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1443 1444
		return -EOPNOTSUPP;

1445
	mutex_lock(&chip->reg_lock);
1446

1447
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1448 1449 1450
	if (err)
		goto unlock;

1451
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1452 1453 1454 1455
	if (err)
		goto unlock;

	do {
1456
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1467 1468
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1483
	mutex_unlock(&chip->reg_lock);
1484 1485 1486 1487

	return err;
}

1488
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1489 1490
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1491
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1492 1493 1494
	u16 reg = 0;
	int ret;

1495
	ret = _mv88e6xxx_vtu_wait(chip);
1496 1497 1498 1499 1500 1501 1502
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1503
	ret = mv88e6xxx_vtu_data_write(chip, entry);
1504 1505 1506
	if (ret < 0)
		return ret;

1507
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1508
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1509 1510
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
					   reg);
1511 1512
		if (ret < 0)
			return ret;
1513
	}
1514

1515
	if (mv88e6xxx_has_fid_reg(chip)) {
1516
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1517 1518
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
					   reg);
1519 1520
		if (ret < 0)
			return ret;
1521
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1522 1523 1524 1525 1526
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1527 1528 1529 1530 1531
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1532
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1533 1534 1535
	if (ret < 0)
		return ret;

1536
	return _mv88e6xxx_vtu_cmd(chip, op);
1537 1538
}

1539
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1540 1541 1542 1543 1544
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1545
	ret = _mv88e6xxx_vtu_wait(chip);
1546 1547 1548
	if (ret < 0)
		return ret;

1549
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1550 1551 1552 1553
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

1554
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1555 1556 1557
	if (ret < 0)
		return ret;

1558
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1559 1560 1561 1562 1563
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

1564
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1565 1566 1567 1568 1569 1570
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1571
		ret = mv88e6xxx_stu_data_read(chip, &next);
1572 1573 1574 1575 1576 1577 1578 1579
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

1580
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1581 1582 1583 1584 1585
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

1586
	ret = _mv88e6xxx_vtu_wait(chip);
1587 1588 1589 1590 1591 1592 1593
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1594
	ret = mv88e6xxx_stu_data_write(chip, entry);
1595 1596 1597 1598 1599
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1600
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1601 1602 1603 1604
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1605
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1606 1607 1608
	if (ret < 0)
		return ret;

1609
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1610 1611
}

1612
static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1613
			       u16 *new, u16 *old)
1614
{
1615
	struct dsa_switch *ds = chip->ds;
1616
	u16 upper_mask;
1617 1618 1619
	u16 fid;
	int ret;

1620
	if (mv88e6xxx_num_databases(chip) == 4096)
1621
		upper_mask = 0xff;
1622
	else if (mv88e6xxx_num_databases(chip) == 256)
1623
		upper_mask = 0xf;
1624 1625 1626
	else
		return -EOPNOTSUPP;

1627
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1628
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1629 1630 1631 1632 1633 1634 1635 1636 1637
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

1638
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1639 1640 1641 1642 1643 1644
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1645
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1646 1647 1648
	if (ret < 0)
		return ret;

1649
	fid |= (ret & upper_mask) << 4;
1650 1651

	if (new) {
1652 1653
		ret &= ~upper_mask;
		ret |= (*new >> 4) & upper_mask;
1654

1655
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1656 1657 1658 1659
					   ret);
		if (ret < 0)
			return ret;

1660 1661
		netdev_dbg(ds->ports[port].netdev,
			   "FID %d (was %d)\n", *new, fid);
1662 1663 1664 1665 1666 1667 1668 1669
	}

	if (old)
		*old = fid;

	return 0;
}

1670
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1671
				   int port, u16 *fid)
1672
{
1673
	return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1674 1675
}

1676
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1677
				   int port, u16 fid)
1678
{
1679
	return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1680 1681
}

1682
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1683 1684 1685
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1686
	int i, err;
1687 1688 1689

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1690
	/* Set every FID bit used by the (un)bridged ports */
1691 1692
	for (i = 0; i < chip->info->num_ports; ++i) {
		err = _mv88e6xxx_port_fid_get(chip, i, fid);
1693 1694 1695 1696 1697 1698
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1699
	/* Set every FID bit used by the VLAN entries */
1700
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1701 1702 1703 1704
	if (err)
		return err;

	do {
1705
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1719
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1720 1721 1722
		return -ENOSPC;

	/* Clear the database */
1723
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1724 1725
}

1726
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1727
			      struct mv88e6xxx_vtu_stu_entry *entry)
1728
{
1729
	struct dsa_switch *ds = chip->ds;
1730 1731 1732 1733
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1734 1735
	int i, err;

1736
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1737 1738
	if (err)
		return err;
1739

1740
	/* exclude all ports except the CPU and DSA ports */
1741
	for (i = 0; i < chip->info->num_ports; ++i)
1742 1743 1744
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1745

1746 1747
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1748 1749 1750 1751 1752 1753 1754
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1755
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1756 1757 1758 1759 1760 1761 1762 1763
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1764
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1765 1766 1767 1768 1769 1770 1771 1772 1773
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1774
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1775 1776 1777 1778 1779 1780 1781
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

1782
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1783 1784 1785
	if (err)
		return err;

1786
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1797
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1798 1799 1800 1801 1802
	}

	return err;
}

1803 1804 1805
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
1806
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1807 1808 1809 1810 1811 1812
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1813
	mutex_lock(&chip->reg_lock);
1814

1815
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1816 1817 1818 1819
	if (err)
		goto unlock;

	do {
1820
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1821 1822 1823 1824 1825 1826 1827 1828 1829
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1830
		for (i = 0; i < chip->info->num_ports; ++i) {
1831 1832 1833 1834 1835 1836 1837
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1838 1839
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1840 1841
				break; /* same bridge, check next VLAN */

1842
			netdev_warn(ds->ports[port].netdev,
1843 1844
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1845
				    netdev_name(chip->ports[i].bridge_dev));
1846 1847 1848 1849 1850 1851
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1852
	mutex_unlock(&chip->reg_lock);
1853 1854 1855 1856

	return err;
}

1857 1858 1859 1860 1861 1862 1863
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

1864 1865
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1866
{
1867
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1868 1869 1870 1871
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

1872
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1873 1874
		return -EOPNOTSUPP;

1875
	mutex_lock(&chip->reg_lock);
1876

1877
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1878 1879 1880 1881 1882
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

1883 1884 1885
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1886

1887
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1888 1889 1890 1891
					   ret);
		if (ret < 0)
			goto unlock;

1892
		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1893 1894 1895
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1896

1897
	ret = 0;
1898
unlock:
1899
	mutex_unlock(&chip->reg_lock);
1900 1901 1902 1903

	return ret;
}

1904 1905 1906 1907
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1908
{
1909
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1910 1911
	int err;

1912
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1913 1914
		return -EOPNOTSUPP;

1915 1916 1917 1918 1919 1920 1921 1922
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1923 1924 1925 1926 1927 1928
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1929
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1930
				    u16 vid, bool untagged)
1931 1932 1933 1934
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1935
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1936
	if (err)
1937
		return err;
1938 1939 1940 1941 1942

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1943
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1944 1945
}

1946 1947 1948
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
1949
{
1950
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1951 1952 1953 1954
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

1955
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1956 1957
		return;

1958
	mutex_lock(&chip->reg_lock);
1959

1960
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1961
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1962 1963
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
1964
				   vid, untagged ? 'u' : 't');
1965

1966
	if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1967
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1968
			   vlan->vid_end);
1969

1970
	mutex_unlock(&chip->reg_lock);
1971 1972
}

1973
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1974
				    int port, u16 vid)
1975
{
1976
	struct dsa_switch *ds = chip->ds;
1977 1978 1979
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

1980
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1981
	if (err)
1982
		return err;
1983

1984 1985
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1986
		return -EOPNOTSUPP;
1987 1988 1989 1990

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1991
	vlan.valid = false;
1992
	for (i = 0; i < chip->info->num_ports; ++i) {
1993
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1994 1995 1996
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1997
			vlan.valid = true;
1998 1999 2000 2001
			break;
		}
	}

2002
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
2003 2004 2005
	if (err)
		return err;

2006
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
2007 2008
}

2009 2010
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
2011
{
2012
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2013 2014 2015
	u16 pvid, vid;
	int err = 0;

2016
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2017 2018
		return -EOPNOTSUPP;

2019
	mutex_lock(&chip->reg_lock);
2020

2021
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
2022 2023 2024
	if (err)
		goto unlock;

2025
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
2026
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
2027 2028 2029 2030
		if (err)
			goto unlock;

		if (vid == pvid) {
2031
			err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2032 2033 2034 2035 2036
			if (err)
				goto unlock;
		}
	}

2037
unlock:
2038
	mutex_unlock(&chip->reg_lock);
2039 2040 2041 2042

	return err;
}

2043
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2044
				    const unsigned char *addr)
2045 2046 2047 2048
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2049
		ret = _mv88e6xxx_reg_write(
2050
			chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2051
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
2052 2053 2054 2055 2056 2057 2058
		if (ret < 0)
			return ret;
	}

	return 0;
}

2059
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2060
				   unsigned char *addr)
2061 2062 2063 2064
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2065
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2066
					  GLOBAL_ATU_MAC_01 + i);
2067 2068 2069 2070 2071 2072 2073 2074 2075
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

2076
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2077
			       struct mv88e6xxx_atu_entry *entry)
2078
{
2079 2080
	int ret;

2081
	ret = _mv88e6xxx_atu_wait(chip);
2082 2083 2084
	if (ret < 0)
		return ret;

2085
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2086 2087 2088
	if (ret < 0)
		return ret;

2089
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2090
	if (ret < 0)
2091 2092
		return ret;

2093
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2094
}
2095

2096 2097 2098
static int mv88e6xxx_port_db_load_purge(struct mv88e6xxx_chip *chip, int port,
					const unsigned char *addr, u16 vid,
					u8 state)
2099 2100
{
	struct mv88e6xxx_atu_entry entry = { 0 };
2101 2102 2103
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2104 2105
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2106
		err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2107
	else
2108
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2109 2110
	if (err)
		return err;
2111

2112
	entry.fid = vlan.fid;
2113 2114 2115 2116 2117 2118 2119
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

2120
	return _mv88e6xxx_atu_load(chip, &entry);
2121 2122
}

2123 2124 2125
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2126 2127 2128 2129 2130 2131 2132
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2133 2134 2135
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2136
{
2137
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2138

2139
	mutex_lock(&chip->reg_lock);
2140 2141 2142
	if (mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					 GLOBAL_ATU_DATA_STATE_UC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load unicast MAC address\n");
2143
	mutex_unlock(&chip->reg_lock);
2144 2145
}

2146 2147
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2148
{
2149
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2150
	int err;
2151

2152
	mutex_lock(&chip->reg_lock);
2153 2154
	err = mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
2155
	mutex_unlock(&chip->reg_lock);
2156

2157
	return err;
2158 2159
}

2160
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2161
				  struct mv88e6xxx_atu_entry *entry)
2162
{
2163 2164 2165 2166
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2167

2168
	ret = _mv88e6xxx_atu_wait(chip);
2169 2170
	if (ret < 0)
		return ret;
2171

2172
	ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2173 2174
	if (ret < 0)
		return ret;
2175

2176
	ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2177 2178
	if (ret < 0)
		return ret;
2179

2180
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2181 2182
	if (ret < 0)
		return ret;
2183

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2200

2201
	*entry = next;
2202 2203 2204
	return 0;
}

2205 2206 2207 2208
static int mv88e6xxx_port_db_dump_fid(struct mv88e6xxx_chip *chip,
				      u16 fid, u16 vid, int port,
				      struct switchdev_obj *obj,
				      int (*cb)(struct switchdev_obj *obj))
2209 2210 2211 2212 2213 2214
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2215
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2216 2217 2218 2219
	if (err)
		return err;

	do {
2220
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2221
		if (err)
2222
			return err;
2223 2224 2225 2226

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

2227 2228 2229 2230 2231
		if (addr.trunk || (addr.portv_trunkid & BIT(port)) == 0)
			continue;

		if (obj->id == SWITCHDEV_OBJ_ID_PORT_FDB) {
			struct switchdev_obj_port_fdb *fdb;
2232

2233 2234 2235 2236
			if (!is_unicast_ether_addr(addr.mac))
				continue;

			fdb = SWITCHDEV_OBJ_PORT_FDB(obj);
2237 2238
			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
2239 2240 2241 2242 2243 2244
			if (addr.state == GLOBAL_ATU_DATA_STATE_UC_STATIC)
				fdb->ndm_state = NUD_NOARP;
			else
				fdb->ndm_state = NUD_REACHABLE;
		} else {
			return -EOPNOTSUPP;
2245
		}
2246 2247 2248 2249

		err = cb(obj);
		if (err)
			return err;
2250 2251 2252 2253 2254
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2255 2256 2257
static int mv88e6xxx_port_db_dump(struct mv88e6xxx_chip *chip, int port,
				  struct switchdev_obj *obj,
				  int (*cb)(struct switchdev_obj *obj))
2258 2259 2260 2261
{
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2262
	u16 fid;
2263 2264
	int err;

2265
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2266
	err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2267
	if (err)
2268
		return err;
2269

2270
	err = mv88e6xxx_port_db_dump_fid(chip, fid, 0, port, obj, cb);
2271
	if (err)
2272
		return err;
2273

2274
	/* Dump VLANs' Filtering Information Databases */
2275
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2276
	if (err)
2277
		return err;
2278 2279

	do {
2280
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2281
		if (err)
2282
			return err;
2283 2284 2285 2286

		if (!vlan.valid)
			break;

2287 2288
		err = mv88e6xxx_port_db_dump_fid(chip, vlan.fid, vlan.vid, port,
						 obj, cb);
2289
		if (err)
2290
			return err;
2291 2292
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	return err;
}

static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &fdb->obj, cb);
2305
	mutex_unlock(&chip->reg_lock);
2306 2307 2308 2309

	return err;
}

2310 2311
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2312
{
2313
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2314
	int i, err = 0;
2315

2316
	mutex_lock(&chip->reg_lock);
2317

2318
	/* Assign the bridge and remap each port's VLANTable */
2319
	chip->ports[port].bridge_dev = bridge;
2320

2321 2322 2323
	for (i = 0; i < chip->info->num_ports; ++i) {
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2324 2325 2326 2327 2328
			if (err)
				break;
		}
	}

2329
	mutex_unlock(&chip->reg_lock);
2330

2331
	return err;
2332 2333
}

2334
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2335
{
2336 2337
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	struct net_device *bridge = chip->ports[port].bridge_dev;
2338
	int i;
2339

2340
	mutex_lock(&chip->reg_lock);
2341

2342
	/* Unassign the bridge and remap each port's VLANTable */
2343
	chip->ports[port].bridge_dev = NULL;
2344

2345 2346 2347
	for (i = 0; i < chip->info->num_ports; ++i)
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2348 2349
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2350

2351
	mutex_unlock(&chip->reg_lock);
2352 2353
}

2354
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2355
{
2356
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2357
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2358
	struct gpio_desc *gpiod = chip->reset;
2359 2360 2361 2362 2363
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
2364 2365
	for (i = 0; i < chip->info->num_ports; i++) {
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2366 2367 2368
		if (ret < 0)
			return ret;

2369
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
					   ret & 0xfffc);
		if (ret)
			return ret;
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2391
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2392
	else
2393
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2394 2395 2396 2397 2398 2399
	if (ret)
		return ret;

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2400
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
		if (ret < 0)
			return ret;

		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		ret = -ETIMEDOUT;
	else
		ret = 0;

	return ret;
}

2416
static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2417
{
2418 2419
	u16 val;
	int err;
2420

2421 2422 2423 2424
	/* Clear Power Down bit */
	err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
	if (err)
		return err;
2425

2426 2427 2428
	if (val & BMCR_PDOWN) {
		val &= ~BMCR_PDOWN;
		err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2429 2430
	}

2431
	return err;
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
			       int reg, u16 *val)
{
	int addr = chip->info->port_base_addr + port;

	if (port >= chip->info->num_ports)
		return -EINVAL;

	return mv88e6xxx_read(chip, addr, reg, val);
}

2445
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2446
{
2447
	struct dsa_switch *ds = chip->ds;
2448
	int ret;
2449
	u16 reg;
2450

2451 2452 2453 2454
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2455 2456 2457 2458 2459 2460
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
2461
		reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2462
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2463
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2464 2465 2466 2467
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
2468
			if (mv88e6xxx_6065_family(chip))
2469 2470 2471 2472 2473 2474 2475
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

2476
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2477 2478
					   PORT_PCS_CTRL, reg);
		if (ret)
2479
			return ret;
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2497 2498 2499 2500
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2501 2502 2503 2504
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2505
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2506
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2507
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2508 2509
		else
			reg |= PORT_CONTROL_DSA_TAG;
2510 2511
		reg |= PORT_CONTROL_EGRESS_ADD_TAG |
			PORT_CONTROL_FORWARD_UNKNOWN;
2512
	}
2513
	if (dsa_is_dsa_port(ds, port)) {
2514 2515
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2516
			reg |= PORT_CONTROL_DSA_TAG;
2517 2518 2519 2520 2521
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2522
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2523 2524
		}

2525 2526 2527 2528 2529
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2530
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2531 2532
					   PORT_CONTROL, reg);
		if (ret)
2533
			return ret;
2534 2535
	}

2536 2537 2538
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2539
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2540
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2541
		if (ret < 0)
2542
			return ret;
2543 2544 2545 2546
		ret &= PORT_STATUS_CMODE_MASK;
		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
		    (ret == PORT_STATUS_CMODE_SGMII)) {
2547
			ret = mv88e6xxx_serdes_power_on(chip);
2548
			if (ret < 0)
2549
				return ret;
2550 2551 2552
		}
	}

2553
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2554
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2555 2556 2557
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2558 2559
	 */
	reg = 0;
2560 2561 2562 2563
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2564 2565
		reg = PORT_CONTROL_2_MAP_DA;

2566 2567
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2568 2569
		reg |= PORT_CONTROL_2_JUMBO_10240;

2570
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2571 2572 2573 2574 2575 2576 2577 2578 2579
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2580
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2581

2582
	if (reg) {
2583
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2584 2585
					   PORT_CONTROL_2, reg);
		if (ret)
2586
			return ret;
2587 2588 2589 2590 2591 2592 2593
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2594
	reg = 1 << port;
2595 2596
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2597
		reg = 0;
2598

2599 2600
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
				   reg);
2601
	if (ret)
2602
		return ret;
2603 2604

	/* Egress rate control 2: disable egress rate control. */
2605
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2606 2607
				   0x0000);
	if (ret)
2608
		return ret;
2609

2610 2611 2612
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2613 2614 2615 2616
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2617
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2618 2619
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
2620
			return ret;
2621 2622 2623 2624 2625

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2626
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2627 2628 2629 2630
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2631
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2632 2633
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
2634
			return ret;
2635 2636 2637 2638

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2639 2640 2641 2642 2643 2644 2645
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
			ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
						   PORT_ETH_TYPE, ETH_P_EDSA);
			if (ret)
				return ret;
		}

2646 2647 2648
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2649
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2650 2651
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
2652
			return ret;
2653 2654 2655 2656

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2657
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2658 2659
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
2660
			return ret;
2661 2662
	}

2663
	/* Rate Control: disable ingress rate limiting. */
2664 2665 2666 2667
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2668 2669
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
2670
			return ret;
2671 2672 2673 2674 2675
	} else if (mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip)) {
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0000);
		if (ret)
			return ret;
2676 2677
	}

2678 2679
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2680
	 */
2681 2682
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
				   0x0000);
2683
	if (ret)
2684
		return ret;
2685

2686
	/* Port based VLAN map: give each port the same default address
2687 2688
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2689
	 */
2690
	ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2691
	if (ret)
2692
		return ret;
2693

2694
	ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2695
	if (ret)
2696
		return ret;
2697 2698 2699 2700

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2701
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2702
				   0x0000);
2703 2704
	if (ret)
		return ret;
2705 2706 2707 2708

	return 0;
}

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
			      (addr[0] << 8) | addr[1]);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
			      (addr[2] << 8) | addr[3]);
	if (err)
		return err;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
			       (addr[4] << 8) | addr[5]);
}

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

	err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2767
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2768
{
2769
	struct dsa_switch *ds = chip->ds;
2770
	u32 upstream_port = dsa_upstream_port(ds);
2771
	u16 reg;
2772
	int err;
2773

2774 2775 2776 2777
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
	reg = 0;
2778 2779
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2780 2781
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2782
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2783 2784 2785
	if (err)
		return err;

2786 2787 2788 2789 2790 2791
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2792 2793
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
				   reg);
2794 2795 2796
	if (err)
		return err;

2797
	/* Disable remote management, and set the switch's DSA device number. */
2798
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2799 2800 2801 2802 2803
				   GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				   (ds->index & 0x1f));
	if (err)
		return err;

2804 2805 2806 2807 2808
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2809 2810 2811 2812
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2813 2814
	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
			      GLOBAL_ATU_CONTROL_LEARN2ALL);
2815
	if (err)
2816
		return err;
2817

2818 2819
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2820 2821 2822 2823 2824 2825 2826
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2827
	/* Configure the IP ToS mapping registers. */
2828
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2829
	if (err)
2830
		return err;
2831
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2832
	if (err)
2833
		return err;
2834
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2835
	if (err)
2836
		return err;
2837
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2838
	if (err)
2839
		return err;
2840
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2841
	if (err)
2842
		return err;
2843
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2844
	if (err)
2845
		return err;
2846
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2847
	if (err)
2848
		return err;
2849
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2850
	if (err)
2851
		return err;
2852 2853

	/* Configure the IEEE 802.1p priority mapping register. */
2854
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2855
	if (err)
2856
		return err;
2857

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	/* Clear the statistics counters for all ports */
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_FLUSH_ALL);
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
					     int target, int port)
{
	u16 val = (target << 8) | (port & 0xf);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
}

static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
{
	int target, port;
	int err;

	/* Initialize the routing port to the 32 possible target devices */
	for (target = 0; target < 32; ++target) {
		port = 0xf;

		if (target < DSA_MAX_SWITCHES) {
			port = chip->ds->rtable[target];
			if (port == DSA_RTABLE_NONE)
				port = 0xf;
		}

		err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
		if (err)
			break;
	}

	return err;
}

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
					 bool hask, u16 mask)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (num << 12) | (mask & port_mask);

	if (hask)
		val |= GLOBAL2_TRUNK_MASK_HASK;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
}

static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
					    u16 map)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (id << 11) | (map & port_mask);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
}

static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	int i, err;

	/* Clear all eight possible Trunk Mask vectors */
	for (i = 0; i < 8; ++i) {
		err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
		if (err)
			return err;
	}

	/* Clear all sixteen possible Trunk ID routing vectors */
	for (i = 0; i < 16; ++i) {
		err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
		if (err)
			return err;
	}

	return 0;
}

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
{
	int port, err;

	/* Init all Ingress Rate Limit resources of all ports */
	for (port = 0; port < chip->info->num_ports; ++port) {
		/* XXX newer chips (like 88E6390) have different 2-bit ops */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				      GLOBAL2_IRL_CMD_OP_INIT_ALL |
				      (port << 8));
		if (err)
			break;

		/* Wait for the operation to complete */
2960 2961
		err = mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				     GLOBAL2_IRL_CMD_BUSY);
2962 2963 2964 2965 2966 2967 2968
		if (err)
			break;
	}

	return err;
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
/* Indirect write to the Switch MAC/WoL/WoF register */
static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
					 unsigned int pointer, u8 data)
{
	u16 val = (pointer << 8) | data;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
}

static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int i, err;

	for (i = 0; i < 6; i++) {
		err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
		if (err)
			break;
	}

	return err;
}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
				  u8 data)
{
	u16 val = (pointer << 8) | (data & 0x7);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
}

static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
{
	int i, err;

	/* Clear all sixteen possible Priority Override entries */
	for (i = 0; i < 16; i++) {
		err = mv88e6xxx_g2_pot_write(chip, i, 0);
		if (err)
			break;
	}

	return err;
}

3013 3014
static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
{
3015 3016 3017
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
			      GLOBAL2_EEPROM_CMD_BUSY |
			      GLOBAL2_EEPROM_CMD_RUNNING);
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
}

static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_wait(chip);
}

static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
				      u8 addr, u16 *data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
}

static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
				       u8 addr, u16 data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
}

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
static int mv88e6xxx_g2_smi_phy_wait(struct mv88e6xxx_chip *chip)
{
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD,
			      GLOBAL2_SMI_PHY_CMD_BUSY);
}

static int mv88e6xxx_g2_smi_phy_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_wait(chip);
}

static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
				     int reg, u16 *val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_READ_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
}

static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
				      int reg, u16 val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_WRITE_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
}

3116 3117 3118 3119 3120
static const struct mv88e6xxx_ops mv88e6xxx_g2_smi_phy_ops = {
	.read = mv88e6xxx_g2_smi_phy_read,
	.write = mv88e6xxx_g2_smi_phy_write,
};

3121 3122
static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
{
3123
	u16 reg;
3124 3125
	int err;

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:2x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
				      0xffff);
		if (err)
			return err;
	}

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:0x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
				      0xffff);
		if (err)
			return err;
	}
3145 3146 3147 3148 3149 3150

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
3151 3152 3153 3154 3155
	reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
		reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3156
	if (err)
3157
		return err;
3158 3159

	/* Program the DSA routing table. */
3160 3161 3162
	err = mv88e6xxx_g2_set_device_mapping(chip);
	if (err)
		return err;
3163

3164 3165 3166 3167
	/* Clear all trunk masks and mapping. */
	err = mv88e6xxx_g2_clear_trunk(chip);
	if (err)
		return err;
3168

3169 3170 3171 3172 3173 3174 3175 3176 3177
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
		/* Disable ingress rate limiting by resetting all per port
		 * ingress rate limit resources to their initial state.
		 */
		err = mv88e6xxx_g2_clear_irl(chip);
			if (err)
				return err;
	}

3178 3179 3180 3181
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
		/* Initialize Cross-chip Port VLAN Table to reset defaults */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
				      GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3182
		if (err)
3183
			return err;
3184
	}
3185

3186
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3187
		/* Clear the priority override table. */
3188 3189 3190
		err = mv88e6xxx_g2_clear_pot(chip);
		if (err)
			return err;
3191 3192
	}

3193
	return 0;
3194 3195
}

3196
static int mv88e6xxx_setup(struct dsa_switch *ds)
3197
{
3198
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3199
	int err;
3200 3201
	int i;

3202 3203
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
3204

3205
	mutex_lock(&chip->reg_lock);
3206

3207
	err = mv88e6xxx_switch_reset(chip);
3208 3209 3210
	if (err)
		goto unlock;

3211 3212 3213 3214 3215 3216 3217 3218 3219
	/* Setup Switch Port Registers */
	for (i = 0; i < chip->info->num_ports; i++) {
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
3220 3221 3222
	if (err)
		goto unlock;

3223 3224 3225
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
3226 3227 3228
		if (err)
			goto unlock;
	}
3229

3230
unlock:
3231
	mutex_unlock(&chip->reg_lock);
3232

3233
	return err;
3234 3235
}

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	/* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
		err = mv88e6xxx_g2_set_switch_mac(chip, addr);
	else
		err = mv88e6xxx_g1_set_switch_mac(chip, addr);

	mutex_unlock(&chip->reg_lock);

	return err;
}

3254
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
3255
{
3256
	struct mv88e6xxx_chip *chip = bus->priv;
3257 3258
	u16 val;
	int err;
3259

3260
	if (phy >= chip->info->num_ports)
3261
		return 0xffff;
3262

3263
	mutex_lock(&chip->reg_lock);
3264
	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
3265
	mutex_unlock(&chip->reg_lock);
3266 3267

	return err ? err : val;
3268 3269
}

3270
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
3271
{
3272
	struct mv88e6xxx_chip *chip = bus->priv;
3273
	int err;
3274

3275
	if (phy >= chip->info->num_ports)
3276
		return 0xffff;
3277

3278
	mutex_lock(&chip->reg_lock);
3279
	err = mv88e6xxx_phy_write(chip, phy, reg, val);
3280
	mutex_unlock(&chip->reg_lock);
3281 3282

	return err;
3283 3284
}

3285
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3286 3287 3288 3289 3290 3291 3292
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

	if (np)
3293
		chip->mdio_np = of_get_child_by_name(np, "mdio");
3294

3295
	bus = devm_mdiobus_alloc(chip->dev);
3296 3297 3298
	if (!bus)
		return -ENOMEM;

3299
	bus->priv = (void *)chip;
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
3310
	bus->parent = chip->dev;
3311

3312 3313
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
3314 3315 3316
	else
		err = mdiobus_register(bus);
	if (err) {
3317
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3318 3319
		goto out;
	}
3320
	chip->mdio_bus = bus;
3321 3322 3323 3324

	return 0;

out:
3325 3326
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3327 3328 3329 3330

	return err;
}

3331
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3332 3333

{
3334
	struct mii_bus *bus = chip->mdio_bus;
3335 3336 3337

	mdiobus_unregister(bus);

3338 3339
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3340 3341
}

3342 3343 3344 3345
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
3346
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3347
	u16 val;
3348 3349 3350 3351
	int ret;

	*temp = 0;

3352
	mutex_lock(&chip->reg_lock);
3353

3354
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
3355 3356 3357 3358
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
3359
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3360 3361 3362
	if (ret < 0)
		goto error;

3363
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
3364 3365 3366 3367 3368 3369
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

3370 3371
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
	if (ret < 0)
3372 3373 3374
		goto error;

	/* Disable temperature sensor */
3375
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
3376 3377 3378 3379 3380 3381
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3382
	mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3383
	mutex_unlock(&chip->reg_lock);
3384 3385 3386 3387 3388
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
3389 3390
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3391
	u16 val;
3392 3393 3394 3395
	int ret;

	*temp = 0;

3396 3397 3398
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
	mutex_unlock(&chip->reg_lock);
3399 3400 3401
	if (ret < 0)
		return ret;

3402
	*temp = (val & 0xff) - 25;
3403 3404 3405 3406

	return 0;
}

3407
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3408
{
3409
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3410

3411
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3412 3413
		return -EOPNOTSUPP;

3414
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3415 3416 3417 3418 3419
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3420
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3421
{
3422 3423
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3424
	u16 val;
3425 3426
	int ret;

3427
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3428 3429 3430 3431
		return -EOPNOTSUPP;

	*temp = 0;

3432 3433 3434
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3435 3436 3437
	if (ret < 0)
		return ret;

3438
	*temp = (((val >> 8) & 0x1f) * 5) - 25;
3439 3440 3441 3442

	return 0;
}

3443
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3444
{
3445 3446
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3447 3448
	u16 val;
	int err;
3449

3450
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3451 3452
		return -EOPNOTSUPP;

3453 3454 3455 3456
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	if (err)
		goto unlock;
3457
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3458 3459 3460 3461 3462 3463
	err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
				       (val & 0xe0ff) | (temp << 8));
unlock:
	mutex_unlock(&chip->reg_lock);

	return err;
3464 3465
}

3466
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3467
{
3468 3469
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3470
	u16 val;
3471 3472
	int ret;

3473
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3474 3475 3476 3477
		return -EOPNOTSUPP;

	*alarm = false;

3478 3479 3480
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3481 3482 3483
	if (ret < 0)
		return ret;

3484
	*alarm = !!(val & 0x40);
3485 3486 3487 3488 3489

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = (val >> 8) & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;
		*data++ = (val >> 8) & 0xff;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	/* Ensure the RO WriteEn bit is set */
	err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
	if (err)
		return err;

	if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
		return -EROFS;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (*data++ << 8) | (val & 0xff);

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		val = *data++;
		val |= *data++ << 8;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (val & 0xff00) | *data++;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	return err;
}

3657 3658 3659 3660 3661 3662 3663
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3664
		.port_base_addr = 0x10,
3665
		.age_time_coeff = 15000,
3666 3667 3668 3669 3670 3671 3672 3673 3674
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3675
		.port_base_addr = 0x10,
3676
		.age_time_coeff = 15000,
3677 3678 3679 3680 3681 3682 3683 3684 3685
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3686
		.port_base_addr = 0x10,
3687
		.age_time_coeff = 15000,
3688 3689 3690 3691 3692 3693 3694 3695 3696
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3697
		.port_base_addr = 0x10,
3698
		.age_time_coeff = 15000,
3699 3700 3701 3702 3703 3704 3705 3706 3707
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3708
		.port_base_addr = 0x10,
3709
		.age_time_coeff = 15000,
3710 3711 3712 3713 3714 3715 3716 3717 3718
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3719
		.port_base_addr = 0x10,
3720
		.age_time_coeff = 15000,
3721 3722 3723 3724 3725 3726 3727 3728 3729
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3730
		.port_base_addr = 0x10,
3731
		.age_time_coeff = 15000,
3732 3733 3734 3735 3736 3737 3738 3739 3740
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3741
		.port_base_addr = 0x10,
3742
		.age_time_coeff = 15000,
3743 3744 3745 3746 3747 3748 3749 3750 3751
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3752
		.port_base_addr = 0x10,
3753
		.age_time_coeff = 15000,
3754 3755 3756 3757 3758 3759 3760 3761 3762
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3763
		.port_base_addr = 0x10,
3764
		.age_time_coeff = 15000,
3765 3766 3767 3768 3769 3770 3771 3772 3773
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3774
		.port_base_addr = 0x10,
3775
		.age_time_coeff = 15000,
3776 3777 3778 3779 3780 3781 3782 3783 3784
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3785
		.port_base_addr = 0x10,
3786
		.age_time_coeff = 15000,
3787 3788 3789 3790 3791 3792 3793 3794 3795
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3796
		.port_base_addr = 0x10,
3797
		.age_time_coeff = 15000,
3798 3799 3800 3801 3802 3803 3804 3805 3806
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3807
		.port_base_addr = 0x10,
3808
		.age_time_coeff = 15000,
3809 3810 3811 3812 3813 3814 3815 3816 3817
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3818
		.port_base_addr = 0x10,
3819
		.age_time_coeff = 15000,
3820 3821 3822 3823 3824 3825 3826 3827 3828
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3829
		.port_base_addr = 0x10,
3830
		.age_time_coeff = 15000,
3831 3832 3833 3834 3835 3836 3837 3838 3839
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3840
		.port_base_addr = 0x10,
3841
		.age_time_coeff = 15000,
3842 3843 3844 3845
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},
};

3846
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3847
{
3848
	int i;
3849

3850 3851 3852
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3853 3854 3855 3856

	return NULL;
}

3857
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3858 3859
{
	const struct mv88e6xxx_info *info;
3860 3861 3862
	unsigned int prod_num, rev;
	u16 id;
	int err;
3863

3864 3865 3866 3867 3868
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3869 3870 3871 3872 3873 3874 3875 3876

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3877
	/* Update the compatible info with the probed one */
3878
	chip->info = info;
3879

3880 3881
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3882 3883 3884 3885

	return 0;
}

3886
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3887
{
3888
	struct mv88e6xxx_chip *chip;
3889

3890 3891
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3892 3893
		return NULL;

3894
	chip->dev = dev;
3895

3896
	mutex_init(&chip->reg_lock);
3897

3898
	return chip;
3899 3900
}

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
static const struct mv88e6xxx_ops mv88e6xxx_phy_ops = {
	.read = mv88e6xxx_read,
	.write = mv88e6xxx_write,
};

static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
{
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SMI_PHY)) {
		chip->phy_ops = &mv88e6xxx_g2_smi_phy_ops;
	} else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
		chip->phy_ops = &mv88e6xxx_phy_ppu_ops;
		mv88e6xxx_ppu_state_init(chip);
	} else {
		chip->phy_ops = &mv88e6xxx_phy_ops;
	}
}

3918 3919 3920 3921 3922 3923 3924
static void mv88e6xxx_phy_destroy(struct mv88e6xxx_chip *chip)
{
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
		mv88e6xxx_ppu_state_destroy(chip);
	}
}

3925
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3926 3927 3928 3929 3930 3931
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3932
	if (sw_addr == 0)
3933
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3934
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3935
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3936 3937 3938
	else
		return -EINVAL;

3939 3940
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3941 3942 3943 3944

	return 0;
}

3945 3946
static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
{
3947 3948 3949 3950 3951 3952
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
		return DSA_TAG_PROTO_EDSA;

	return DSA_TAG_PROTO_DSA;
3953 3954
}

3955 3956 3957
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3958
{
3959
	struct mv88e6xxx_chip *chip;
3960
	struct mii_bus *bus;
3961
	int err;
3962

3963
	bus = dsa_host_dev_to_mii_bus(host_dev);
3964 3965 3966
	if (!bus)
		return NULL;

3967 3968
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3969 3970
		return NULL;

3971
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3972
	chip->info = &mv88e6xxx_table[MV88E6085];
3973

3974
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3975 3976 3977
	if (err)
		goto free;

3978
	err = mv88e6xxx_detect(chip);
3979
	if (err)
3980
		goto free;
3981

3982 3983
	mv88e6xxx_phy_init(chip);

3984
	err = mv88e6xxx_mdio_register(chip, NULL);
3985
	if (err)
3986
		goto free;
3987

3988
	*priv = chip;
3989

3990
	return chip->info->name;
3991
free:
3992
	devm_kfree(dsa_dev, chip);
3993 3994

	return NULL;
3995 3996
}

3997
static struct dsa_switch_ops mv88e6xxx_switch_ops = {
3998
	.probe			= mv88e6xxx_drv_probe,
3999
	.get_tag_protocol	= mv88e6xxx_get_tag_protocol,
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
4014
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
4015 4016 4017 4018
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
4019
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
};

4034
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
4035 4036
				     struct device_node *np)
{
4037
	struct device *dev = chip->dev;
4038 4039 4040 4041 4042 4043 4044
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
4045
	ds->priv = chip;
4046
	ds->ops = &mv88e6xxx_switch_ops;
4047 4048 4049 4050 4051 4052

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

4053
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
4054
{
4055
	dsa_unregister_switch(chip->ds);
4056 4057
}

4058
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4059
{
4060
	struct device *dev = &mdiodev->dev;
4061
	struct device_node *np = dev->of_node;
4062
	const struct mv88e6xxx_info *compat_info;
4063
	struct mv88e6xxx_chip *chip;
4064
	u32 eeprom_len;
4065
	int err;
4066

4067 4068 4069 4070
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

4071 4072
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
4073 4074
		return -ENOMEM;

4075
	chip->info = compat_info;
4076

4077
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4078 4079
	if (err)
		return err;
4080

4081
	err = mv88e6xxx_detect(chip);
4082 4083
	if (err)
		return err;
4084

4085 4086
	mv88e6xxx_phy_init(chip);

4087 4088 4089
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);
4090

4091
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4092
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4093
		chip->eeprom_len = eeprom_len;
4094

4095
	err = mv88e6xxx_mdio_register(chip, np);
4096 4097 4098
	if (err)
		return err;

4099
	err = mv88e6xxx_register_switch(chip, np);
4100
	if (err) {
4101
		mv88e6xxx_mdio_unregister(chip);
4102 4103 4104
		return err;
	}

4105 4106
	return 0;
}
4107 4108 4109 4110

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4111
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4112

4113
	mv88e6xxx_phy_destroy(chip);
4114 4115
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
4116 4117 4118
}

static const struct of_device_id mv88e6xxx_of_match[] = {
4119 4120 4121 4122
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
4139
	register_switch_driver(&mv88e6xxx_switch_ops);
4140 4141
	return mdio_driver_register(&mv88e6xxx_driver);
}
4142 4143 4144 4145
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
4146
	mdio_driver_unregister(&mv88e6xxx_driver);
4147
	unregister_switch_driver(&mv88e6xxx_switch_ops);
4148 4149
}
module_exit(mv88e6xxx_cleanup);
4150 4151 4152 4153

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");