chip.c 100.0 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21 22 23
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
24
#include <linux/jiffies.h>
25
#include <linux/list.h>
26
#include <linux/mdio.h>
27
#include <linux/module.h>
28
#include <linux/of_device.h>
29
#include <linux/of_irq.h>
30
#include <linux/of_mdio.h>
31
#include <linux/netdevice.h>
32
#include <linux/gpio/consumer.h>
33
#include <linux/phy.h>
34
#include <net/dsa.h>
35
#include <net/switchdev.h>
36

37
#include "mv88e6xxx.h"
38
#include "global1.h"
39
#include "global2.h"
40
#include "port.h"
41

42
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
43
{
44 45
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
46 47 48 49
		dump_stack();
	}
}

50 51 52 53 54 55 56 57 58 59
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
60
 */
61

62
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
63 64
			      int addr, int reg, u16 *val)
{
65
	if (!chip->smi_ops)
66 67
		return -EOPNOTSUPP;

68
	return chip->smi_ops->read(chip, addr, reg, val);
69 70
}

71
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
72 73
			       int addr, int reg, u16 val)
{
74
	if (!chip->smi_ops)
75 76
		return -EOPNOTSUPP;

77
	return chip->smi_ops->write(chip, addr, reg, val);
78 79
}

80
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
81 82 83 84
					  int addr, int reg, u16 *val)
{
	int ret;

85
	ret = mdiobus_read_nested(chip->bus, addr, reg);
86 87 88 89 90 91 92 93
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

94
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
95 96 97 98
					   int addr, int reg, u16 val)
{
	int ret;

99
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
100 101 102 103 104 105
	if (ret < 0)
		return ret;

	return 0;
}

106
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_single_chip_ops = {
107 108 109 110
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

111
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
112 113 114 115 116
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
117
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
118 119 120
		if (ret < 0)
			return ret;

121
		if ((ret & SMI_CMD_BUSY) == 0)
122 123 124 125 126 127
			return 0;
	}

	return -ETIMEDOUT;
}

128
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
129
					 int addr, int reg, u16 *val)
130 131 132
{
	int ret;

133
	/* Wait for the bus to become free. */
134
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
135 136 137
	if (ret < 0)
		return ret;

138
	/* Transmit the read command. */
139
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
140
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
141 142 143
	if (ret < 0)
		return ret;

144
	/* Wait for the read command to complete. */
145
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
146 147 148
	if (ret < 0)
		return ret;

149
	/* Read the data. */
150
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
151 152 153
	if (ret < 0)
		return ret;

154
	*val = ret & 0xffff;
155

156
	return 0;
157 158
}

159
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
160
					  int addr, int reg, u16 val)
161 162 163
{
	int ret;

164
	/* Wait for the bus to become free. */
165
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
166 167 168
	if (ret < 0)
		return ret;

169
	/* Transmit the data to write. */
170
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
171 172 173
	if (ret < 0)
		return ret;

174
	/* Transmit the write command. */
175
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
176
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
177 178 179
	if (ret < 0)
		return ret;

180
	/* Wait for the write command to complete. */
181
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
182 183 184 185 186 187
	if (ret < 0)
		return ret;

	return 0;
}

188
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_multi_chip_ops = {
189 190 191 192
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

193
int mv88e6xxx_read(struct mv88e6xxx_chip *chip, int addr, int reg, u16 *val)
194 195 196
{
	int err;

197
	assert_reg_lock(chip);
198

199
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
200 201 202
	if (err)
		return err;

203
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
204 205 206 207 208
		addr, reg, *val);

	return 0;
}

209
int mv88e6xxx_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val)
210
{
211 212
	int err;

213
	assert_reg_lock(chip);
214

215
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
216 217 218
	if (err)
		return err;

219
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
220 221
		addr, reg, val);

222 223 224
	return 0;
}

225 226 227 228 229
static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
			      int reg, u16 *val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

230
	if (!chip->info->ops->phy_read)
231 232
		return -EOPNOTSUPP;

233
	return chip->info->ops->phy_read(chip, addr, reg, val);
234 235 236 237 238 239 240
}

static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
			       int reg, u16 val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

241
	if (!chip->info->ops->phy_write)
242 243
		return -EOPNOTSUPP;

244
	return chip->info->ops->phy_write(chip, addr, reg, val);
245 246
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
{
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
		return -EOPNOTSUPP;

	return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
}

static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
{
	int err;

	/* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
	err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
	if (unlikely(err)) {
		dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
			phy, err);
	}
}

static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
				   u8 page, int reg, u16 *val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_read(chip, phy, reg, val);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
				    u8 page, int reg, u16 val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
{
	return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
				       reg, val);
}

static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
{
	return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
					reg, val);
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static void mv88e6xxx_g1_irq_mask(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	unsigned int n = d->hwirq;

	chip->g1_irq.masked |= (1 << n);
}

static void mv88e6xxx_g1_irq_unmask(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	unsigned int n = d->hwirq;

	chip->g1_irq.masked &= ~(1 << n);
}

static irqreturn_t mv88e6xxx_g1_irq_thread_fn(int irq, void *dev_id)
{
	struct mv88e6xxx_chip *chip = dev_id;
	unsigned int nhandled = 0;
	unsigned int sub_irq;
	unsigned int n;
	u16 reg;
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &reg);
	mutex_unlock(&chip->reg_lock);

	if (err)
		goto out;

	for (n = 0; n < chip->g1_irq.nirqs; ++n) {
		if (reg & (1 << n)) {
			sub_irq = irq_find_mapping(chip->g1_irq.domain, n);
			handle_nested_irq(sub_irq);
			++nhandled;
		}
	}
out:
	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
}

static void mv88e6xxx_g1_irq_bus_lock(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);

	mutex_lock(&chip->reg_lock);
}

static void mv88e6xxx_g1_irq_bus_sync_unlock(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	u16 mask = GENMASK(chip->g1_irq.nirqs, 0);
	u16 reg;
	int err;

	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err)
		goto out;

	reg &= ~mask;
	reg |= (~chip->g1_irq.masked & mask);

	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
	if (err)
		goto out;

out:
	mutex_unlock(&chip->reg_lock);
}

static struct irq_chip mv88e6xxx_g1_irq_chip = {
	.name			= "mv88e6xxx-g1",
	.irq_mask		= mv88e6xxx_g1_irq_mask,
	.irq_unmask		= mv88e6xxx_g1_irq_unmask,
	.irq_bus_lock		= mv88e6xxx_g1_irq_bus_lock,
	.irq_bus_sync_unlock	= mv88e6xxx_g1_irq_bus_sync_unlock,
};

static int mv88e6xxx_g1_irq_domain_map(struct irq_domain *d,
				       unsigned int irq,
				       irq_hw_number_t hwirq)
{
	struct mv88e6xxx_chip *chip = d->host_data;

	irq_set_chip_data(irq, d->host_data);
	irq_set_chip_and_handler(irq, &chip->g1_irq.chip, handle_level_irq);
	irq_set_noprobe(irq);

	return 0;
}

static const struct irq_domain_ops mv88e6xxx_g1_irq_domain_ops = {
	.map	= mv88e6xxx_g1_irq_domain_map,
	.xlate	= irq_domain_xlate_twocell,
};

static void mv88e6xxx_g1_irq_free(struct mv88e6xxx_chip *chip)
{
	int irq, virq;
416 417 418 419 420 421 422
	u16 mask;

	mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &mask);
	mask |= GENMASK(chip->g1_irq.nirqs, 0);
	mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, mask);

	free_irq(chip->irq, chip);
423 424

	for (irq = 0; irq < 16; irq++) {
425
		virq = irq_find_mapping(chip->g1_irq.domain, irq);
426 427 428
		irq_dispose_mapping(virq);
	}

429
	irq_domain_remove(chip->g1_irq.domain);
430 431 432 433
}

static int mv88e6xxx_g1_irq_setup(struct mv88e6xxx_chip *chip)
{
434 435
	int err, irq, virq;
	u16 reg, mask;
436 437 438 439 440 441 442 443 444 445 446 447 448 449

	chip->g1_irq.nirqs = chip->info->g1_irqs;
	chip->g1_irq.domain = irq_domain_add_simple(
		NULL, chip->g1_irq.nirqs, 0,
		&mv88e6xxx_g1_irq_domain_ops, chip);
	if (!chip->g1_irq.domain)
		return -ENOMEM;

	for (irq = 0; irq < chip->g1_irq.nirqs; irq++)
		irq_create_mapping(chip->g1_irq.domain, irq);

	chip->g1_irq.chip = mv88e6xxx_g1_irq_chip;
	chip->g1_irq.masked = ~0;

450
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &mask);
451
	if (err)
452
		goto out_mapping;
453

454
	mask &= ~GENMASK(chip->g1_irq.nirqs, 0);
455

456
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, mask);
457
	if (err)
458
		goto out_disable;
459 460 461 462

	/* Reading the interrupt status clears (most of) them */
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &reg);
	if (err)
463
		goto out_disable;
464 465 466 467 468 469

	err = request_threaded_irq(chip->irq, NULL,
				   mv88e6xxx_g1_irq_thread_fn,
				   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
				   dev_name(chip->dev), chip);
	if (err)
470
		goto out_disable;
471 472 473

	return 0;

474 475 476 477 478 479 480 481 482 483 484
out_disable:
	mask |= GENMASK(chip->g1_irq.nirqs, 0);
	mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, mask);

out_mapping:
	for (irq = 0; irq < 16; irq++) {
		virq = irq_find_mapping(chip->g1_irq.domain, irq);
		irq_dispose_mapping(virq);
	}

	irq_domain_remove(chip->g1_irq.domain);
485 486 487 488

	return err;
}

489
int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg, u16 mask)
490
{
491
	int i;
492

493
	for (i = 0; i < 16; i++) {
494 495 496 497 498 499 500 501 502 503 504 505 506
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

507
	dev_err(chip->dev, "Timeout while waiting for switch\n");
508 509 510
	return -ETIMEDOUT;
}

511
/* Indirect write to single pointer-data register with an Update bit */
512
int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg, u16 update)
513 514
{
	u16 val;
515
	int err;
516 517

	/* Wait until the previous operation is completed */
518 519 520
	err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
	if (err)
		return err;
521 522 523 524 525 526 527

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

528
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
529 530
{
	u16 val;
531
	int i, err;
532

533
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
534 535 536
	if (err)
		return err;

537 538 539 540
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val & ~GLOBAL_CONTROL_PPU_ENABLE);
	if (err)
		return err;
541

542
	for (i = 0; i < 16; i++) {
543 544 545
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
546

547
		usleep_range(1000, 2000);
548
		if ((val & GLOBAL_STATUS_PPU_MASK) != GLOBAL_STATUS_PPU_POLLING)
549
			return 0;
550 551 552 553 554
	}

	return -ETIMEDOUT;
}

555
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
556
{
557 558
	u16 val;
	int i, err;
559

560 561 562
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
	if (err)
		return err;
563

564 565
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val | GLOBAL_CONTROL_PPU_ENABLE);
566 567
	if (err)
		return err;
568

569
	for (i = 0; i < 16; i++) {
570 571 572
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
573

574
		usleep_range(1000, 2000);
575
		if ((val & GLOBAL_STATUS_PPU_MASK) == GLOBAL_STATUS_PPU_POLLING)
576
			return 0;
577 578 579 580 581 582 583
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
584
	struct mv88e6xxx_chip *chip;
585

586
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
587

588
	mutex_lock(&chip->reg_lock);
589

590 591 592 593
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
594
	}
595

596
	mutex_unlock(&chip->reg_lock);
597 598 599 600
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
601
	struct mv88e6xxx_chip *chip = (void *)_ps;
602

603
	schedule_work(&chip->ppu_work);
604 605
}

606
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
607 608 609
{
	int ret;

610
	mutex_lock(&chip->ppu_mutex);
611

612
	/* If the PHY polling unit is enabled, disable it so that
613 614 615 616
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
617 618
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
619
		if (ret < 0) {
620
			mutex_unlock(&chip->ppu_mutex);
621 622
			return ret;
		}
623
		chip->ppu_disabled = 1;
624
	} else {
625
		del_timer(&chip->ppu_timer);
626
		ret = 0;
627 628 629 630 631
	}

	return ret;
}

632
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
633
{
634
	/* Schedule a timer to re-enable the PHY polling unit. */
635 636
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
637 638
}

639
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
640
{
641 642
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
643 644
	setup_timer(&chip->ppu_timer, mv88e6xxx_ppu_reenable_timer,
		    (unsigned long)chip);
645 646
}

647 648 649 650 651
static void mv88e6xxx_ppu_state_destroy(struct mv88e6xxx_chip *chip)
{
	del_timer_sync(&chip->ppu_timer);
}

652 653
static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
				  int reg, u16 *val)
654
{
655
	int err;
656

657 658 659
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_read(chip, addr, reg, val);
660
		mv88e6xxx_ppu_access_put(chip);
661 662
	}

663
	return err;
664 665
}

666 667
static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
				   int reg, u16 val)
668
{
669
	int err;
670

671 672 673
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_write(chip, addr, reg, val);
674
		mv88e6xxx_ppu_access_put(chip);
675 676
	}

677
	return err;
678 679
}

680
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
681
{
682
	return chip->info->family == MV88E6XXX_FAMILY_6065;
683 684
}

685
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
686
{
687
	return chip->info->family == MV88E6XXX_FAMILY_6095;
688 689
}

690
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
691
{
692
	return chip->info->family == MV88E6XXX_FAMILY_6097;
693 694
}

695
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
696
{
697
	return chip->info->family == MV88E6XXX_FAMILY_6165;
698 699
}

700
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
701
{
702
	return chip->info->family == MV88E6XXX_FAMILY_6185;
703 704
}

705
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
706
{
707
	return chip->info->family == MV88E6XXX_FAMILY_6320;
708 709
}

710
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
711
{
712
	return chip->info->family == MV88E6XXX_FAMILY_6351;
713 714
}

715
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
716
{
717
	return chip->info->family == MV88E6XXX_FAMILY_6352;
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static int mv88e6xxx_port_setup_mac(struct mv88e6xxx_chip *chip, int port,
				    int link, int speed, int duplex,
				    phy_interface_t mode)
{
	int err;

	if (!chip->info->ops->port_set_link)
		return 0;

	/* Port's MAC control must not be changed unless the link is down */
	err = chip->info->ops->port_set_link(chip, port, 0);
	if (err)
		return err;

	if (chip->info->ops->port_set_speed) {
		err = chip->info->ops->port_set_speed(chip, port, speed);
		if (err && err != -EOPNOTSUPP)
			goto restore_link;
	}

	if (chip->info->ops->port_set_duplex) {
		err = chip->info->ops->port_set_duplex(chip, port, duplex);
		if (err && err != -EOPNOTSUPP)
			goto restore_link;
	}

	if (chip->info->ops->port_set_rgmii_delay) {
		err = chip->info->ops->port_set_rgmii_delay(chip, port, mode);
		if (err && err != -EOPNOTSUPP)
			goto restore_link;
	}

	err = 0;
restore_link:
	if (chip->info->ops->port_set_link(chip, port, link))
		netdev_err(chip->ds->ports[port].netdev,
			   "failed to restore MAC's link\n");

	return err;
}

761 762 763 764
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
765 766
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
767
{
V
Vivien Didelot 已提交
768
	struct mv88e6xxx_chip *chip = ds->priv;
769
	int err;
770 771 772 773

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

774
	mutex_lock(&chip->reg_lock);
775 776
	err = mv88e6xxx_port_setup_mac(chip, port, phydev->link, phydev->speed,
				       phydev->duplex, phydev->interface);
777
	mutex_unlock(&chip->reg_lock);
778 779 780

	if (err && err != -EOPNOTSUPP)
		netdev_err(ds->ports[port].netdev, "failed to configure MAC\n");
781 782
}

783
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
784
{
785 786
	u16 val;
	int i, err;
787 788

	for (i = 0; i < 10; i++) {
789
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_OP, &val);
790 791 792
		if (err)
			return err;

793
		if ((val & GLOBAL_STATS_OP_BUSY) == 0)
794 795 796 797 798 799
			return 0;
	}

	return -ETIMEDOUT;
}

800
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
801
{
802
	int err;
803

804
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
805 806
		port = (port + 1) << 5;

807
	/* Snapshot the hardware statistics counters for this port. */
808 809 810 811 812
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_CAPTURE_PORT |
				 GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (err)
		return err;
813

814
	/* Wait for the snapshotting to complete. */
815
	return _mv88e6xxx_stats_wait(chip);
816 817
}

818
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
819
				  int stat, u32 *val)
820
{
821 822 823
	u32 value;
	u16 reg;
	int err;
824 825 826

	*val = 0;

827 828 829 830
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_READ_CAPTURED |
				 GLOBAL_STATS_OP_HIST_RX_TX | stat);
	if (err)
831 832
		return;

833 834
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
835 836
		return;

837 838
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_32, &reg);
	if (err)
839 840
		return;

841
	value = reg << 16;
842

843 844
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_01, &reg);
	if (err)
845 846
		return;

847
	*val = value | reg;
848 849
}

850
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
910 911
};

912
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
913
			       struct mv88e6xxx_hw_stat *stat)
914
{
915 916
	switch (stat->type) {
	case BANK0:
917
		return true;
918
	case BANK1:
919
		return mv88e6xxx_6320_family(chip);
920
	case PORT:
921 922 923 924 925 926
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
927
	}
928
	return false;
929 930
}

931
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
932
					    struct mv88e6xxx_hw_stat *s,
933 934 935 936
					    int port)
{
	u32 low;
	u32 high = 0;
937 938
	int err;
	u16 reg;
939 940
	u64 value;

941 942
	switch (s->type) {
	case PORT:
943 944
		err = mv88e6xxx_port_read(chip, port, s->reg, &reg);
		if (err)
945 946
			return UINT64_MAX;

947
		low = reg;
948
		if (s->sizeof_stat == 4) {
949 950
			err = mv88e6xxx_port_read(chip, port, s->reg + 1, &reg);
			if (err)
951
				return UINT64_MAX;
952
			high = reg;
953
		}
954 955 956
		break;
	case BANK0:
	case BANK1:
957
		_mv88e6xxx_stats_read(chip, s->reg, &low);
958
		if (s->sizeof_stat == 8)
959
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
960 961 962 963 964
	}
	value = (((u64)high) << 16) | low;
	return value;
}

965 966
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
967
{
V
Vivien Didelot 已提交
968
	struct mv88e6xxx_chip *chip = ds->priv;
969 970
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
971

972 973
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
974
		if (mv88e6xxx_has_stat(chip, stat)) {
975 976 977 978
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
979
	}
980 981
}

982
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
983
{
V
Vivien Didelot 已提交
984
	struct mv88e6xxx_chip *chip = ds->priv;
985 986 987 988 989
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
990
		if (mv88e6xxx_has_stat(chip, stat))
991 992 993
			j++;
	}
	return j;
994 995
}

996 997
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
998
{
V
Vivien Didelot 已提交
999
	struct mv88e6xxx_chip *chip = ds->priv;
1000 1001 1002 1003
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

1004
	mutex_lock(&chip->reg_lock);
1005

1006
	ret = _mv88e6xxx_stats_snapshot(chip, port);
1007
	if (ret < 0) {
1008
		mutex_unlock(&chip->reg_lock);
1009 1010 1011 1012
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
1013 1014
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
1015 1016 1017 1018
			j++;
		}
	}

1019
	mutex_unlock(&chip->reg_lock);
1020 1021
}

1022
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
1023 1024 1025 1026
{
	return 32 * sizeof(u16);
}

1027 1028
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
1029
{
V
Vivien Didelot 已提交
1030
	struct mv88e6xxx_chip *chip = ds->priv;
1031 1032
	int err;
	u16 reg;
1033 1034 1035 1036 1037 1038 1039
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

1040
	mutex_lock(&chip->reg_lock);
1041

1042 1043
	for (i = 0; i < 32; i++) {

1044 1045 1046
		err = mv88e6xxx_port_read(chip, port, i, &reg);
		if (!err)
			p[i] = reg;
1047
	}
1048

1049
	mutex_unlock(&chip->reg_lock);
1050 1051
}

1052
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
1053
{
1054
	return mv88e6xxx_g1_wait(chip, GLOBAL_ATU_OP, GLOBAL_ATU_OP_BUSY);
1055 1056
}

1057 1058
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
1059
{
V
Vivien Didelot 已提交
1060
	struct mv88e6xxx_chip *chip = ds->priv;
1061 1062
	u16 reg;
	int err;
1063

1064
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1065 1066
		return -EOPNOTSUPP;

1067
	mutex_lock(&chip->reg_lock);
1068

1069 1070
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
1071
		goto out;
1072 1073 1074 1075

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

1076
	err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
1077
	if (err)
1078
		goto out;
1079

1080
	e->eee_active = !!(reg & PORT_STATUS_EEE);
1081
out:
1082
	mutex_unlock(&chip->reg_lock);
1083 1084

	return err;
1085 1086
}

1087 1088
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
1089
{
V
Vivien Didelot 已提交
1090
	struct mv88e6xxx_chip *chip = ds->priv;
1091 1092
	u16 reg;
	int err;
1093

1094
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1095 1096
		return -EOPNOTSUPP;

1097
	mutex_lock(&chip->reg_lock);
1098

1099 1100
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
1101 1102
		goto out;

1103
	reg &= ~0x0300;
1104 1105 1106 1107 1108
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

1109
	err = mv88e6xxx_phy_write(chip, port, 16, reg);
1110
out:
1111
	mutex_unlock(&chip->reg_lock);
1112

1113
	return err;
1114 1115
}

1116
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
1117
{
1118 1119
	u16 val;
	int err;
1120

1121
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_ATU_FID)) {
1122 1123 1124
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_FID, fid);
		if (err)
			return err;
1125
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1126
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
1127 1128 1129
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
		if (err)
			return err;
1130

1131 1132 1133 1134
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
					 (val & 0xfff) | ((fid << 8) & 0xf000));
		if (err)
			return err;
1135 1136 1137

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
1138 1139
	}

1140 1141 1142
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_OP, cmd);
	if (err)
		return err;
1143

1144
	return _mv88e6xxx_atu_wait(chip);
1145 1146
}

1147
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1167
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_DATA, data);
1168 1169
}

1170
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1171 1172
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1173
{
1174 1175
	int op;
	int err;
1176

1177
	err = _mv88e6xxx_atu_wait(chip);
1178 1179
	if (err)
		return err;
1180

1181
	err = _mv88e6xxx_atu_data_write(chip, entry);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1193
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1194 1195
}

1196
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1197
				u16 fid, bool static_too)
1198 1199 1200 1201 1202
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1203

1204
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1205 1206
}

1207
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1208
			       int from_port, int to_port, bool static_too)
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1222
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1223 1224
}

1225
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1226
				 int port, bool static_too)
1227 1228
{
	/* Destination port 0xF means remove the entries */
1229
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1230 1231
}

1232
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1233
{
1234 1235
	struct net_device *bridge = chip->ports[port].bridge_dev;
	struct dsa_switch *ds = chip->ds;
1236 1237 1238 1239 1240
	u16 output_ports = 0;
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1241
		output_ports = ~0;
1242
	} else {
1243
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1244
			/* allow sending frames to every group member */
1245
			if (bridge && chip->ports[i].bridge_dev == bridge)
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1256

1257
	return mv88e6xxx_port_set_vlan_map(chip, port, output_ports);
1258 1259
}

1260 1261
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1262
{
V
Vivien Didelot 已提交
1263
	struct mv88e6xxx_chip *chip = ds->priv;
1264
	int stp_state;
1265
	int err;
1266 1267 1268

	switch (state) {
	case BR_STATE_DISABLED:
1269
		stp_state = PORT_CONTROL_STATE_DISABLED;
1270 1271 1272
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1273
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1274 1275
		break;
	case BR_STATE_LEARNING:
1276
		stp_state = PORT_CONTROL_STATE_LEARNING;
1277 1278 1279
		break;
	case BR_STATE_FORWARDING:
	default:
1280
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1281 1282 1283
		break;
	}

1284
	mutex_lock(&chip->reg_lock);
1285
	err = mv88e6xxx_port_set_state(chip, port, stp_state);
1286
	mutex_unlock(&chip->reg_lock);
1287 1288

	if (err)
1289
		netdev_err(ds->ports[port].netdev, "failed to update state\n");
1290 1291
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
static void mv88e6xxx_port_fast_age(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_chip *chip = ds->priv;
	int err;

	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_atu_remove(chip, 0, port, false);
	mutex_unlock(&chip->reg_lock);

	if (err)
		netdev_err(ds->ports[port].netdev, "failed to flush ATU\n");
}

1305
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1306
{
1307
	return mv88e6xxx_g1_wait(chip, GLOBAL_VTU_OP, GLOBAL_VTU_OP_BUSY);
1308 1309
}

1310
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1311
{
1312
	int err;
1313

1314 1315 1316
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_OP, op);
	if (err)
		return err;
1317

1318
	return _mv88e6xxx_vtu_wait(chip);
1319 1320
}

1321
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1322 1323 1324
{
	int ret;

1325
	ret = _mv88e6xxx_vtu_wait(chip);
1326 1327 1328
	if (ret < 0)
		return ret;

1329
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1330 1331
}

1332
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1333
					struct mv88e6xxx_vtu_entry *entry,
1334 1335 1336
					unsigned int nibble_offset)
{
	u16 regs[3];
1337
	int i, err;
1338 1339

	for (i = 0; i < 3; ++i) {
1340
		u16 *reg = &regs[i];
1341

1342 1343 1344
		err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1345 1346
	}

1347
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1348 1349 1350 1351 1352 1353 1354 1355 1356
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1357
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1358
				   struct mv88e6xxx_vtu_entry *entry)
1359
{
1360
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1361 1362
}

1363
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1364
				   struct mv88e6xxx_vtu_entry *entry)
1365
{
1366
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1367 1368
}

1369
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1370
					 struct mv88e6xxx_vtu_entry *entry,
1371 1372 1373
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
1374
	int i, err;
1375

1376
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1377 1378 1379 1380 1381 1382 1383
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1384 1385 1386 1387 1388
		u16 reg = regs[i];

		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1389 1390 1391 1392 1393
	}

	return 0;
}

1394
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1395
				    struct mv88e6xxx_vtu_entry *entry)
1396
{
1397
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1398 1399
}

1400
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1401
				    struct mv88e6xxx_vtu_entry *entry)
1402
{
1403
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1404 1405
}

1406
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1407
{
1408 1409
	return mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID,
				  vid & GLOBAL_VTU_VID_MASK);
1410 1411
}

1412
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1413
				  struct mv88e6xxx_vtu_entry *entry)
1414
{
1415
	struct mv88e6xxx_vtu_entry next = { 0 };
1416 1417
	u16 val;
	int err;
1418

1419 1420 1421
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1422

1423 1424 1425
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (err)
		return err;
1426

1427 1428 1429
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1430

1431 1432
	next.vid = val & GLOBAL_VTU_VID_MASK;
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1433 1434

	if (next.valid) {
1435 1436 1437
		err = mv88e6xxx_vtu_data_read(chip, &next);
		if (err)
			return err;
1438

1439
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1440 1441 1442
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_FID, &val);
			if (err)
				return err;
1443

1444
			next.fid = val & GLOBAL_VTU_FID_MASK;
1445
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1446 1447 1448
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1449 1450 1451
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_OP, &val);
			if (err)
				return err;
1452

1453 1454
			next.fid = (val & 0xf00) >> 4;
			next.fid |= val & 0xf;
1455
		}
1456

1457
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1458 1459 1460
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
			if (err)
				return err;
1461

1462
			next.sid = val & GLOBAL_VTU_SID_MASK;
1463 1464 1465 1466 1467 1468 1469
		}
	}

	*entry = next;
	return 0;
}

1470 1471 1472
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1473
{
V
Vivien Didelot 已提交
1474
	struct mv88e6xxx_chip *chip = ds->priv;
1475
	struct mv88e6xxx_vtu_entry next;
1476 1477 1478
	u16 pvid;
	int err;

1479
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1480 1481
		return -EOPNOTSUPP;

1482
	mutex_lock(&chip->reg_lock);
1483

1484
	err = mv88e6xxx_port_get_pvid(chip, port, &pvid);
1485 1486 1487
	if (err)
		goto unlock;

1488
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1489 1490 1491 1492
	if (err)
		goto unlock;

	do {
1493
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1504 1505
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1520
	mutex_unlock(&chip->reg_lock);
1521 1522 1523 1524

	return err;
}

1525
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1526
				    struct mv88e6xxx_vtu_entry *entry)
1527
{
1528
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1529
	u16 reg = 0;
1530
	int err;
1531

1532 1533 1534
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1535 1536 1537 1538 1539

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1540 1541 1542
	err = mv88e6xxx_vtu_data_write(chip, entry);
	if (err)
		return err;
1543

1544
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1545
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1546 1547 1548
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
		if (err)
			return err;
1549
	}
1550

1551
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1552
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1553 1554 1555
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_FID, reg);
		if (err)
			return err;
1556
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1557 1558 1559 1560 1561
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1562 1563 1564 1565 1566
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1567 1568 1569
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1570

1571
	return _mv88e6xxx_vtu_cmd(chip, op);
1572 1573
}

1574
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1575
				  struct mv88e6xxx_vtu_entry *entry)
1576
{
1577
	struct mv88e6xxx_vtu_entry next = { 0 };
1578 1579
	u16 val;
	int err;
1580

1581 1582 1583
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1584

1585 1586 1587 1588
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID,
				 sid & GLOBAL_VTU_SID_MASK);
	if (err)
		return err;
1589

1590 1591 1592
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (err)
		return err;
1593

1594 1595 1596
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
	if (err)
		return err;
1597

1598
	next.sid = val & GLOBAL_VTU_SID_MASK;
1599

1600 1601 1602
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1603

1604
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1605 1606

	if (next.valid) {
1607 1608 1609
		err = mv88e6xxx_stu_data_read(chip, &next);
		if (err)
			return err;
1610 1611 1612 1613 1614 1615
	}

	*entry = next;
	return 0;
}

1616
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1617
				    struct mv88e6xxx_vtu_entry *entry)
1618 1619
{
	u16 reg = 0;
1620
	int err;
1621

1622 1623 1624
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1625 1626 1627 1628 1629

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1630 1631 1632
	err = mv88e6xxx_stu_data_write(chip, entry);
	if (err)
		return err;
1633 1634 1635

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1636 1637 1638
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1639 1640

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1641 1642 1643
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
	if (err)
		return err;
1644

1645
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1646 1647
}

1648
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1649 1650
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1651
	struct mv88e6xxx_vtu_entry vlan;
1652
	int i, err;
1653 1654 1655

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1656
	/* Set every FID bit used by the (un)bridged ports */
1657
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1658
		err = mv88e6xxx_port_get_fid(chip, i, fid);
1659 1660 1661 1662 1663 1664
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1665
	/* Set every FID bit used by the VLAN entries */
1666
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1667 1668 1669 1670
	if (err)
		return err;

	do {
1671
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1685
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1686 1687 1688
		return -ENOSPC;

	/* Clear the database */
1689
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1690 1691
}

1692
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1693
			      struct mv88e6xxx_vtu_entry *entry)
1694
{
1695
	struct dsa_switch *ds = chip->ds;
1696
	struct mv88e6xxx_vtu_entry vlan = {
1697 1698 1699
		.valid = true,
		.vid = vid,
	};
1700 1701
	int i, err;

1702
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1703 1704
	if (err)
		return err;
1705

1706
	/* exclude all ports except the CPU and DSA ports */
1707
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
1708 1709 1710
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1711

1712 1713
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1714
		struct mv88e6xxx_vtu_entry vstp;
1715 1716 1717 1718 1719 1720

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1721
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1722 1723 1724 1725 1726 1727 1728 1729
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1730
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1731 1732 1733 1734 1735 1736 1737 1738 1739
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1740
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1741
			      struct mv88e6xxx_vtu_entry *entry, bool creat)
1742 1743 1744 1745 1746 1747
{
	int err;

	if (!vid)
		return -EINVAL;

1748
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1749 1750 1751
	if (err)
		return err;

1752
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1763
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1764 1765 1766 1767 1768
	}

	return err;
}

1769 1770 1771
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
V
Vivien Didelot 已提交
1772
	struct mv88e6xxx_chip *chip = ds->priv;
1773
	struct mv88e6xxx_vtu_entry vlan;
1774 1775 1776 1777 1778
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1779
	mutex_lock(&chip->reg_lock);
1780

1781
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1782 1783 1784 1785
	if (err)
		goto unlock;

	do {
1786
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1787 1788 1789 1790 1791 1792 1793 1794 1795
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1796
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1797 1798 1799 1800 1801 1802 1803
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1804 1805
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1806 1807
				break; /* same bridge, check next VLAN */

1808
			netdev_warn(ds->ports[port].netdev,
1809 1810
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1811
				    netdev_name(chip->ports[i].bridge_dev));
1812 1813 1814 1815 1816 1817
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1818
	mutex_unlock(&chip->reg_lock);
1819 1820 1821 1822

	return err;
}

1823 1824
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1825
{
V
Vivien Didelot 已提交
1826
	struct mv88e6xxx_chip *chip = ds->priv;
1827
	u16 mode = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
1828
		PORT_CONTROL_2_8021Q_DISABLED;
1829
	int err;
1830

1831
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1832 1833
		return -EOPNOTSUPP;

1834
	mutex_lock(&chip->reg_lock);
1835
	err = mv88e6xxx_port_set_8021q_mode(chip, port, mode);
1836
	mutex_unlock(&chip->reg_lock);
1837

1838
	return err;
1839 1840
}

1841 1842 1843 1844
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1845
{
V
Vivien Didelot 已提交
1846
	struct mv88e6xxx_chip *chip = ds->priv;
1847 1848
	int err;

1849
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1850 1851
		return -EOPNOTSUPP;

1852 1853 1854 1855 1856 1857 1858 1859
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1860 1861 1862 1863 1864 1865
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1866
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1867
				    u16 vid, bool untagged)
1868
{
1869
	struct mv88e6xxx_vtu_entry vlan;
1870 1871
	int err;

1872
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1873
	if (err)
1874
		return err;
1875 1876 1877 1878 1879

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1880
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1881 1882
}

1883 1884 1885
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
1886
{
V
Vivien Didelot 已提交
1887
	struct mv88e6xxx_chip *chip = ds->priv;
1888 1889 1890 1891
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

1892
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1893 1894
		return;

1895
	mutex_lock(&chip->reg_lock);
1896

1897
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1898
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1899 1900
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
1901
				   vid, untagged ? 'u' : 't');
1902

1903
	if (pvid && mv88e6xxx_port_set_pvid(chip, port, vlan->vid_end))
1904
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1905
			   vlan->vid_end);
1906

1907
	mutex_unlock(&chip->reg_lock);
1908 1909
}

1910
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1911
				    int port, u16 vid)
1912
{
1913
	struct dsa_switch *ds = chip->ds;
1914
	struct mv88e6xxx_vtu_entry vlan;
1915 1916
	int i, err;

1917
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1918
	if (err)
1919
		return err;
1920

1921 1922
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1923
		return -EOPNOTSUPP;
1924 1925 1926 1927

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1928
	vlan.valid = false;
1929
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1930
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1931 1932 1933
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1934
			vlan.valid = true;
1935 1936 1937 1938
			break;
		}
	}

1939
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1940 1941 1942
	if (err)
		return err;

1943
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
1944 1945
}

1946 1947
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
1948
{
V
Vivien Didelot 已提交
1949
	struct mv88e6xxx_chip *chip = ds->priv;
1950 1951 1952
	u16 pvid, vid;
	int err = 0;

1953
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1954 1955
		return -EOPNOTSUPP;

1956
	mutex_lock(&chip->reg_lock);
1957

1958
	err = mv88e6xxx_port_get_pvid(chip, port, &pvid);
1959 1960 1961
	if (err)
		goto unlock;

1962
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1963
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
1964 1965 1966 1967
		if (err)
			goto unlock;

		if (vid == pvid) {
1968
			err = mv88e6xxx_port_set_pvid(chip, port, 0);
1969 1970 1971 1972 1973
			if (err)
				goto unlock;
		}
	}

1974
unlock:
1975
	mutex_unlock(&chip->reg_lock);
1976 1977 1978 1979

	return err;
}

1980
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
1981
				    const unsigned char *addr)
1982
{
1983
	int i, err;
1984 1985

	for (i = 0; i < 3; i++) {
1986 1987 1988 1989
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_MAC_01 + i,
					 (addr[i * 2] << 8) | addr[i * 2 + 1]);
		if (err)
			return err;
1990 1991 1992 1993 1994
	}

	return 0;
}

1995
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
1996
				   unsigned char *addr)
1997
{
1998 1999
	u16 val;
	int i, err;
2000 2001

	for (i = 0; i < 3; i++) {
2002 2003 2004 2005 2006 2007
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_MAC_01 + i, &val);
		if (err)
			return err;

		addr[i * 2] = val >> 8;
		addr[i * 2 + 1] = val & 0xff;
2008 2009 2010 2011 2012
	}

	return 0;
}

2013
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2014
			       struct mv88e6xxx_atu_entry *entry)
2015
{
2016 2017
	int ret;

2018
	ret = _mv88e6xxx_atu_wait(chip);
2019 2020 2021
	if (ret < 0)
		return ret;

2022
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2023 2024 2025
	if (ret < 0)
		return ret;

2026
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2027
	if (ret < 0)
2028 2029
		return ret;

2030
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2031
}
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
				  struct mv88e6xxx_atu_entry *entry);

static int mv88e6xxx_atu_get(struct mv88e6xxx_chip *chip, int fid,
			     const u8 *addr, struct mv88e6xxx_atu_entry *entry)
{
	struct mv88e6xxx_atu_entry next;
	int err;

	eth_broadcast_addr(next.mac);

	err = _mv88e6xxx_atu_mac_write(chip, next.mac);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_atu_getnext(chip, fid, &next);
		if (err)
			return err;

		if (next.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (ether_addr_equal(next.mac, addr)) {
			*entry = next;
			return 0;
		}
	} while (!is_broadcast_ether_addr(next.mac));

	memset(entry, 0, sizeof(*entry));
	entry->fid = fid;
	ether_addr_copy(entry->mac, addr);

	return 0;
}

2069 2070 2071
static int mv88e6xxx_port_db_load_purge(struct mv88e6xxx_chip *chip, int port,
					const unsigned char *addr, u16 vid,
					u8 state)
2072
{
2073
	struct mv88e6xxx_vtu_entry vlan;
2074
	struct mv88e6xxx_atu_entry entry;
2075 2076
	int err;

2077 2078
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2079
		err = mv88e6xxx_port_get_fid(chip, port, &vlan.fid);
2080
	else
2081
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2082 2083
	if (err)
		return err;
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	err = mv88e6xxx_atu_get(chip, vlan.fid, addr, &entry);
	if (err)
		return err;

	/* Purge the ATU entry only if no port is using it anymore */
	if (state == GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.portv_trunkid &= ~BIT(port);
		if (!entry.portv_trunkid)
			entry.state = GLOBAL_ATU_DATA_STATE_UNUSED;
	} else {
		entry.portv_trunkid |= BIT(port);
		entry.state = state;
2097 2098
	}

2099
	return _mv88e6xxx_atu_load(chip, &entry);
2100 2101
}

2102 2103 2104
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2105 2106 2107 2108 2109 2110 2111
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2112 2113 2114
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2115
{
V
Vivien Didelot 已提交
2116
	struct mv88e6xxx_chip *chip = ds->priv;
2117

2118
	mutex_lock(&chip->reg_lock);
2119 2120 2121
	if (mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					 GLOBAL_ATU_DATA_STATE_UC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load unicast MAC address\n");
2122
	mutex_unlock(&chip->reg_lock);
2123 2124
}

2125 2126
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2127
{
V
Vivien Didelot 已提交
2128
	struct mv88e6xxx_chip *chip = ds->priv;
2129
	int err;
2130

2131
	mutex_lock(&chip->reg_lock);
2132 2133
	err = mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
2134
	mutex_unlock(&chip->reg_lock);
2135

2136
	return err;
2137 2138
}

2139
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2140
				  struct mv88e6xxx_atu_entry *entry)
2141
{
2142
	struct mv88e6xxx_atu_entry next = { 0 };
2143 2144
	u16 val;
	int err;
2145 2146

	next.fid = fid;
2147

2148 2149 2150
	err = _mv88e6xxx_atu_wait(chip);
	if (err)
		return err;
2151

2152 2153 2154
	err = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
	if (err)
		return err;
2155

2156 2157 2158
	err = _mv88e6xxx_atu_mac_read(chip, next.mac);
	if (err)
		return err;
2159

2160 2161 2162
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_DATA, &val);
	if (err)
		return err;
2163

2164
	next.state = val & GLOBAL_ATU_DATA_STATE_MASK;
2165 2166 2167
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

2168
		if (val & GLOBAL_ATU_DATA_TRUNK) {
2169 2170 2171 2172 2173 2174 2175 2176 2177
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

2178
		next.portv_trunkid = (val & mask) >> shift;
2179
	}
2180

2181
	*entry = next;
2182 2183 2184
	return 0;
}

2185 2186 2187 2188
static int mv88e6xxx_port_db_dump_fid(struct mv88e6xxx_chip *chip,
				      u16 fid, u16 vid, int port,
				      struct switchdev_obj *obj,
				      int (*cb)(struct switchdev_obj *obj))
2189 2190 2191 2192 2193 2194
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2195
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2196 2197 2198 2199
	if (err)
		return err;

	do {
2200
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2201
		if (err)
2202
			return err;
2203 2204 2205 2206

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

2207 2208 2209 2210 2211
		if (addr.trunk || (addr.portv_trunkid & BIT(port)) == 0)
			continue;

		if (obj->id == SWITCHDEV_OBJ_ID_PORT_FDB) {
			struct switchdev_obj_port_fdb *fdb;
2212

2213 2214 2215 2216
			if (!is_unicast_ether_addr(addr.mac))
				continue;

			fdb = SWITCHDEV_OBJ_PORT_FDB(obj);
2217 2218
			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
2219 2220 2221 2222
			if (addr.state == GLOBAL_ATU_DATA_STATE_UC_STATIC)
				fdb->ndm_state = NUD_NOARP;
			else
				fdb->ndm_state = NUD_REACHABLE;
2223 2224 2225 2226 2227 2228 2229 2230 2231
		} else if (obj->id == SWITCHDEV_OBJ_ID_PORT_MDB) {
			struct switchdev_obj_port_mdb *mdb;

			if (!is_multicast_ether_addr(addr.mac))
				continue;

			mdb = SWITCHDEV_OBJ_PORT_MDB(obj);
			mdb->vid = vid;
			ether_addr_copy(mdb->addr, addr.mac);
2232 2233
		} else {
			return -EOPNOTSUPP;
2234
		}
2235 2236 2237 2238

		err = cb(obj);
		if (err)
			return err;
2239 2240 2241 2242 2243
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2244 2245 2246
static int mv88e6xxx_port_db_dump(struct mv88e6xxx_chip *chip, int port,
				  struct switchdev_obj *obj,
				  int (*cb)(struct switchdev_obj *obj))
2247
{
2248
	struct mv88e6xxx_vtu_entry vlan = {
2249 2250
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2251
	u16 fid;
2252 2253
	int err;

2254
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2255
	err = mv88e6xxx_port_get_fid(chip, port, &fid);
2256
	if (err)
2257
		return err;
2258

2259
	err = mv88e6xxx_port_db_dump_fid(chip, fid, 0, port, obj, cb);
2260
	if (err)
2261
		return err;
2262

2263
	/* Dump VLANs' Filtering Information Databases */
2264
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2265
	if (err)
2266
		return err;
2267 2268

	do {
2269
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2270
		if (err)
2271
			return err;
2272 2273 2274 2275

		if (!vlan.valid)
			break;

2276 2277
		err = mv88e6xxx_port_db_dump_fid(chip, vlan.fid, vlan.vid, port,
						 obj, cb);
2278
		if (err)
2279
			return err;
2280 2281
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

2282 2283 2284 2285 2286 2287 2288
	return err;
}

static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
2289
	struct mv88e6xxx_chip *chip = ds->priv;
2290 2291 2292 2293
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &fdb->obj, cb);
2294
	mutex_unlock(&chip->reg_lock);
2295 2296 2297 2298

	return err;
}

2299 2300
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2301
{
V
Vivien Didelot 已提交
2302
	struct mv88e6xxx_chip *chip = ds->priv;
2303
	int i, err = 0;
2304

2305
	mutex_lock(&chip->reg_lock);
2306

2307
	/* Assign the bridge and remap each port's VLANTable */
2308
	chip->ports[port].bridge_dev = bridge;
2309

2310
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
2311 2312
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2313 2314 2315 2316 2317
			if (err)
				break;
		}
	}

2318
	mutex_unlock(&chip->reg_lock);
2319

2320
	return err;
2321 2322
}

2323
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2324
{
V
Vivien Didelot 已提交
2325
	struct mv88e6xxx_chip *chip = ds->priv;
2326
	struct net_device *bridge = chip->ports[port].bridge_dev;
2327
	int i;
2328

2329
	mutex_lock(&chip->reg_lock);
2330

2331
	/* Unassign the bridge and remap each port's VLANTable */
2332
	chip->ports[port].bridge_dev = NULL;
2333

2334
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
2335 2336
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2337 2338
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2339

2340
	mutex_unlock(&chip->reg_lock);
2341 2342
}

2343
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2344
{
2345
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2346
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2347
	struct gpio_desc *gpiod = chip->reset;
2348
	unsigned long timeout;
2349
	u16 reg;
2350
	int err;
2351 2352 2353
	int i;

	/* Set all ports to the disabled state. */
2354
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2355 2356
		err = mv88e6xxx_port_set_state(chip, i,
					       PORT_CONTROL_STATE_DISABLED);
2357 2358
		if (err)
			return err;
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2377
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc000);
2378
	else
2379
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc400);
2380 2381
	if (err)
		return err;
2382 2383 2384 2385

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2386 2387 2388
		err = mv88e6xxx_g1_read(chip, 0x00, &reg);
		if (err)
			return err;
2389

2390
		if ((reg & is_reset) == is_reset)
2391 2392 2393 2394
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
2395
		err = -ETIMEDOUT;
2396
	else
2397
		err = 0;
2398

2399
	return err;
2400 2401
}

2402
static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2403
{
2404 2405
	u16 val;
	int err;
2406

2407 2408 2409 2410
	/* Clear Power Down bit */
	err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
	if (err)
		return err;
2411

2412 2413 2414
	if (val & BMCR_PDOWN) {
		val &= ~BMCR_PDOWN;
		err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2415 2416
	}

2417
	return err;
2418 2419
}

2420
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2421
{
2422
	struct dsa_switch *ds = chip->ds;
2423
	int err;
2424
	u16 reg;
2425

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	/* MAC Forcing register: don't force link, speed, duplex or flow control
	 * state to any particular values on physical ports, but force the CPU
	 * port and all DSA ports to their maximum bandwidth and full duplex.
	 */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
		err = mv88e6xxx_port_setup_mac(chip, port, LINK_FORCED_UP,
					       SPEED_MAX, DUPLEX_FULL,
					       PHY_INTERFACE_MODE_NA);
	else
		err = mv88e6xxx_port_setup_mac(chip, port, LINK_UNFORCED,
					       SPEED_UNFORCED, DUPLEX_UNFORCED,
					       PHY_INTERFACE_MODE_NA);
	if (err)
		return err;
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2456 2457 2458 2459
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2460 2461 2462 2463
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2464
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2465
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2466
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2467 2468
		else
			reg |= PORT_CONTROL_DSA_TAG;
2469 2470
		reg |= PORT_CONTROL_EGRESS_ADD_TAG |
			PORT_CONTROL_FORWARD_UNKNOWN;
2471
	}
2472
	if (dsa_is_dsa_port(ds, port)) {
2473 2474
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2475
			reg |= PORT_CONTROL_DSA_TAG;
2476 2477 2478 2479 2480
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2481
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2482 2483
		}

2484 2485 2486 2487 2488
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2489 2490 2491
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL, reg);
		if (err)
			return err;
2492 2493
	}

2494 2495 2496
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2497
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
		err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
		if (err)
			return err;
		reg &= PORT_STATUS_CMODE_MASK;
		if ((reg == PORT_STATUS_CMODE_100BASE_X) ||
		    (reg == PORT_STATUS_CMODE_1000BASE_X) ||
		    (reg == PORT_STATUS_CMODE_SGMII)) {
			err = mv88e6xxx_serdes_power_on(chip);
			if (err < 0)
				return err;
2508 2509 2510
		}
	}

2511
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2512
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2513 2514 2515
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2516 2517
	 */
	reg = 0;
2518 2519 2520 2521
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2522 2523
		reg = PORT_CONTROL_2_MAP_DA;

2524 2525
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2526 2527
		reg |= PORT_CONTROL_2_JUMBO_10240;

2528
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2529 2530 2531 2532 2533 2534 2535 2536 2537
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2538
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2539

2540
	if (reg) {
2541 2542 2543
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_2, reg);
		if (err)
			return err;
2544 2545 2546 2547 2548 2549 2550
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2551
	reg = 1 << port;
2552 2553
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2554
		reg = 0;
2555

2556 2557 2558
	err = mv88e6xxx_port_write(chip, port, PORT_ASSOC_VECTOR, reg);
	if (err)
		return err;
2559 2560

	/* Egress rate control 2: disable egress rate control. */
2561 2562 2563
	err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL_2, 0x0000);
	if (err)
		return err;
2564

2565 2566 2567
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2568 2569 2570 2571
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2572 2573 2574
		err = mv88e6xxx_port_write(chip, port, PORT_PAUSE_CTRL, 0x0000);
		if (err)
			return err;
2575 2576 2577 2578 2579

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2580 2581
		err = mv88e6xxx_port_write(chip, port, PORT_ATU_CONTROL,
					   0x0000);
2582 2583 2584
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2585 2586 2587 2588
		err = mv88e6xxx_port_write(chip, port, PORT_PRI_OVERRIDE,
					   0x0000);
		if (err)
			return err;
2589 2590 2591 2592

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2593
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
2594 2595 2596 2597
			err = mv88e6xxx_port_write(chip, port, PORT_ETH_TYPE,
						   ETH_P_EDSA);
			if (err)
				return err;
2598 2599
		}

2600 2601 2602
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2603 2604 2605 2606
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_0123,
					   0x3210);
		if (err)
			return err;
2607 2608 2609 2610

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2611 2612 2613 2614
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_4567,
					   0x7654);
		if (err)
			return err;
2615 2616
	}

2617
	/* Rate Control: disable ingress rate limiting. */
2618 2619 2620
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2621 2622 2623 2624
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0001);
		if (err)
			return err;
2625
	} else if (mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip)) {
2626 2627 2628 2629
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0000);
		if (err)
			return err;
2630 2631
	}

2632 2633
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2634
	 */
2635 2636 2637
	err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_1, 0x0000);
	if (err)
		return err;
2638

2639
	/* Port based VLAN map: give each port the same default address
2640 2641
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2642
	 */
2643
	err = mv88e6xxx_port_set_fid(chip, port, 0);
2644 2645
	if (err)
		return err;
2646

2647 2648 2649
	err = _mv88e6xxx_port_based_vlan_map(chip, port);
	if (err)
		return err;
2650 2651 2652 2653

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2654
	return mv88e6xxx_port_write(chip, port, PORT_DEFAULT_VLAN, 0x0000);
2655 2656
}

2657
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2658 2659 2660
{
	int err;

2661
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
2662 2663 2664
	if (err)
		return err;

2665
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
2666 2667 2668
	if (err)
		return err;

2669 2670 2671 2672 2673
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
	if (err)
		return err;

	return 0;
2674 2675
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

2692
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
2693 2694 2695 2696 2697 2698 2699
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

2700
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL, val);
2701 2702
}

2703 2704 2705
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
V
Vivien Didelot 已提交
2706
	struct mv88e6xxx_chip *chip = ds->priv;
2707 2708 2709 2710 2711 2712 2713 2714 2715
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2716
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2717
{
2718
	struct dsa_switch *ds = chip->ds;
2719
	u32 upstream_port = dsa_upstream_port(ds);
2720
	u16 reg;
2721
	int err;
2722

2723 2724 2725
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
2726 2727 2728 2729 2730
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err < 0)
		return err;

	reg &= ~GLOBAL_CONTROL_PPU_ENABLE;
2731 2732
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2733 2734
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2735
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
2736 2737 2738
	if (err)
		return err;

2739 2740 2741 2742 2743 2744
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2745
	err = mv88e6xxx_g1_write(chip, GLOBAL_MONITOR_CONTROL, reg);
2746 2747 2748
	if (err)
		return err;

2749
	/* Disable remote management, and set the switch's DSA device number. */
2750 2751 2752
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL_2,
				 GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				 (ds->index & 0x1f));
2753 2754 2755
	if (err)
		return err;

2756 2757 2758 2759 2760
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2761 2762 2763 2764
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2765 2766
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
				 GLOBAL_ATU_CONTROL_LEARN2ALL);
2767
	if (err)
2768
		return err;
2769

2770 2771
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2772 2773 2774 2775 2776 2777 2778
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2779
	/* Configure the IP ToS mapping registers. */
2780
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_0, 0x0000);
2781
	if (err)
2782
		return err;
2783
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_1, 0x0000);
2784
	if (err)
2785
		return err;
2786
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_2, 0x5555);
2787
	if (err)
2788
		return err;
2789
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_3, 0x5555);
2790
	if (err)
2791
		return err;
2792
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_4, 0xaaaa);
2793
	if (err)
2794
		return err;
2795
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_5, 0xaaaa);
2796
	if (err)
2797
		return err;
2798
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_6, 0xffff);
2799
	if (err)
2800
		return err;
2801
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_7, 0xffff);
2802
	if (err)
2803
		return err;
2804 2805

	/* Configure the IEEE 802.1p priority mapping register. */
2806
	err = mv88e6xxx_g1_write(chip, GLOBAL_IEEE_PRI, 0xfa41);
2807
	if (err)
2808
		return err;
2809

2810
	/* Clear the statistics counters for all ports */
2811 2812
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_FLUSH_ALL);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2824
static int mv88e6xxx_setup(struct dsa_switch *ds)
2825
{
V
Vivien Didelot 已提交
2826
	struct mv88e6xxx_chip *chip = ds->priv;
2827
	int err;
2828 2829
	int i;

2830 2831
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
2832

2833
	mutex_lock(&chip->reg_lock);
2834

2835
	/* Setup Switch Port Registers */
2836
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2837 2838 2839 2840 2841 2842 2843
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
2844 2845 2846
	if (err)
		goto unlock;

2847 2848 2849
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
2850 2851 2852
		if (err)
			goto unlock;
	}
2853

2854
unlock:
2855
	mutex_unlock(&chip->reg_lock);
2856

2857
	return err;
2858 2859
}

2860 2861
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
V
Vivien Didelot 已提交
2862
	struct mv88e6xxx_chip *chip = ds->priv;
2863 2864
	int err;

2865 2866
	if (!chip->info->ops->set_switch_mac)
		return -EOPNOTSUPP;
2867

2868 2869
	mutex_lock(&chip->reg_lock);
	err = chip->info->ops->set_switch_mac(chip, addr);
2870 2871 2872 2873 2874
	mutex_unlock(&chip->reg_lock);

	return err;
}

2875
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
2876
{
2877
	struct mv88e6xxx_chip *chip = bus->priv;
2878 2879
	u16 val;
	int err;
2880

2881
	if (phy >= mv88e6xxx_num_ports(chip))
2882
		return 0xffff;
2883

2884
	mutex_lock(&chip->reg_lock);
2885
	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
2886
	mutex_unlock(&chip->reg_lock);
2887 2888

	return err ? err : val;
2889 2890
}

2891
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
2892
{
2893
	struct mv88e6xxx_chip *chip = bus->priv;
2894
	int err;
2895

2896
	if (phy >= mv88e6xxx_num_ports(chip))
2897
		return 0xffff;
2898

2899
	mutex_lock(&chip->reg_lock);
2900
	err = mv88e6xxx_phy_write(chip, phy, reg, val);
2901
	mutex_unlock(&chip->reg_lock);
2902 2903

	return err;
2904 2905
}

2906
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
2907 2908 2909 2910 2911 2912 2913
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

	if (np)
2914
		chip->mdio_np = of_get_child_by_name(np, "mdio");
2915

2916
	bus = devm_mdiobus_alloc(chip->dev);
2917 2918 2919
	if (!bus)
		return -ENOMEM;

2920
	bus->priv = (void *)chip;
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
2931
	bus->parent = chip->dev;
2932

2933 2934
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
2935 2936 2937
	else
		err = mdiobus_register(bus);
	if (err) {
2938
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
2939 2940
		goto out;
	}
2941
	chip->mdio_bus = bus;
2942 2943 2944 2945

	return 0;

out:
2946 2947
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
2948 2949 2950 2951

	return err;
}

2952
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
2953 2954

{
2955
	struct mii_bus *bus = chip->mdio_bus;
2956 2957 2958

	mdiobus_unregister(bus);

2959 2960
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
2961 2962
}

2963 2964 2965 2966
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
2967
	struct mv88e6xxx_chip *chip = ds->priv;
2968
	u16 val;
2969 2970 2971 2972
	int ret;

	*temp = 0;

2973
	mutex_lock(&chip->reg_lock);
2974

2975
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
2976 2977 2978 2979
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
2980
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
2981 2982 2983
	if (ret < 0)
		goto error;

2984
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
2985 2986 2987 2988 2989 2990
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

2991 2992
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
	if (ret < 0)
2993 2994 2995
		goto error;

	/* Disable temperature sensor */
2996
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
2997 2998 2999 3000 3001 3002
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3003
	mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3004
	mutex_unlock(&chip->reg_lock);
3005 3006 3007 3008 3009
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
3010
	struct mv88e6xxx_chip *chip = ds->priv;
3011
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3012
	u16 val;
3013 3014 3015 3016
	int ret;

	*temp = 0;

3017 3018 3019
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
	mutex_unlock(&chip->reg_lock);
3020 3021 3022
	if (ret < 0)
		return ret;

3023
	*temp = (val & 0xff) - 25;
3024 3025 3026 3027

	return 0;
}

3028
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3029
{
V
Vivien Didelot 已提交
3030
	struct mv88e6xxx_chip *chip = ds->priv;
3031

3032
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3033 3034
		return -EOPNOTSUPP;

3035
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3036 3037 3038 3039 3040
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3041
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3042
{
V
Vivien Didelot 已提交
3043
	struct mv88e6xxx_chip *chip = ds->priv;
3044
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3045
	u16 val;
3046 3047
	int ret;

3048
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3049 3050 3051 3052
		return -EOPNOTSUPP;

	*temp = 0;

3053 3054 3055
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3056 3057 3058
	if (ret < 0)
		return ret;

3059
	*temp = (((val >> 8) & 0x1f) * 5) - 25;
3060 3061 3062 3063

	return 0;
}

3064
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3065
{
V
Vivien Didelot 已提交
3066
	struct mv88e6xxx_chip *chip = ds->priv;
3067
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3068 3069
	u16 val;
	int err;
3070

3071
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3072 3073
		return -EOPNOTSUPP;

3074 3075 3076 3077
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	if (err)
		goto unlock;
3078
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3079 3080 3081 3082 3083 3084
	err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
				       (val & 0xe0ff) | (temp << 8));
unlock:
	mutex_unlock(&chip->reg_lock);

	return err;
3085 3086
}

3087
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3088
{
V
Vivien Didelot 已提交
3089
	struct mv88e6xxx_chip *chip = ds->priv;
3090
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3091
	u16 val;
3092 3093
	int ret;

3094
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3095 3096 3097 3098
		return -EOPNOTSUPP;

	*alarm = false;

3099 3100 3101
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3102 3103 3104
	if (ret < 0)
		return ret;

3105
	*alarm = !!(val & 0x40);
3106 3107 3108 3109 3110

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3111 3112
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3113
	struct mv88e6xxx_chip *chip = ds->priv;
3114 3115 3116 3117 3118 3119 3120

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3121
	struct mv88e6xxx_chip *chip = ds->priv;
3122 3123
	int err;

3124 3125
	if (!chip->info->ops->get_eeprom)
		return -EOPNOTSUPP;
3126

3127 3128
	mutex_lock(&chip->reg_lock);
	err = chip->info->ops->get_eeprom(chip, eeprom, data);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3142
	struct mv88e6xxx_chip *chip = ds->priv;
3143 3144
	int err;

3145 3146 3147
	if (!chip->info->ops->set_eeprom)
		return -EOPNOTSUPP;

3148 3149 3150 3151
	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);
3152
	err = chip->info->ops->set_eeprom(chip, eeprom, data);
3153 3154 3155 3156 3157
	mutex_unlock(&chip->reg_lock);

	return err;
}

3158
static const struct mv88e6xxx_ops mv88e6085_ops = {
3159
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3160 3161
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
3162
	.port_set_link = mv88e6xxx_port_set_link,
3163
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3164
	.port_set_speed = mv88e6185_port_set_speed,
3165 3166 3167
};

static const struct mv88e6xxx_ops mv88e6095_ops = {
3168
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3169 3170
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
3171
	.port_set_link = mv88e6xxx_port_set_link,
3172
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3173
	.port_set_speed = mv88e6185_port_set_speed,
3174 3175 3176
};

static const struct mv88e6xxx_ops mv88e6123_ops = {
3177
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3178 3179
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
3180
	.port_set_link = mv88e6xxx_port_set_link,
3181
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3182
	.port_set_speed = mv88e6185_port_set_speed,
3183 3184 3185
};

static const struct mv88e6xxx_ops mv88e6131_ops = {
3186
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3187 3188
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
3189
	.port_set_link = mv88e6xxx_port_set_link,
3190
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3191
	.port_set_speed = mv88e6185_port_set_speed,
3192 3193 3194
};

static const struct mv88e6xxx_ops mv88e6161_ops = {
3195
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3196 3197
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
3198
	.port_set_link = mv88e6xxx_port_set_link,
3199
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3200
	.port_set_speed = mv88e6185_port_set_speed,
3201 3202 3203
};

static const struct mv88e6xxx_ops mv88e6165_ops = {
3204
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3205 3206
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
3207
	.port_set_link = mv88e6xxx_port_set_link,
3208
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3209
	.port_set_speed = mv88e6185_port_set_speed,
3210 3211 3212
};

static const struct mv88e6xxx_ops mv88e6171_ops = {
3213
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3214 3215
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3216
	.port_set_link = mv88e6xxx_port_set_link,
3217
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3218
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3219
	.port_set_speed = mv88e6185_port_set_speed,
3220 3221 3222
};

static const struct mv88e6xxx_ops mv88e6172_ops = {
3223 3224
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3225
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3226 3227
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3228
	.port_set_link = mv88e6xxx_port_set_link,
3229
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3230
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3231
	.port_set_speed = mv88e6352_port_set_speed,
3232 3233 3234
};

static const struct mv88e6xxx_ops mv88e6175_ops = {
3235
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3236 3237
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3238
	.port_set_link = mv88e6xxx_port_set_link,
3239
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3240
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3241
	.port_set_speed = mv88e6185_port_set_speed,
3242 3243 3244
};

static const struct mv88e6xxx_ops mv88e6176_ops = {
3245 3246
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3247
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3248 3249
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3250
	.port_set_link = mv88e6xxx_port_set_link,
3251
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3252
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3253
	.port_set_speed = mv88e6352_port_set_speed,
3254 3255 3256
};

static const struct mv88e6xxx_ops mv88e6185_ops = {
3257
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3258 3259
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
3260
	.port_set_link = mv88e6xxx_port_set_link,
3261
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3262
	.port_set_speed = mv88e6185_port_set_speed,
3263 3264
};

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
static const struct mv88e6xxx_ops mv88e6190_ops = {
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390_port_set_speed,
};

static const struct mv88e6xxx_ops mv88e6190x_ops = {
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390x_port_set_speed,
};

static const struct mv88e6xxx_ops mv88e6191_ops = {
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390_port_set_speed,
};

3295
static const struct mv88e6xxx_ops mv88e6240_ops = {
3296 3297
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3298
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3299 3300
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3301
	.port_set_link = mv88e6xxx_port_set_link,
3302
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3303
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3304
	.port_set_speed = mv88e6352_port_set_speed,
3305 3306
};

3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
static const struct mv88e6xxx_ops mv88e6290_ops = {
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390_port_set_speed,
};

3317
static const struct mv88e6xxx_ops mv88e6320_ops = {
3318 3319
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3320
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3321 3322
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3323
	.port_set_link = mv88e6xxx_port_set_link,
3324
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3325
	.port_set_speed = mv88e6185_port_set_speed,
3326 3327 3328
};

static const struct mv88e6xxx_ops mv88e6321_ops = {
3329 3330
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3331
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3332 3333
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3334
	.port_set_link = mv88e6xxx_port_set_link,
3335
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3336
	.port_set_speed = mv88e6185_port_set_speed,
3337 3338 3339
};

static const struct mv88e6xxx_ops mv88e6350_ops = {
3340
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3341 3342
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3343
	.port_set_link = mv88e6xxx_port_set_link,
3344
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3345
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3346
	.port_set_speed = mv88e6185_port_set_speed,
3347 3348 3349
};

static const struct mv88e6xxx_ops mv88e6351_ops = {
3350
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3351 3352
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3353
	.port_set_link = mv88e6xxx_port_set_link,
3354
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3355
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3356
	.port_set_speed = mv88e6185_port_set_speed,
3357 3358 3359
};

static const struct mv88e6xxx_ops mv88e6352_ops = {
3360 3361
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3362
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3363 3364
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
3365
	.port_set_link = mv88e6xxx_port_set_link,
3366
	.port_set_duplex = mv88e6xxx_port_set_duplex,
3367
	.port_set_rgmii_delay = mv88e6352_port_set_rgmii_delay,
3368
	.port_set_speed = mv88e6352_port_set_speed,
3369 3370
};

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
static const struct mv88e6xxx_ops mv88e6390_ops = {
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390_port_set_speed,
};

static const struct mv88e6xxx_ops mv88e6390x_ops = {
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390x_port_set_speed,
};

static const struct mv88e6xxx_ops mv88e6391_ops = {
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
	.port_set_link = mv88e6xxx_port_set_link,
	.port_set_duplex = mv88e6xxx_port_set_duplex,
	.port_set_rgmii_delay = mv88e6390_port_set_rgmii_delay,
	.port_set_speed = mv88e6390_port_set_speed,
};

3401 3402 3403 3404 3405 3406 3407
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3408
		.port_base_addr = 0x10,
3409
		.global1_addr = 0x1b,
3410
		.age_time_coeff = 15000,
3411
		.g1_irqs = 8,
3412
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
3413
		.ops = &mv88e6085_ops,
3414 3415 3416 3417 3418 3419 3420 3421
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3422
		.port_base_addr = 0x10,
3423
		.global1_addr = 0x1b,
3424
		.age_time_coeff = 15000,
3425
		.g1_irqs = 8,
3426
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
3427
		.ops = &mv88e6095_ops,
3428 3429 3430 3431 3432 3433 3434 3435
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3436
		.port_base_addr = 0x10,
3437
		.global1_addr = 0x1b,
3438
		.age_time_coeff = 15000,
3439
		.g1_irqs = 9,
3440
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3441
		.ops = &mv88e6123_ops,
3442 3443 3444 3445 3446 3447 3448 3449
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3450
		.port_base_addr = 0x10,
3451
		.global1_addr = 0x1b,
3452
		.age_time_coeff = 15000,
3453
		.g1_irqs = 9,
3454
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3455
		.ops = &mv88e6131_ops,
3456 3457 3458 3459 3460 3461 3462 3463
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3464
		.port_base_addr = 0x10,
3465
		.global1_addr = 0x1b,
3466
		.age_time_coeff = 15000,
3467
		.g1_irqs = 9,
3468
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3469
		.ops = &mv88e6161_ops,
3470 3471 3472 3473 3474 3475 3476 3477
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3478
		.port_base_addr = 0x10,
3479
		.global1_addr = 0x1b,
3480
		.age_time_coeff = 15000,
3481
		.g1_irqs = 9,
3482
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3483
		.ops = &mv88e6165_ops,
3484 3485 3486 3487 3488 3489 3490 3491
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3492
		.port_base_addr = 0x10,
3493
		.global1_addr = 0x1b,
3494
		.age_time_coeff = 15000,
3495
		.g1_irqs = 9,
3496
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3497
		.ops = &mv88e6171_ops,
3498 3499 3500 3501 3502 3503 3504 3505
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3506
		.port_base_addr = 0x10,
3507
		.global1_addr = 0x1b,
3508
		.age_time_coeff = 15000,
3509
		.g1_irqs = 9,
3510
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3511
		.ops = &mv88e6172_ops,
3512 3513 3514 3515 3516 3517 3518 3519
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3520
		.port_base_addr = 0x10,
3521
		.global1_addr = 0x1b,
3522
		.age_time_coeff = 15000,
3523
		.g1_irqs = 9,
3524
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3525
		.ops = &mv88e6175_ops,
3526 3527 3528 3529 3530 3531 3532 3533
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3534
		.port_base_addr = 0x10,
3535
		.global1_addr = 0x1b,
3536
		.age_time_coeff = 15000,
3537
		.g1_irqs = 9,
3538
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3539
		.ops = &mv88e6176_ops,
3540 3541 3542 3543 3544 3545 3546 3547
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3548
		.port_base_addr = 0x10,
3549
		.global1_addr = 0x1b,
3550
		.age_time_coeff = 15000,
3551
		.g1_irqs = 8,
3552
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3553
		.ops = &mv88e6185_ops,
3554 3555
	},

3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
	[MV88E6190] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6190,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6190",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.g1_irqs = 9,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6190_ops,
	},

	[MV88E6190X] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6190X,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6190X",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.g1_irqs = 9,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6190x_ops,
	},

	[MV88E6191] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6191,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6191",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6391_ops,
	},

3597 3598 3599 3600 3601 3602
	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3603
		.port_base_addr = 0x10,
3604
		.global1_addr = 0x1b,
3605
		.age_time_coeff = 15000,
3606
		.g1_irqs = 9,
3607
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3608
		.ops = &mv88e6240_ops,
3609 3610
	},

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
	[MV88E6290] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6290,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6290",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.g1_irqs = 9,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6290_ops,
	},

3625 3626 3627 3628 3629 3630
	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3631
		.port_base_addr = 0x10,
3632
		.global1_addr = 0x1b,
3633
		.age_time_coeff = 15000,
3634
		.g1_irqs = 8,
3635
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3636
		.ops = &mv88e6320_ops,
3637 3638 3639 3640 3641 3642 3643 3644
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3645
		.port_base_addr = 0x10,
3646
		.global1_addr = 0x1b,
3647
		.age_time_coeff = 15000,
3648
		.g1_irqs = 8,
3649
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3650
		.ops = &mv88e6321_ops,
3651 3652 3653 3654 3655 3656 3657 3658
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3659
		.port_base_addr = 0x10,
3660
		.global1_addr = 0x1b,
3661
		.age_time_coeff = 15000,
3662
		.g1_irqs = 9,
3663
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3664
		.ops = &mv88e6350_ops,
3665 3666 3667 3668 3669 3670 3671 3672
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3673
		.port_base_addr = 0x10,
3674
		.global1_addr = 0x1b,
3675
		.age_time_coeff = 15000,
3676
		.g1_irqs = 9,
3677
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3678
		.ops = &mv88e6351_ops,
3679 3680 3681 3682 3683 3684 3685 3686
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3687
		.port_base_addr = 0x10,
3688
		.global1_addr = 0x1b,
3689
		.age_time_coeff = 15000,
3690
		.g1_irqs = 9,
3691
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3692
		.ops = &mv88e6352_ops,
3693
	},
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	[MV88E6390] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6390,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6390",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.g1_irqs = 9,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6390_ops,
	},
	[MV88E6390X] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6390X,
		.family = MV88E6XXX_FAMILY_6390,
		.name = "Marvell 88E6390X",
		.num_databases = 4096,
		.num_ports = 11,	/* 10 + Z80 */
		.port_base_addr = 0x0,
		.global1_addr = 0x1b,
		.age_time_coeff = 15000,
		.g1_irqs = 9,
		.flags = MV88E6XXX_FLAGS_FAMILY_6390,
		.ops = &mv88e6390x_ops,
	},
3720 3721
};

3722
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3723
{
3724
	int i;
3725

3726 3727 3728
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3729 3730 3731 3732

	return NULL;
}

3733
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3734 3735
{
	const struct mv88e6xxx_info *info;
3736 3737 3738
	unsigned int prod_num, rev;
	u16 id;
	int err;
3739

3740 3741 3742 3743 3744
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3745 3746 3747 3748 3749 3750 3751 3752

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3753
	/* Update the compatible info with the probed one */
3754
	chip->info = info;
3755

3756 3757 3758 3759
	err = mv88e6xxx_g2_require(chip);
	if (err)
		return err;

3760 3761
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3762 3763 3764 3765

	return 0;
}

3766
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3767
{
3768
	struct mv88e6xxx_chip *chip;
3769

3770 3771
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3772 3773
		return NULL;

3774
	chip->dev = dev;
3775

3776
	mutex_init(&chip->reg_lock);
3777

3778
	return chip;
3779 3780
}

3781 3782
static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
{
3783
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3784 3785 3786
		mv88e6xxx_ppu_state_init(chip);
}

3787 3788
static void mv88e6xxx_phy_destroy(struct mv88e6xxx_chip *chip)
{
3789
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3790 3791 3792
		mv88e6xxx_ppu_state_destroy(chip);
}

3793
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3794 3795 3796 3797 3798 3799
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3800
	if (sw_addr == 0)
3801
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3802
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3803
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3804 3805 3806
	else
		return -EINVAL;

3807 3808
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3809 3810 3811 3812

	return 0;
}

3813 3814
static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3815
	struct mv88e6xxx_chip *chip = ds->priv;
3816 3817 3818 3819 3820

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
		return DSA_TAG_PROTO_EDSA;

	return DSA_TAG_PROTO_DSA;
3821 3822
}

3823 3824 3825
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3826
{
3827
	struct mv88e6xxx_chip *chip;
3828
	struct mii_bus *bus;
3829
	int err;
3830

3831
	bus = dsa_host_dev_to_mii_bus(host_dev);
3832 3833 3834
	if (!bus)
		return NULL;

3835 3836
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3837 3838
		return NULL;

3839
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3840
	chip->info = &mv88e6xxx_table[MV88E6085];
3841

3842
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3843 3844 3845
	if (err)
		goto free;

3846
	err = mv88e6xxx_detect(chip);
3847
	if (err)
3848
		goto free;
3849

3850 3851 3852 3853 3854 3855
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_switch_reset(chip);
	mutex_unlock(&chip->reg_lock);
	if (err)
		goto free;

3856 3857
	mv88e6xxx_phy_init(chip);

3858
	err = mv88e6xxx_mdio_register(chip, NULL);
3859
	if (err)
3860
		goto free;
3861

3862
	*priv = chip;
3863

3864
	return chip->info->name;
3865
free:
3866
	devm_kfree(dsa_dev, chip);
3867 3868

	return NULL;
3869 3870
}

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
static int mv88e6xxx_port_mdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_mdb *mdb,
				      struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */

	return 0;
}

static void mv88e6xxx_port_mdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_mdb *mdb,
				   struct switchdev_trans *trans)
{
V
Vivien Didelot 已提交
3886
	struct mv88e6xxx_chip *chip = ds->priv;
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897

	mutex_lock(&chip->reg_lock);
	if (mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					 GLOBAL_ATU_DATA_STATE_MC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load multicast MAC address\n");
	mutex_unlock(&chip->reg_lock);
}

static int mv88e6xxx_port_mdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_mdb *mdb)
{
V
Vivien Didelot 已提交
3898
	struct mv88e6xxx_chip *chip = ds->priv;
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
	mutex_unlock(&chip->reg_lock);

	return err;
}

static int mv88e6xxx_port_mdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_mdb *mdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
3913
	struct mv88e6xxx_chip *chip = ds->priv;
3914 3915 3916 3917 3918 3919 3920 3921 3922
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &mdb->obj, cb);
	mutex_unlock(&chip->reg_lock);

	return err;
}

3923
static struct dsa_switch_ops mv88e6xxx_switch_ops = {
3924
	.probe			= mv88e6xxx_drv_probe,
3925
	.get_tag_protocol	= mv88e6xxx_get_tag_protocol,
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
3940
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
3941 3942 3943 3944
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
3945
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
3946 3947 3948
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
3949
	.port_fast_age		= mv88e6xxx_port_fast_age,
3950 3951 3952 3953 3954 3955 3956 3957 3958
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
3959 3960 3961 3962
	.port_mdb_prepare       = mv88e6xxx_port_mdb_prepare,
	.port_mdb_add           = mv88e6xxx_port_mdb_add,
	.port_mdb_del           = mv88e6xxx_port_mdb_del,
	.port_mdb_dump          = mv88e6xxx_port_mdb_dump,
3963 3964
};

3965
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
3966 3967
				     struct device_node *np)
{
3968
	struct device *dev = chip->dev;
3969 3970 3971 3972 3973 3974 3975
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
3976
	ds->priv = chip;
3977
	ds->ops = &mv88e6xxx_switch_ops;
3978 3979 3980 3981 3982 3983

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

3984
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
3985
{
3986
	dsa_unregister_switch(chip->ds);
3987 3988
}

3989
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
3990
{
3991
	struct device *dev = &mdiodev->dev;
3992
	struct device_node *np = dev->of_node;
3993
	const struct mv88e6xxx_info *compat_info;
3994
	struct mv88e6xxx_chip *chip;
3995
	u32 eeprom_len;
3996
	int err;
3997

3998 3999 4000 4001
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

4002 4003
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
4004 4005
		return -ENOMEM;

4006
	chip->info = compat_info;
4007

4008
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4009 4010
	if (err)
		return err;
4011

4012 4013 4014 4015
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);

4016
	err = mv88e6xxx_detect(chip);
4017 4018
	if (err)
		return err;
4019

4020 4021
	mv88e6xxx_phy_init(chip);

4022
	if (chip->info->ops->get_eeprom &&
4023
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4024
		chip->eeprom_len = eeprom_len;
4025

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_switch_reset(chip);
	mutex_unlock(&chip->reg_lock);
	if (err)
		goto out;

	chip->irq = of_irq_get(np, 0);
	if (chip->irq == -EPROBE_DEFER) {
		err = chip->irq;
		goto out;
	}

	if (chip->irq > 0) {
		/* Has to be performed before the MDIO bus is created,
		 * because the PHYs will link there interrupts to these
		 * interrupt controllers
		 */
		mutex_lock(&chip->reg_lock);
		err = mv88e6xxx_g1_irq_setup(chip);
		mutex_unlock(&chip->reg_lock);

		if (err)
			goto out;

		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT)) {
			err = mv88e6xxx_g2_irq_setup(chip);
			if (err)
				goto out_g1_irq;
		}
	}

4057
	err = mv88e6xxx_mdio_register(chip, np);
4058
	if (err)
4059
		goto out_g2_irq;
4060

4061
	err = mv88e6xxx_register_switch(chip, np);
4062 4063
	if (err)
		goto out_mdio;
4064

4065
	return 0;
4066 4067 4068 4069

out_mdio:
	mv88e6xxx_mdio_unregister(chip);
out_g2_irq:
4070
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT) && chip->irq > 0)
4071 4072
		mv88e6xxx_g2_irq_free(chip);
out_g1_irq:
4073 4074
	if (chip->irq > 0) {
		mutex_lock(&chip->reg_lock);
4075
		mv88e6xxx_g1_irq_free(chip);
4076 4077
		mutex_unlock(&chip->reg_lock);
	}
4078 4079
out:
	return err;
4080
}
4081 4082 4083 4084

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
V
Vivien Didelot 已提交
4085
	struct mv88e6xxx_chip *chip = ds->priv;
4086

4087
	mv88e6xxx_phy_destroy(chip);
4088 4089
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
4090

4091 4092 4093 4094 4095
	if (chip->irq > 0) {
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT))
			mv88e6xxx_g2_irq_free(chip);
		mv88e6xxx_g1_irq_free(chip);
	}
4096 4097 4098
}

static const struct of_device_id mv88e6xxx_of_match[] = {
4099 4100 4101 4102
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
4103 4104 4105 4106
	{
		.compatible = "marvell,mv88e6190",
		.data = &mv88e6xxx_table[MV88E6190],
	},
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
4123
	register_switch_driver(&mv88e6xxx_switch_ops);
4124 4125
	return mdio_driver_register(&mv88e6xxx_driver);
}
4126 4127 4128 4129
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
4130
	mdio_driver_unregister(&mv88e6xxx_driver);
4131
	unregister_switch_driver(&mv88e6xxx_switch_ops);
4132 4133
}
module_exit(mv88e6xxx_cleanup);
4134 4135 4136 4137

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");