chip.c 96.8 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21
#include <linux/jiffies.h>
22
#include <linux/list.h>
23
#include <linux/mdio.h>
24
#include <linux/module.h>
25
#include <linux/of_device.h>
26
#include <linux/of_mdio.h>
27
#include <linux/netdevice.h>
28
#include <linux/gpio/consumer.h>
29
#include <linux/phy.h>
30
#include <net/dsa.h>
31
#include <net/switchdev.h>
32 33
#include "mv88e6xxx.h"

34
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35
{
36 37
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
38 39 40 41
		dump_stack();
	}
}

42 43 44 45 46 47 48 49 50 51
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
52
 */
53

54
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55 56
			      int addr, int reg, u16 *val)
{
57
	if (!chip->smi_ops)
58 59
		return -EOPNOTSUPP;

60
	return chip->smi_ops->read(chip, addr, reg, val);
61 62
}

63
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64 65
			       int addr, int reg, u16 val)
{
66
	if (!chip->smi_ops)
67 68
		return -EOPNOTSUPP;

69
	return chip->smi_ops->write(chip, addr, reg, val);
70 71
}

72
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73 74 75 76
					  int addr, int reg, u16 *val)
{
	int ret;

77
	ret = mdiobus_read_nested(chip->bus, addr, reg);
78 79 80 81 82 83 84 85
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

86
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87 88 89 90
					   int addr, int reg, u16 val)
{
	int ret;

91
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92 93 94 95 96 97 98 99 100 101 102
	if (ret < 0)
		return ret;

	return 0;
}

static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

103
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 105 106 107 108
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
109
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110 111 112
		if (ret < 0)
			return ret;

113
		if ((ret & SMI_CMD_BUSY) == 0)
114 115 116 117 118 119
			return 0;
	}

	return -ETIMEDOUT;
}

120
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121
					 int addr, int reg, u16 *val)
122 123 124
{
	int ret;

125
	/* Wait for the bus to become free. */
126
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
127 128 129
	if (ret < 0)
		return ret;

130
	/* Transmit the read command. */
131
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
133 134 135
	if (ret < 0)
		return ret;

136
	/* Wait for the read command to complete. */
137
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
138 139 140
	if (ret < 0)
		return ret;

141
	/* Read the data. */
142
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143 144 145
	if (ret < 0)
		return ret;

146
	*val = ret & 0xffff;
147

148
	return 0;
149 150
}

151
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152
					  int addr, int reg, u16 val)
153 154 155
{
	int ret;

156
	/* Wait for the bus to become free. */
157
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
158 159 160
	if (ret < 0)
		return ret;

161
	/* Transmit the data to write. */
162
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163 164 165
	if (ret < 0)
		return ret;

166
	/* Transmit the write command. */
167
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169 170 171
	if (ret < 0)
		return ret;

172
	/* Wait for the write command to complete. */
173
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
174 175 176 177 178 179
	if (ret < 0)
		return ret;

	return 0;
}

180 181 182 183 184
static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

185
static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186 187 188 189
			  int addr, int reg, u16 *val)
{
	int err;

190
	assert_reg_lock(chip);
191

192
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
193 194 195
	if (err)
		return err;

196
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197 198 199 200 201
		addr, reg, *val);

	return 0;
}

202
static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203
			   int addr, int reg, u16 val)
204
{
205 206
	int err;

207
	assert_reg_lock(chip);
208

209
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
210 211 212
	if (err)
		return err;

213
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214 215
		addr, reg, val);

216 217 218
	return 0;
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
			      int reg, u16 *val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

	if (!chip->phy_ops)
		return -EOPNOTSUPP;

	return chip->phy_ops->read(chip, addr, reg, val);
}

static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
			       int reg, u16 val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

	if (!chip->phy_ops)
		return -EOPNOTSUPP;

	return chip->phy_ops->write(chip, addr, reg, val);
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
{
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
		return -EOPNOTSUPP;

	return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
}

static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
{
	int err;

	/* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
	err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
	if (unlikely(err)) {
		dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
			phy, err);
	}
}

static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
				   u8 page, int reg, u16 *val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_read(chip, phy, reg, val);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
				    u8 page, int reg, u16 val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
{
	return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
				       reg, val);
}

static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
{
	return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
					reg, val);
}

309 310 311
static int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg,
			  u16 mask)
{
312
	int i;
313

314
	for (i = 0; i < 16; i++) {
315 316 317 318 319 320 321 322 323 324 325 326 327
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

328
	dev_err(chip->dev, "Timeout while waiting for switch\n");
329 330 331
	return -ETIMEDOUT;
}

332 333 334 335 336
/* Indirect write to single pointer-data register with an Update bit */
static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
			    u16 update)
{
	u16 val;
337
	int err;
338 339

	/* Wait until the previous operation is completed */
340 341 342
	err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
	if (err)
		return err;
343 344 345 346 347 348 349

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

350
static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
351 352 353 354
{
	u16 val;
	int err;

355
	err = mv88e6xxx_read(chip, addr, reg, &val);
356 357 358 359 360 361
	if (err)
		return err;

	return val;
}

362
static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
363 364
				int reg, u16 val)
{
365
	return mv88e6xxx_write(chip, addr, reg, val);
366 367
}

368
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
369 370
{
	int ret;
371
	int i;
372

373
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
374 375 376
	if (ret < 0)
		return ret;

377
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
378
				   ret & ~GLOBAL_CONTROL_PPU_ENABLE);
379 380
	if (ret)
		return ret;
381

382
	for (i = 0; i < 16; i++) {
383
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
384 385 386
		if (ret < 0)
			return ret;

387
		usleep_range(1000, 2000);
388 389
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
390
			return 0;
391 392 393 394 395
	}

	return -ETIMEDOUT;
}

396
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
397
{
398
	int ret, err, i;
399

400
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
401 402 403
	if (ret < 0)
		return ret;

404
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
405
				   ret | GLOBAL_CONTROL_PPU_ENABLE);
406 407
	if (err)
		return err;
408

409
	for (i = 0; i < 16; i++) {
410
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
411 412 413
		if (ret < 0)
			return ret;

414
		usleep_range(1000, 2000);
415 416
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
417
			return 0;
418 419 420 421 422 423 424
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
425
	struct mv88e6xxx_chip *chip;
426

427
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
428

429
	mutex_lock(&chip->reg_lock);
430

431 432 433 434
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
435
	}
436

437
	mutex_unlock(&chip->reg_lock);
438 439 440 441
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
442
	struct mv88e6xxx_chip *chip = (void *)_ps;
443

444
	schedule_work(&chip->ppu_work);
445 446
}

447
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
448 449 450
{
	int ret;

451
	mutex_lock(&chip->ppu_mutex);
452

453
	/* If the PHY polling unit is enabled, disable it so that
454 455 456 457
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
458 459
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
460
		if (ret < 0) {
461
			mutex_unlock(&chip->ppu_mutex);
462 463
			return ret;
		}
464
		chip->ppu_disabled = 1;
465
	} else {
466
		del_timer(&chip->ppu_timer);
467
		ret = 0;
468 469 470 471 472
	}

	return ret;
}

473
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
474
{
475
	/* Schedule a timer to re-enable the PHY polling unit. */
476 477
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
478 479
}

480
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
481
{
482 483 484 485 486
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&chip->ppu_timer);
	chip->ppu_timer.data = (unsigned long)chip;
	chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
487 488
}

489 490
static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
				  int reg, u16 *val)
491
{
492
	int err;
493

494 495 496
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_read(chip, addr, reg, val);
497
		mv88e6xxx_ppu_access_put(chip);
498 499
	}

500
	return err;
501 502
}

503 504
static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
				   int reg, u16 val)
505
{
506
	int err;
507

508 509 510
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_write(chip, addr, reg, val);
511
		mv88e6xxx_ppu_access_put(chip);
512 513
	}

514
	return err;
515 516
}

517 518 519 520 521
static const struct mv88e6xxx_ops mv88e6xxx_phy_ppu_ops = {
	.read = mv88e6xxx_phy_ppu_read,
	.write = mv88e6xxx_phy_ppu_write,
};

522
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
523
{
524
	return chip->info->family == MV88E6XXX_FAMILY_6065;
525 526
}

527
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
528
{
529
	return chip->info->family == MV88E6XXX_FAMILY_6095;
530 531
}

532
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
533
{
534
	return chip->info->family == MV88E6XXX_FAMILY_6097;
535 536
}

537
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
538
{
539
	return chip->info->family == MV88E6XXX_FAMILY_6165;
540 541
}

542
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
543
{
544
	return chip->info->family == MV88E6XXX_FAMILY_6185;
545 546
}

547
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
548
{
549
	return chip->info->family == MV88E6XXX_FAMILY_6320;
550 551
}

552
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
553
{
554
	return chip->info->family == MV88E6XXX_FAMILY_6351;
555 556
}

557
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
558
{
559
	return chip->info->family == MV88E6XXX_FAMILY_6352;
560 561
}

562
static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
563
{
564
	return chip->info->num_databases;
565 566
}

567
static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
568 569
{
	/* Does the device have dedicated FID registers for ATU and VTU ops? */
570 571
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
572 573 574 575 576
		return true;

	return false;
}

577 578 579 580
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
581 582
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
583
{
584
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
585 586
	u32 reg;
	int ret;
587 588 589 590

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

591
	mutex_lock(&chip->reg_lock);
592

593
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
594 595 596 597 598 599 600 601 602 603 604
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
605
		reg |= PORT_PCS_CTRL_LINK_UP;
606

607
	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

629 630
	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
	    (port >= chip->info->num_ports - 2)) {
631 632 633 634 635 636 637 638
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
639
	_mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
640 641

out:
642
	mutex_unlock(&chip->reg_lock);
643 644
}

645
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
646 647 648 649 650
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
651
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
652
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
653 654 655 656 657 658
			return 0;
	}

	return -ETIMEDOUT;
}

659
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
660 661 662
{
	int ret;

663
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
664 665
		port = (port + 1) << 5;

666
	/* Snapshot the hardware statistics counters for this port. */
667
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
668 669 670 671
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
672

673
	/* Wait for the snapshotting to complete. */
674
	ret = _mv88e6xxx_stats_wait(chip);
675 676 677 678 679 680
	if (ret < 0)
		return ret;

	return 0;
}

681
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
682
				  int stat, u32 *val)
683 684 685 686 687 688
{
	u32 _val;
	int ret;

	*val = 0;

689
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
690 691
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
692 693 694
	if (ret < 0)
		return;

695
	ret = _mv88e6xxx_stats_wait(chip);
696 697 698
	if (ret < 0)
		return;

699
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
700 701 702 703 704
	if (ret < 0)
		return;

	_val = ret << 16;

705
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
706 707 708 709 710 711
	if (ret < 0)
		return;

	*val = _val | ret;
}

712
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
772 773
};

774
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
775
			       struct mv88e6xxx_hw_stat *stat)
776
{
777 778
	switch (stat->type) {
	case BANK0:
779
		return true;
780
	case BANK1:
781
		return mv88e6xxx_6320_family(chip);
782
	case PORT:
783 784 785 786 787 788
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
789
	}
790
	return false;
791 792
}

793
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
794
					    struct mv88e6xxx_hw_stat *s,
795 796 797 798 799 800 801
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

802 803
	switch (s->type) {
	case PORT:
804
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
805 806 807 808 809
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
810
			ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
811
						  s->reg + 1);
812 813 814 815
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
816 817 818
		break;
	case BANK0:
	case BANK1:
819
		_mv88e6xxx_stats_read(chip, s->reg, &low);
820
		if (s->sizeof_stat == 8)
821
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
822 823 824 825 826
	}
	value = (((u64)high) << 16) | low;
	return value;
}

827 828
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
829
{
830
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
831 832
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
833

834 835
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
836
		if (mv88e6xxx_has_stat(chip, stat)) {
837 838 839 840
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
841
	}
842 843
}

844
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
845
{
846
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
847 848 849 850 851
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
852
		if (mv88e6xxx_has_stat(chip, stat))
853 854 855
			j++;
	}
	return j;
856 857
}

858 859
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
860
{
861
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
862 863 864 865
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

866
	mutex_lock(&chip->reg_lock);
867

868
	ret = _mv88e6xxx_stats_snapshot(chip, port);
869
	if (ret < 0) {
870
		mutex_unlock(&chip->reg_lock);
871 872 873 874
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
875 876
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
877 878 879 880
			j++;
		}
	}

881
	mutex_unlock(&chip->reg_lock);
882 883
}

884
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
885 886 887 888
{
	return 32 * sizeof(u16);
}

889 890
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
891
{
892
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
893 894 895 896 897 898 899
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

900
	mutex_lock(&chip->reg_lock);
901

902 903 904
	for (i = 0; i < 32; i++) {
		int ret;

905
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
906 907 908
		if (ret >= 0)
			p[i] = ret;
	}
909

910
	mutex_unlock(&chip->reg_lock);
911 912
}

913
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
914
{
915 916
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
			      GLOBAL_ATU_OP_BUSY);
917 918
}

919 920
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
921
{
922
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
923 924
	u16 reg;
	int err;
925

926
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
927 928
		return -EOPNOTSUPP;

929
	mutex_lock(&chip->reg_lock);
930

931 932
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
933
		goto out;
934 935 936 937

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

938 939
	err = mv88e6xxx_read(chip, REG_PORT(port), PORT_STATUS, &reg);
	if (err)
940
		goto out;
941

942
	e->eee_active = !!(reg & PORT_STATUS_EEE);
943
out:
944
	mutex_unlock(&chip->reg_lock);
945 946

	return err;
947 948
}

949 950
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
951
{
952
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
953 954
	u16 reg;
	int err;
955

956
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
957 958
		return -EOPNOTSUPP;

959
	mutex_lock(&chip->reg_lock);
960

961 962
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
963 964
		goto out;

965
	reg &= ~0x0300;
966 967 968 969 970
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

971
	err = mv88e6xxx_phy_write(chip, port, 16, reg);
972
out:
973
	mutex_unlock(&chip->reg_lock);
974

975
	return err;
976 977
}

978
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
979 980 981
{
	int ret;

982 983 984
	if (mv88e6xxx_has_fid_reg(chip)) {
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
					   fid);
985 986
		if (ret < 0)
			return ret;
987
	} else if (mv88e6xxx_num_databases(chip) == 256) {
988
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
989
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
990 991 992
		if (ret < 0)
			return ret;

993
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
994 995 996 997 998 999 1000
					   (ret & 0xfff) |
					   ((fid << 8) & 0xf000));
		if (ret < 0)
			return ret;

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
1001 1002
	}

1003
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
1004 1005 1006
	if (ret < 0)
		return ret;

1007
	return _mv88e6xxx_atu_wait(chip);
1008 1009
}

1010
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1030
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1031 1032
}

1033
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1034 1035
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1036
{
1037 1038
	int op;
	int err;
1039

1040
	err = _mv88e6xxx_atu_wait(chip);
1041 1042
	if (err)
		return err;
1043

1044
	err = _mv88e6xxx_atu_data_write(chip, entry);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1056
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1057 1058
}

1059
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1060
				u16 fid, bool static_too)
1061 1062 1063 1064 1065
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1066

1067
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1068 1069
}

1070
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1071
			       int from_port, int to_port, bool static_too)
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1085
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1086 1087
}

1088
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1089
				 int port, bool static_too)
1090 1091
{
	/* Destination port 0xF means remove the entries */
1092
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1093 1094
}

1095 1096 1097 1098 1099 1100 1101
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

1102
static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1103
				 u8 state)
1104
{
1105
	struct dsa_switch *ds = chip->ds;
1106
	int reg, ret = 0;
1107 1108
	u8 oldstate;

1109
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1110 1111
	if (reg < 0)
		return reg;
1112

1113
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1114

1115 1116 1117 1118 1119
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1120
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1121 1122 1123
		     oldstate == PORT_CONTROL_STATE_FORWARDING) &&
		    (state == PORT_CONTROL_STATE_DISABLED ||
		     state == PORT_CONTROL_STATE_BLOCKING)) {
1124
			ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1125
			if (ret)
1126
				return ret;
1127
		}
1128

1129
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1130
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1131
					   reg);
1132 1133 1134
		if (ret)
			return ret;

1135
		netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1136 1137
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1138 1139 1140 1141 1142
	}

	return ret;
}

1143
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1144
{
1145 1146 1147
	struct net_device *bridge = chip->ports[port].bridge_dev;
	const u16 mask = (1 << chip->info->num_ports) - 1;
	struct dsa_switch *ds = chip->ds;
1148
	u16 output_ports = 0;
1149
	int reg;
1150 1151 1152 1153 1154 1155
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
1156
		for (i = 0; i < chip->info->num_ports; ++i) {
1157
			/* allow sending frames to every group member */
1158
			if (bridge && chip->ports[i].bridge_dev == bridge)
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1169

1170
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1171 1172
	if (reg < 0)
		return reg;
1173

1174 1175
	reg &= ~mask;
	reg |= output_ports & mask;
1176

1177
	return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1178 1179
}

1180 1181
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1182
{
1183
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1184
	int stp_state;
1185
	int err;
1186 1187 1188

	switch (state) {
	case BR_STATE_DISABLED:
1189
		stp_state = PORT_CONTROL_STATE_DISABLED;
1190 1191 1192
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1193
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1194 1195
		break;
	case BR_STATE_LEARNING:
1196
		stp_state = PORT_CONTROL_STATE_LEARNING;
1197 1198 1199
		break;
	case BR_STATE_FORWARDING:
	default:
1200
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1201 1202 1203
		break;
	}

1204 1205 1206
	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_port_state(chip, port, stp_state);
	mutex_unlock(&chip->reg_lock);
1207 1208

	if (err)
1209 1210
		netdev_err(ds->ports[port].netdev,
			   "failed to update state to %s\n",
1211
			   mv88e6xxx_port_state_names[stp_state]);
1212 1213
}

1214
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1215
				u16 *new, u16 *old)
1216
{
1217
	struct dsa_switch *ds = chip->ds;
1218
	u16 pvid;
1219 1220
	int ret;

1221
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1222 1223 1224
	if (ret < 0)
		return ret;

1225 1226 1227 1228 1229 1230
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

1231
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1232 1233 1234 1235
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

1236 1237
		netdev_dbg(ds->ports[port].netdev,
			   "DefaultVID %d (was %d)\n", *new, pvid);
1238 1239 1240 1241
	}

	if (old)
		*old = pvid;
1242 1243 1244 1245

	return 0;
}

1246
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1247
				    int port, u16 *pvid)
1248
{
1249
	return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1250 1251
}

1252
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1253
				    int port, u16 pvid)
1254
{
1255
	return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1256 1257
}

1258
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1259
{
1260 1261
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
			      GLOBAL_VTU_OP_BUSY);
1262 1263
}

1264
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1265 1266 1267
{
	int ret;

1268
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1269 1270 1271
	if (ret < 0)
		return ret;

1272
	return _mv88e6xxx_vtu_wait(chip);
1273 1274
}

1275
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1276 1277 1278
{
	int ret;

1279
	ret = _mv88e6xxx_vtu_wait(chip);
1280 1281 1282
	if (ret < 0)
		return ret;

1283
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1284 1285
}

1286
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1287 1288 1289 1290 1291 1292 1293 1294
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
1295
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1296 1297 1298 1299 1300 1301 1302
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

1303
	for (i = 0; i < chip->info->num_ports; ++i) {
1304 1305 1306 1307 1308 1309 1310 1311 1312
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1313
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1314 1315
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1316
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1317 1318
}

1319
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1320 1321
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1322
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1323 1324
}

1325
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1326 1327 1328 1329 1330 1331 1332
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
	int i;
	int ret;

1333
	for (i = 0; i < chip->info->num_ports; ++i) {
1334 1335 1336 1337 1338 1339 1340
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1341
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1342 1343 1344 1345 1346 1347 1348 1349
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1350
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1351 1352
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1353
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1354 1355
}

1356
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1357 1358
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1359
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1360 1361
}

1362
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1363
{
1364
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1365 1366 1367
				    vid & GLOBAL_VTU_VID_MASK);
}

1368
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1369 1370 1371 1372 1373
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1374
	ret = _mv88e6xxx_vtu_wait(chip);
1375 1376 1377
	if (ret < 0)
		return ret;

1378
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1379 1380 1381
	if (ret < 0)
		return ret;

1382
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1383 1384 1385 1386 1387 1388 1389
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1390
		ret = mv88e6xxx_vtu_data_read(chip, &next);
1391 1392 1393
		if (ret < 0)
			return ret;

1394 1395
		if (mv88e6xxx_has_fid_reg(chip)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1396 1397 1398 1399 1400
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;
1401
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1402 1403 1404
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1405
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1406 1407 1408 1409 1410 1411
						  GLOBAL_VTU_OP);
			if (ret < 0)
				return ret;

			next.fid = (ret & 0xf00) >> 4;
			next.fid |= ret & 0xf;
1412
		}
1413

1414 1415
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1428 1429 1430
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1431
{
1432
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1433 1434 1435 1436
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

1437
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1438 1439
		return -EOPNOTSUPP;

1440
	mutex_lock(&chip->reg_lock);
1441

1442
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1443 1444 1445
	if (err)
		goto unlock;

1446
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1447 1448 1449 1450
	if (err)
		goto unlock;

	do {
1451
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1462 1463
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1478
	mutex_unlock(&chip->reg_lock);
1479 1480 1481 1482

	return err;
}

1483
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1484 1485
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1486
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1487 1488 1489
	u16 reg = 0;
	int ret;

1490
	ret = _mv88e6xxx_vtu_wait(chip);
1491 1492 1493 1494 1495 1496 1497
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1498
	ret = mv88e6xxx_vtu_data_write(chip, entry);
1499 1500 1501
	if (ret < 0)
		return ret;

1502
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1503
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1504 1505
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
					   reg);
1506 1507
		if (ret < 0)
			return ret;
1508
	}
1509

1510
	if (mv88e6xxx_has_fid_reg(chip)) {
1511
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1512 1513
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
					   reg);
1514 1515
		if (ret < 0)
			return ret;
1516
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1517 1518 1519 1520 1521
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1522 1523 1524 1525 1526
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1527
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1528 1529 1530
	if (ret < 0)
		return ret;

1531
	return _mv88e6xxx_vtu_cmd(chip, op);
1532 1533
}

1534
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1535 1536 1537 1538 1539
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1540
	ret = _mv88e6xxx_vtu_wait(chip);
1541 1542 1543
	if (ret < 0)
		return ret;

1544
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1545 1546 1547 1548
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

1549
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1550 1551 1552
	if (ret < 0)
		return ret;

1553
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1554 1555 1556 1557 1558
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

1559
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1560 1561 1562 1563 1564 1565
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1566
		ret = mv88e6xxx_stu_data_read(chip, &next);
1567 1568 1569 1570 1571 1572 1573 1574
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

1575
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1576 1577 1578 1579 1580
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

1581
	ret = _mv88e6xxx_vtu_wait(chip);
1582 1583 1584 1585 1586 1587 1588
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1589
	ret = mv88e6xxx_stu_data_write(chip, entry);
1590 1591 1592 1593 1594
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1595
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1596 1597 1598 1599
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1600
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1601 1602 1603
	if (ret < 0)
		return ret;

1604
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1605 1606
}

1607
static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1608
			       u16 *new, u16 *old)
1609
{
1610
	struct dsa_switch *ds = chip->ds;
1611
	u16 upper_mask;
1612 1613 1614
	u16 fid;
	int ret;

1615
	if (mv88e6xxx_num_databases(chip) == 4096)
1616
		upper_mask = 0xff;
1617
	else if (mv88e6xxx_num_databases(chip) == 256)
1618
		upper_mask = 0xf;
1619 1620 1621
	else
		return -EOPNOTSUPP;

1622
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1623
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1624 1625 1626 1627 1628 1629 1630 1631 1632
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

1633
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1634 1635 1636 1637 1638 1639
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1640
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1641 1642 1643
	if (ret < 0)
		return ret;

1644
	fid |= (ret & upper_mask) << 4;
1645 1646

	if (new) {
1647 1648
		ret &= ~upper_mask;
		ret |= (*new >> 4) & upper_mask;
1649

1650
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1651 1652 1653 1654
					   ret);
		if (ret < 0)
			return ret;

1655 1656
		netdev_dbg(ds->ports[port].netdev,
			   "FID %d (was %d)\n", *new, fid);
1657 1658 1659 1660 1661 1662 1663 1664
	}

	if (old)
		*old = fid;

	return 0;
}

1665
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1666
				   int port, u16 *fid)
1667
{
1668
	return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1669 1670
}

1671
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1672
				   int port, u16 fid)
1673
{
1674
	return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1675 1676
}

1677
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1678 1679 1680
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1681
	int i, err;
1682 1683 1684

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1685
	/* Set every FID bit used by the (un)bridged ports */
1686 1687
	for (i = 0; i < chip->info->num_ports; ++i) {
		err = _mv88e6xxx_port_fid_get(chip, i, fid);
1688 1689 1690 1691 1692 1693
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1694
	/* Set every FID bit used by the VLAN entries */
1695
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1696 1697 1698 1699
	if (err)
		return err;

	do {
1700
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1714
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1715 1716 1717
		return -ENOSPC;

	/* Clear the database */
1718
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1719 1720
}

1721
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1722
			      struct mv88e6xxx_vtu_stu_entry *entry)
1723
{
1724
	struct dsa_switch *ds = chip->ds;
1725 1726 1727 1728
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1729 1730
	int i, err;

1731
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1732 1733
	if (err)
		return err;
1734

1735
	/* exclude all ports except the CPU and DSA ports */
1736
	for (i = 0; i < chip->info->num_ports; ++i)
1737 1738 1739
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1740

1741 1742
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1743 1744 1745 1746 1747 1748 1749
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1750
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1751 1752 1753 1754 1755 1756 1757 1758
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1759
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1760 1761 1762 1763 1764 1765 1766 1767 1768
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1769
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1770 1771 1772 1773 1774 1775 1776
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

1777
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1778 1779 1780
	if (err)
		return err;

1781
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1792
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1793 1794 1795 1796 1797
	}

	return err;
}

1798 1799 1800
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
1801
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1802 1803 1804 1805 1806 1807
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1808
	mutex_lock(&chip->reg_lock);
1809

1810
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1811 1812 1813 1814
	if (err)
		goto unlock;

	do {
1815
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1816 1817 1818 1819 1820 1821 1822 1823 1824
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1825
		for (i = 0; i < chip->info->num_ports; ++i) {
1826 1827 1828 1829 1830 1831 1832
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1833 1834
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1835 1836
				break; /* same bridge, check next VLAN */

1837
			netdev_warn(ds->ports[port].netdev,
1838 1839
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1840
				    netdev_name(chip->ports[i].bridge_dev));
1841 1842 1843 1844 1845 1846
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1847
	mutex_unlock(&chip->reg_lock);
1848 1849 1850 1851

	return err;
}

1852 1853 1854 1855 1856 1857 1858
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

1859 1860
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1861
{
1862
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1863 1864 1865 1866
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

1867
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1868 1869
		return -EOPNOTSUPP;

1870
	mutex_lock(&chip->reg_lock);
1871

1872
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1873 1874 1875 1876 1877
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

1878 1879 1880
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1881

1882
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1883 1884 1885 1886
					   ret);
		if (ret < 0)
			goto unlock;

1887
		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1888 1889 1890
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1891

1892
	ret = 0;
1893
unlock:
1894
	mutex_unlock(&chip->reg_lock);
1895 1896 1897 1898

	return ret;
}

1899 1900 1901 1902
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1903
{
1904
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1905 1906
	int err;

1907
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1908 1909
		return -EOPNOTSUPP;

1910 1911 1912 1913 1914 1915 1916 1917
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1918 1919 1920 1921 1922 1923
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1924
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1925
				    u16 vid, bool untagged)
1926 1927 1928 1929
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1930
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1931
	if (err)
1932
		return err;
1933 1934 1935 1936 1937

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1938
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1939 1940
}

1941 1942 1943
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
1944
{
1945
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1946 1947 1948 1949
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

1950
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1951 1952
		return;

1953
	mutex_lock(&chip->reg_lock);
1954

1955
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1956
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1957 1958
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
1959
				   vid, untagged ? 'u' : 't');
1960

1961
	if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1962
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1963
			   vlan->vid_end);
1964

1965
	mutex_unlock(&chip->reg_lock);
1966 1967
}

1968
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1969
				    int port, u16 vid)
1970
{
1971
	struct dsa_switch *ds = chip->ds;
1972 1973 1974
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

1975
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1976
	if (err)
1977
		return err;
1978

1979 1980
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1981
		return -EOPNOTSUPP;
1982 1983 1984 1985

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1986
	vlan.valid = false;
1987
	for (i = 0; i < chip->info->num_ports; ++i) {
1988
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1989 1990 1991
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1992
			vlan.valid = true;
1993 1994 1995 1996
			break;
		}
	}

1997
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1998 1999 2000
	if (err)
		return err;

2001
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
2002 2003
}

2004 2005
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
2006
{
2007
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2008 2009 2010
	u16 pvid, vid;
	int err = 0;

2011
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2012 2013
		return -EOPNOTSUPP;

2014
	mutex_lock(&chip->reg_lock);
2015

2016
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
2017 2018 2019
	if (err)
		goto unlock;

2020
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
2021
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
2022 2023 2024 2025
		if (err)
			goto unlock;

		if (vid == pvid) {
2026
			err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2027 2028 2029 2030 2031
			if (err)
				goto unlock;
		}
	}

2032
unlock:
2033
	mutex_unlock(&chip->reg_lock);
2034 2035 2036 2037

	return err;
}

2038
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2039
				    const unsigned char *addr)
2040 2041 2042 2043
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2044
		ret = _mv88e6xxx_reg_write(
2045
			chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2046
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
2047 2048 2049 2050 2051 2052 2053
		if (ret < 0)
			return ret;
	}

	return 0;
}

2054
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2055
				   unsigned char *addr)
2056 2057 2058 2059
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2060
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2061
					  GLOBAL_ATU_MAC_01 + i);
2062 2063 2064 2065 2066 2067 2068 2069 2070
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

2071
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2072
			       struct mv88e6xxx_atu_entry *entry)
2073
{
2074 2075
	int ret;

2076
	ret = _mv88e6xxx_atu_wait(chip);
2077 2078 2079
	if (ret < 0)
		return ret;

2080
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2081 2082 2083
	if (ret < 0)
		return ret;

2084
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2085
	if (ret < 0)
2086 2087
		return ret;

2088
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2089
}
2090

2091
static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2092 2093 2094 2095
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
2096 2097 2098
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2099 2100
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2101
		err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2102
	else
2103
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2104 2105
	if (err)
		return err;
2106

2107
	entry.fid = vlan.fid;
2108 2109 2110 2111 2112 2113 2114
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

2115
	return _mv88e6xxx_atu_load(chip, &entry);
2116 2117
}

2118 2119 2120
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2121 2122 2123 2124 2125 2126 2127
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2128 2129 2130
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2131
{
2132
	int state = is_multicast_ether_addr(fdb->addr) ?
2133 2134
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2135
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2136

2137 2138
	mutex_lock(&chip->reg_lock);
	if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2139 2140
		netdev_err(ds->ports[port].netdev,
			   "failed to load MAC address\n");
2141
	mutex_unlock(&chip->reg_lock);
2142 2143
}

2144 2145
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2146
{
2147
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2148 2149
	int ret;

2150 2151
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2152
				       GLOBAL_ATU_DATA_STATE_UNUSED);
2153
	mutex_unlock(&chip->reg_lock);
2154 2155 2156 2157

	return ret;
}

2158
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2159
				  struct mv88e6xxx_atu_entry *entry)
2160
{
2161 2162 2163 2164
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2165

2166
	ret = _mv88e6xxx_atu_wait(chip);
2167 2168
	if (ret < 0)
		return ret;
2169

2170
	ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2171 2172
	if (ret < 0)
		return ret;
2173

2174
	ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2175 2176
	if (ret < 0)
		return ret;
2177

2178
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2179 2180
	if (ret < 0)
		return ret;
2181

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2198

2199
	*entry = next;
2200 2201 2202
	return 0;
}

2203
static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2204
					u16 fid, u16 vid, int port,
2205 2206 2207 2208 2209 2210 2211 2212
					struct switchdev_obj_port_fdb *fdb,
					int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2213
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2214 2215 2216 2217
	if (err)
		return err;

	do {
2218
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
		if (err)
			break;

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
			bool is_static = addr.state ==
				(is_multicast_ether_addr(addr.mac) ?
				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
				 GLOBAL_ATU_DATA_STATE_UC_STATIC);

			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;

			err = cb(&fdb->obj);
			if (err)
				break;
		}
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2244 2245 2246
static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
2247
{
2248
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2249 2250 2251
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2252
	u16 fid;
2253 2254
	int err;

2255
	mutex_lock(&chip->reg_lock);
2256

2257
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2258
	err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2259 2260 2261
	if (err)
		goto unlock;

2262
	err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2263 2264 2265
	if (err)
		goto unlock;

2266
	/* Dump VLANs' Filtering Information Databases */
2267
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2268 2269 2270 2271
	if (err)
		goto unlock;

	do {
2272
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2273
		if (err)
2274
			break;
2275 2276 2277 2278

		if (!vlan.valid)
			break;

2279 2280
		err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
						   port, fdb, cb);
2281
		if (err)
2282
			break;
2283 2284 2285
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
2286
	mutex_unlock(&chip->reg_lock);
2287 2288 2289 2290

	return err;
}

2291 2292
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2293
{
2294
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2295
	int i, err = 0;
2296

2297
	mutex_lock(&chip->reg_lock);
2298

2299
	/* Assign the bridge and remap each port's VLANTable */
2300
	chip->ports[port].bridge_dev = bridge;
2301

2302 2303 2304
	for (i = 0; i < chip->info->num_ports; ++i) {
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2305 2306 2307 2308 2309
			if (err)
				break;
		}
	}

2310
	mutex_unlock(&chip->reg_lock);
2311

2312
	return err;
2313 2314
}

2315
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2316
{
2317 2318
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	struct net_device *bridge = chip->ports[port].bridge_dev;
2319
	int i;
2320

2321
	mutex_lock(&chip->reg_lock);
2322

2323
	/* Unassign the bridge and remap each port's VLANTable */
2324
	chip->ports[port].bridge_dev = NULL;
2325

2326 2327 2328
	for (i = 0; i < chip->info->num_ports; ++i)
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2329 2330
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2331

2332
	mutex_unlock(&chip->reg_lock);
2333 2334
}

2335
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2336
{
2337
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2338
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2339
	struct gpio_desc *gpiod = chip->reset;
2340 2341 2342 2343 2344
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
2345 2346
	for (i = 0; i < chip->info->num_ports; i++) {
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2347 2348 2349
		if (ret < 0)
			return ret;

2350
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
					   ret & 0xfffc);
		if (ret)
			return ret;
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2372
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2373
	else
2374
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2375 2376 2377 2378 2379 2380
	if (ret)
		return ret;

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2381
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
		if (ret < 0)
			return ret;

		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		ret = -ETIMEDOUT;
	else
		ret = 0;

	return ret;
}

2397
static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2398
{
2399 2400
	u16 val;
	int err;
2401

2402 2403 2404 2405
	/* Clear Power Down bit */
	err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
	if (err)
		return err;
2406

2407 2408 2409
	if (val & BMCR_PDOWN) {
		val &= ~BMCR_PDOWN;
		err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2410 2411
	}

2412
	return err;
2413 2414
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
			       int reg, u16 *val)
{
	int addr = chip->info->port_base_addr + port;

	if (port >= chip->info->num_ports)
		return -EINVAL;

	return mv88e6xxx_read(chip, addr, reg, val);
}

2426
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2427
{
2428
	struct dsa_switch *ds = chip->ds;
2429
	int ret;
2430
	u16 reg;
2431

2432 2433 2434 2435
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2436 2437 2438 2439 2440 2441
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
2442
		reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2443
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2444
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2445 2446 2447 2448
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
2449
			if (mv88e6xxx_6065_family(chip))
2450 2451 2452 2453 2454 2455 2456
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

2457
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2458 2459
					   PORT_PCS_CTRL, reg);
		if (ret)
2460
			return ret;
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2478 2479 2480 2481
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2482 2483 2484 2485
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2486
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2487 2488
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
				PORT_CONTROL_FORWARD_UNKNOWN |
2489
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2490 2491 2492
		else
			reg |= PORT_CONTROL_DSA_TAG;
		reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2493
	}
2494
	if (dsa_is_dsa_port(ds, port)) {
2495 2496
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2497
			reg |= PORT_CONTROL_DSA_TAG;
2498 2499 2500 2501 2502
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2503
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2504 2505
		}

2506 2507 2508 2509 2510
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2511
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2512 2513
					   PORT_CONTROL, reg);
		if (ret)
2514
			return ret;
2515 2516
	}

2517 2518 2519
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2520
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2521
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2522
		if (ret < 0)
2523
			return ret;
2524 2525 2526 2527
		ret &= PORT_STATUS_CMODE_MASK;
		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
		    (ret == PORT_STATUS_CMODE_SGMII)) {
2528
			ret = mv88e6xxx_serdes_power_on(chip);
2529
			if (ret < 0)
2530
				return ret;
2531 2532 2533
		}
	}

2534
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2535
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2536 2537 2538
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2539 2540
	 */
	reg = 0;
2541 2542 2543 2544
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2545 2546
		reg = PORT_CONTROL_2_MAP_DA;

2547 2548
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2549 2550
		reg |= PORT_CONTROL_2_JUMBO_10240;

2551
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2552 2553 2554 2555 2556 2557 2558 2559 2560
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2561
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2562

2563
	if (reg) {
2564
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2565 2566
					   PORT_CONTROL_2, reg);
		if (ret)
2567
			return ret;
2568 2569 2570 2571 2572 2573 2574
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2575
	reg = 1 << port;
2576 2577
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2578
		reg = 0;
2579

2580 2581
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
				   reg);
2582
	if (ret)
2583
		return ret;
2584 2585

	/* Egress rate control 2: disable egress rate control. */
2586
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2587 2588
				   0x0000);
	if (ret)
2589
		return ret;
2590

2591 2592 2593
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2594 2595 2596 2597
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2598
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2599 2600
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
2601
			return ret;
2602 2603 2604 2605 2606

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2607
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2608 2609 2610 2611
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2612
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2613 2614
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
2615
			return ret;
2616 2617 2618 2619

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2620 2621 2622 2623 2624 2625 2626
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
			ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
						   PORT_ETH_TYPE, ETH_P_EDSA);
			if (ret)
				return ret;
		}

2627 2628 2629
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2630
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2631 2632
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
2633
			return ret;
2634 2635 2636 2637

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2638
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2639 2640
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
2641
			return ret;
2642 2643
	}

2644 2645 2646 2647
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2648
		/* Rate Control: disable ingress rate limiting. */
2649
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2650 2651
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
2652
			return ret;
2653 2654
	}

2655 2656
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2657
	 */
2658 2659
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
				   0x0000);
2660
	if (ret)
2661
		return ret;
2662

2663
	/* Port based VLAN map: give each port the same default address
2664 2665
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2666
	 */
2667
	ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2668
	if (ret)
2669
		return ret;
2670

2671
	ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2672
	if (ret)
2673
		return ret;
2674 2675 2676 2677

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2678
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2679
				   0x0000);
2680 2681
	if (ret)
		return ret;
2682 2683 2684 2685

	return 0;
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
			      (addr[0] << 8) | addr[1]);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
			      (addr[2] << 8) | addr[3]);
	if (err)
		return err;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
			       (addr[4] << 8) | addr[5]);
}

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

	err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2744
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2745
{
2746
	struct dsa_switch *ds = chip->ds;
2747
	u32 upstream_port = dsa_upstream_port(ds);
2748
	u16 reg;
2749
	int err;
2750

2751 2752 2753 2754
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
	reg = 0;
2755 2756
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2757 2758
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2759
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2760 2761 2762
	if (err)
		return err;

2763 2764 2765 2766 2767 2768
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2769 2770
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
				   reg);
2771 2772 2773
	if (err)
		return err;

2774
	/* Disable remote management, and set the switch's DSA device number. */
2775
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2776 2777 2778 2779 2780
				   GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				   (ds->index & 0x1f));
	if (err)
		return err;

2781 2782 2783 2784 2785
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2786 2787 2788 2789
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2790 2791
	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
			      GLOBAL_ATU_CONTROL_LEARN2ALL);
2792
	if (err)
2793
		return err;
2794

2795 2796
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2797 2798 2799 2800 2801 2802 2803
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2804
	/* Configure the IP ToS mapping registers. */
2805
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2806
	if (err)
2807
		return err;
2808
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2809
	if (err)
2810
		return err;
2811
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2812
	if (err)
2813
		return err;
2814
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2815
	if (err)
2816
		return err;
2817
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2818
	if (err)
2819
		return err;
2820
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2821
	if (err)
2822
		return err;
2823
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2824
	if (err)
2825
		return err;
2826
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2827
	if (err)
2828
		return err;
2829 2830

	/* Configure the IEEE 802.1p priority mapping register. */
2831
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2832
	if (err)
2833
		return err;
2834

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	/* Clear the statistics counters for all ports */
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_FLUSH_ALL);
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
					     int target, int port)
{
	u16 val = (target << 8) | (port & 0xf);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
}

static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
{
	int target, port;
	int err;

	/* Initialize the routing port to the 32 possible target devices */
	for (target = 0; target < 32; ++target) {
		port = 0xf;

		if (target < DSA_MAX_SWITCHES) {
			port = chip->ds->rtable[target];
			if (port == DSA_RTABLE_NONE)
				port = 0xf;
		}

		err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
		if (err)
			break;
	}

	return err;
}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
					 bool hask, u16 mask)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (num << 12) | (mask & port_mask);

	if (hask)
		val |= GLOBAL2_TRUNK_MASK_HASK;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
}

static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
					    u16 map)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (id << 11) | (map & port_mask);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
}

static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	int i, err;

	/* Clear all eight possible Trunk Mask vectors */
	for (i = 0; i < 8; ++i) {
		err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
		if (err)
			return err;
	}

	/* Clear all sixteen possible Trunk ID routing vectors */
	for (i = 0; i < 16; ++i) {
		err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
		if (err)
			return err;
	}

	return 0;
}

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
{
	int port, err;

	/* Init all Ingress Rate Limit resources of all ports */
	for (port = 0; port < chip->info->num_ports; ++port) {
		/* XXX newer chips (like 88E6390) have different 2-bit ops */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				      GLOBAL2_IRL_CMD_OP_INIT_ALL |
				      (port << 8));
		if (err)
			break;

		/* Wait for the operation to complete */
2937 2938
		err = mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				     GLOBAL2_IRL_CMD_BUSY);
2939 2940 2941 2942 2943 2944 2945
		if (err)
			break;
	}

	return err;
}

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
/* Indirect write to the Switch MAC/WoL/WoF register */
static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
					 unsigned int pointer, u8 data)
{
	u16 val = (pointer << 8) | data;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
}

static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int i, err;

	for (i = 0; i < 6; i++) {
		err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
		if (err)
			break;
	}

	return err;
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
				  u8 data)
{
	u16 val = (pointer << 8) | (data & 0x7);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
}

static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
{
	int i, err;

	/* Clear all sixteen possible Priority Override entries */
	for (i = 0; i < 16; i++) {
		err = mv88e6xxx_g2_pot_write(chip, i, 0);
		if (err)
			break;
	}

	return err;
}

2990 2991
static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
{
2992 2993 2994
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
			      GLOBAL2_EEPROM_CMD_BUSY |
			      GLOBAL2_EEPROM_CMD_RUNNING);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
}

static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_wait(chip);
}

static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
				      u8 addr, u16 *data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
}

static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
				       u8 addr, u16 data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
static int mv88e6xxx_g2_smi_phy_wait(struct mv88e6xxx_chip *chip)
{
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD,
			      GLOBAL2_SMI_PHY_CMD_BUSY);
}

static int mv88e6xxx_g2_smi_phy_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_wait(chip);
}

static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
				     int reg, u16 *val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_READ_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
}

static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
				      int reg, u16 val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_WRITE_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
}

3093 3094 3095 3096 3097
static const struct mv88e6xxx_ops mv88e6xxx_g2_smi_phy_ops = {
	.read = mv88e6xxx_g2_smi_phy_read,
	.write = mv88e6xxx_g2_smi_phy_write,
};

3098 3099
static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
{
3100
	u16 reg;
3101 3102
	int err;

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:2x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
				      0xffff);
		if (err)
			return err;
	}

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:0x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
				      0xffff);
		if (err)
			return err;
	}
3122 3123 3124 3125 3126 3127

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
3128 3129 3130 3131 3132
	reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
		reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3133
	if (err)
3134
		return err;
3135 3136

	/* Program the DSA routing table. */
3137 3138 3139
	err = mv88e6xxx_g2_set_device_mapping(chip);
	if (err)
		return err;
3140

3141 3142 3143 3144
	/* Clear all trunk masks and mapping. */
	err = mv88e6xxx_g2_clear_trunk(chip);
	if (err)
		return err;
3145

3146 3147 3148 3149 3150 3151 3152 3153 3154
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
		/* Disable ingress rate limiting by resetting all per port
		 * ingress rate limit resources to their initial state.
		 */
		err = mv88e6xxx_g2_clear_irl(chip);
			if (err)
				return err;
	}

3155 3156 3157 3158
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
		/* Initialize Cross-chip Port VLAN Table to reset defaults */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
				      GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3159
		if (err)
3160
			return err;
3161
	}
3162

3163
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3164
		/* Clear the priority override table. */
3165 3166 3167
		err = mv88e6xxx_g2_clear_pot(chip);
		if (err)
			return err;
3168 3169
	}

3170
	return 0;
3171 3172
}

3173
static int mv88e6xxx_setup(struct dsa_switch *ds)
3174
{
3175
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3176
	int err;
3177 3178
	int i;

3179 3180
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
3181

3182
	mutex_lock(&chip->reg_lock);
3183

3184
	err = mv88e6xxx_switch_reset(chip);
3185 3186 3187
	if (err)
		goto unlock;

3188 3189 3190 3191 3192 3193 3194 3195 3196
	/* Setup Switch Port Registers */
	for (i = 0; i < chip->info->num_ports; i++) {
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
3197 3198 3199
	if (err)
		goto unlock;

3200 3201 3202
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
3203 3204 3205
		if (err)
			goto unlock;
	}
3206

3207
unlock:
3208
	mutex_unlock(&chip->reg_lock);
3209

3210
	return err;
3211 3212
}

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	/* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
		err = mv88e6xxx_g2_set_switch_mac(chip, addr);
	else
		err = mv88e6xxx_g1_set_switch_mac(chip, addr);

	mutex_unlock(&chip->reg_lock);

	return err;
}

3231
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
3232
{
3233
	struct mv88e6xxx_chip *chip = bus->priv;
3234 3235
	u16 val;
	int err;
3236

3237
	if (phy >= chip->info->num_ports)
3238
		return 0xffff;
3239

3240
	mutex_lock(&chip->reg_lock);
3241
	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
3242
	mutex_unlock(&chip->reg_lock);
3243 3244

	return err ? err : val;
3245 3246
}

3247
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
3248
{
3249
	struct mv88e6xxx_chip *chip = bus->priv;
3250
	int err;
3251

3252
	if (phy >= chip->info->num_ports)
3253
		return 0xffff;
3254

3255
	mutex_lock(&chip->reg_lock);
3256
	err = mv88e6xxx_phy_write(chip, phy, reg, val);
3257
	mutex_unlock(&chip->reg_lock);
3258 3259

	return err;
3260 3261
}

3262
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3263 3264 3265 3266 3267 3268 3269
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

	if (np)
3270
		chip->mdio_np = of_get_child_by_name(np, "mdio");
3271

3272
	bus = devm_mdiobus_alloc(chip->dev);
3273 3274 3275
	if (!bus)
		return -ENOMEM;

3276
	bus->priv = (void *)chip;
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
3287
	bus->parent = chip->dev;
3288

3289 3290
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
3291 3292 3293
	else
		err = mdiobus_register(bus);
	if (err) {
3294
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3295 3296
		goto out;
	}
3297
	chip->mdio_bus = bus;
3298 3299 3300 3301

	return 0;

out:
3302 3303
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3304 3305 3306 3307

	return err;
}

3308
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3309 3310

{
3311
	struct mii_bus *bus = chip->mdio_bus;
3312 3313 3314

	mdiobus_unregister(bus);

3315 3316
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3317 3318
}

3319 3320 3321 3322
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
3323
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3324
	u16 val;
3325 3326 3327 3328
	int ret;

	*temp = 0;

3329
	mutex_lock(&chip->reg_lock);
3330

3331
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
3332 3333 3334 3335
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
3336
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3337 3338 3339
	if (ret < 0)
		goto error;

3340
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
3341 3342 3343 3344 3345 3346
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

3347 3348
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
	if (ret < 0)
3349 3350 3351
		goto error;

	/* Disable temperature sensor */
3352
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
3353 3354 3355 3356 3357 3358
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3359
	mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3360
	mutex_unlock(&chip->reg_lock);
3361 3362 3363 3364 3365
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
3366 3367
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3368
	u16 val;
3369 3370 3371 3372
	int ret;

	*temp = 0;

3373 3374 3375
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
	mutex_unlock(&chip->reg_lock);
3376 3377 3378
	if (ret < 0)
		return ret;

3379
	*temp = (val & 0xff) - 25;
3380 3381 3382 3383

	return 0;
}

3384
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3385
{
3386
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3387

3388
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3389 3390
		return -EOPNOTSUPP;

3391
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3392 3393 3394 3395 3396
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3397
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3398
{
3399 3400
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3401
	u16 val;
3402 3403
	int ret;

3404
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3405 3406 3407 3408
		return -EOPNOTSUPP;

	*temp = 0;

3409 3410 3411
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3412 3413 3414
	if (ret < 0)
		return ret;

3415
	*temp = (((val >> 8) & 0x1f) * 5) - 25;
3416 3417 3418 3419

	return 0;
}

3420
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3421
{
3422 3423
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3424 3425
	u16 val;
	int err;
3426

3427
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3428 3429
		return -EOPNOTSUPP;

3430 3431 3432 3433
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	if (err)
		goto unlock;
3434
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3435 3436 3437 3438 3439 3440
	err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
				       (val & 0xe0ff) | (temp << 8));
unlock:
	mutex_unlock(&chip->reg_lock);

	return err;
3441 3442
}

3443
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3444
{
3445 3446
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3447
	u16 val;
3448 3449
	int ret;

3450
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3451 3452 3453 3454
		return -EOPNOTSUPP;

	*alarm = false;

3455 3456 3457
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3458 3459 3460
	if (ret < 0)
		return ret;

3461
	*alarm = !!(val & 0x40);
3462 3463 3464 3465 3466

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = (val >> 8) & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;
		*data++ = (val >> 8) & 0xff;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	/* Ensure the RO WriteEn bit is set */
	err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
	if (err)
		return err;

	if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
		return -EROFS;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (*data++ << 8) | (val & 0xff);

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		val = *data++;
		val |= *data++ << 8;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (val & 0xff00) | *data++;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	return err;
}

3634 3635 3636 3637 3638 3639 3640
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3641
		.port_base_addr = 0x10,
3642
		.age_time_coeff = 15000,
3643 3644 3645 3646 3647 3648 3649 3650 3651
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3652
		.port_base_addr = 0x10,
3653
		.age_time_coeff = 15000,
3654 3655 3656 3657 3658 3659 3660 3661 3662
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3663
		.port_base_addr = 0x10,
3664
		.age_time_coeff = 15000,
3665 3666 3667 3668 3669 3670 3671 3672 3673
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3674
		.port_base_addr = 0x10,
3675
		.age_time_coeff = 15000,
3676 3677 3678 3679 3680 3681 3682 3683 3684
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3685
		.port_base_addr = 0x10,
3686
		.age_time_coeff = 15000,
3687 3688 3689 3690 3691 3692 3693 3694 3695
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3696
		.port_base_addr = 0x10,
3697
		.age_time_coeff = 15000,
3698 3699 3700 3701 3702 3703 3704 3705 3706
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3707
		.port_base_addr = 0x10,
3708
		.age_time_coeff = 15000,
3709 3710 3711 3712 3713 3714 3715 3716 3717
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3718
		.port_base_addr = 0x10,
3719
		.age_time_coeff = 15000,
3720 3721 3722 3723 3724 3725 3726 3727 3728
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3729
		.port_base_addr = 0x10,
3730
		.age_time_coeff = 15000,
3731 3732 3733 3734 3735 3736 3737 3738 3739
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3740
		.port_base_addr = 0x10,
3741
		.age_time_coeff = 15000,
3742 3743 3744 3745 3746 3747 3748 3749 3750
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3751
		.port_base_addr = 0x10,
3752
		.age_time_coeff = 15000,
3753 3754 3755 3756 3757 3758 3759 3760 3761
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3762
		.port_base_addr = 0x10,
3763
		.age_time_coeff = 15000,
3764 3765 3766 3767 3768 3769 3770 3771 3772
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3773
		.port_base_addr = 0x10,
3774
		.age_time_coeff = 15000,
3775 3776 3777 3778 3779 3780 3781 3782 3783
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3784
		.port_base_addr = 0x10,
3785
		.age_time_coeff = 15000,
3786 3787 3788 3789 3790 3791 3792 3793 3794
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3795
		.port_base_addr = 0x10,
3796
		.age_time_coeff = 15000,
3797 3798 3799 3800 3801 3802 3803 3804 3805
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3806
		.port_base_addr = 0x10,
3807
		.age_time_coeff = 15000,
3808 3809 3810 3811 3812 3813 3814 3815 3816
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3817
		.port_base_addr = 0x10,
3818
		.age_time_coeff = 15000,
3819 3820 3821 3822
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},
};

3823
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3824
{
3825
	int i;
3826

3827 3828 3829
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3830 3831 3832 3833

	return NULL;
}

3834
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3835 3836
{
	const struct mv88e6xxx_info *info;
3837 3838 3839
	unsigned int prod_num, rev;
	u16 id;
	int err;
3840

3841 3842 3843 3844 3845
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3846 3847 3848 3849 3850 3851 3852 3853

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3854
	/* Update the compatible info with the probed one */
3855
	chip->info = info;
3856

3857 3858
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3859 3860 3861 3862

	return 0;
}

3863
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3864
{
3865
	struct mv88e6xxx_chip *chip;
3866

3867 3868
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3869 3870
		return NULL;

3871
	chip->dev = dev;
3872

3873
	mutex_init(&chip->reg_lock);
3874

3875
	return chip;
3876 3877
}

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
static const struct mv88e6xxx_ops mv88e6xxx_phy_ops = {
	.read = mv88e6xxx_read,
	.write = mv88e6xxx_write,
};

static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
{
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SMI_PHY)) {
		chip->phy_ops = &mv88e6xxx_g2_smi_phy_ops;
	} else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
		chip->phy_ops = &mv88e6xxx_phy_ppu_ops;
		mv88e6xxx_ppu_state_init(chip);
	} else {
		chip->phy_ops = &mv88e6xxx_phy_ops;
	}
}

3895
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3896 3897 3898 3899 3900 3901
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3902
	if (sw_addr == 0)
3903
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3904
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3905
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3906 3907 3908
	else
		return -EINVAL;

3909 3910
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3911 3912 3913 3914

	return 0;
}

3915 3916
static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
{
3917 3918 3919 3920 3921 3922
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
		return DSA_TAG_PROTO_EDSA;

	return DSA_TAG_PROTO_DSA;
3923 3924
}

3925 3926 3927
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3928
{
3929
	struct mv88e6xxx_chip *chip;
3930
	struct mii_bus *bus;
3931
	int err;
3932

3933
	bus = dsa_host_dev_to_mii_bus(host_dev);
3934 3935 3936
	if (!bus)
		return NULL;

3937 3938
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3939 3940
		return NULL;

3941
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3942
	chip->info = &mv88e6xxx_table[MV88E6085];
3943

3944
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3945 3946 3947
	if (err)
		goto free;

3948
	err = mv88e6xxx_detect(chip);
3949
	if (err)
3950
		goto free;
3951

3952 3953
	mv88e6xxx_phy_init(chip);

3954
	err = mv88e6xxx_mdio_register(chip, NULL);
3955
	if (err)
3956
		goto free;
3957

3958
	*priv = chip;
3959

3960
	return chip->info->name;
3961
free:
3962
	devm_kfree(dsa_dev, chip);
3963 3964

	return NULL;
3965 3966
}

3967
static struct dsa_switch_driver mv88e6xxx_switch_driver = {
3968
	.probe			= mv88e6xxx_drv_probe,
3969
	.get_tag_protocol	= mv88e6xxx_get_tag_protocol,
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
3984
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
3985 3986 3987 3988
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
3989
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
};

4004
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
4005 4006
				     struct device_node *np)
{
4007
	struct device *dev = chip->dev;
4008 4009 4010 4011 4012 4013 4014
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
4015
	ds->priv = chip;
4016 4017 4018 4019 4020 4021 4022
	ds->drv = &mv88e6xxx_switch_driver;

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

4023
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
4024
{
4025
	dsa_unregister_switch(chip->ds);
4026 4027
}

4028
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4029
{
4030
	struct device *dev = &mdiodev->dev;
4031
	struct device_node *np = dev->of_node;
4032
	const struct mv88e6xxx_info *compat_info;
4033
	struct mv88e6xxx_chip *chip;
4034
	u32 eeprom_len;
4035
	int err;
4036

4037 4038 4039 4040
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

4041 4042
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
4043 4044
		return -ENOMEM;

4045
	chip->info = compat_info;
4046

4047
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4048 4049
	if (err)
		return err;
4050

4051
	err = mv88e6xxx_detect(chip);
4052 4053
	if (err)
		return err;
4054

4055 4056
	mv88e6xxx_phy_init(chip);

4057 4058 4059
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);
4060

4061
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4062
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4063
		chip->eeprom_len = eeprom_len;
4064

4065
	err = mv88e6xxx_mdio_register(chip, np);
4066 4067 4068
	if (err)
		return err;

4069
	err = mv88e6xxx_register_switch(chip, np);
4070
	if (err) {
4071
		mv88e6xxx_mdio_unregister(chip);
4072 4073 4074
		return err;
	}

4075 4076
	return 0;
}
4077 4078 4079 4080

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4081
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4082

4083 4084
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
4085 4086 4087
}

static const struct of_device_id mv88e6xxx_of_match[] = {
4088 4089 4090 4091
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
	register_switch_driver(&mv88e6xxx_switch_driver);
	return mdio_driver_register(&mv88e6xxx_driver);
}
4111 4112 4113 4114
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
4115
	mdio_driver_unregister(&mv88e6xxx_driver);
4116
	unregister_switch_driver(&mv88e6xxx_switch_driver);
4117 4118
}
module_exit(mv88e6xxx_cleanup);
4119 4120 4121 4122

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");