chip.c 91.0 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21
#include <linux/jiffies.h>
22
#include <linux/list.h>
23
#include <linux/mdio.h>
24
#include <linux/module.h>
25
#include <linux/of_device.h>
26
#include <linux/of_mdio.h>
27
#include <linux/netdevice.h>
28
#include <linux/gpio/consumer.h>
29
#include <linux/phy.h>
30
#include <net/dsa.h>
31
#include <net/switchdev.h>
32

33
#include "mv88e6xxx.h"
34
#include "global1.h"
35
#include "global2.h"
36

37
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
38
{
39 40
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
41 42 43 44
		dump_stack();
	}
}

45 46 47 48 49 50 51 52 53 54
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
55
 */
56

57
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
58 59
			      int addr, int reg, u16 *val)
{
60
	if (!chip->smi_ops)
61 62
		return -EOPNOTSUPP;

63
	return chip->smi_ops->read(chip, addr, reg, val);
64 65
}

66
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
67 68
			       int addr, int reg, u16 val)
{
69
	if (!chip->smi_ops)
70 71
		return -EOPNOTSUPP;

72
	return chip->smi_ops->write(chip, addr, reg, val);
73 74
}

75
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
76 77 78 79
					  int addr, int reg, u16 *val)
{
	int ret;

80
	ret = mdiobus_read_nested(chip->bus, addr, reg);
81 82 83 84 85 86 87 88
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

89
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
90 91 92 93
					   int addr, int reg, u16 val)
{
	int ret;

94
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
95 96 97 98 99 100
	if (ret < 0)
		return ret;

	return 0;
}

101
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_single_chip_ops = {
102 103 104 105
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

106
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
107 108 109 110 111
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
112
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
113 114 115
		if (ret < 0)
			return ret;

116
		if ((ret & SMI_CMD_BUSY) == 0)
117 118 119 120 121 122
			return 0;
	}

	return -ETIMEDOUT;
}

123
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
124
					 int addr, int reg, u16 *val)
125 126 127
{
	int ret;

128
	/* Wait for the bus to become free. */
129
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
130 131 132
	if (ret < 0)
		return ret;

133
	/* Transmit the read command. */
134
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
135
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
136 137 138
	if (ret < 0)
		return ret;

139
	/* Wait for the read command to complete. */
140
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
141 142 143
	if (ret < 0)
		return ret;

144
	/* Read the data. */
145
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
146 147 148
	if (ret < 0)
		return ret;

149
	*val = ret & 0xffff;
150

151
	return 0;
152 153
}

154
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
155
					  int addr, int reg, u16 val)
156 157 158
{
	int ret;

159
	/* Wait for the bus to become free. */
160
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
161 162 163
	if (ret < 0)
		return ret;

164
	/* Transmit the data to write. */
165
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
166 167 168
	if (ret < 0)
		return ret;

169
	/* Transmit the write command. */
170
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
171
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
172 173 174
	if (ret < 0)
		return ret;

175
	/* Wait for the write command to complete. */
176
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
177 178 179 180 181 182
	if (ret < 0)
		return ret;

	return 0;
}

183
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_multi_chip_ops = {
184 185 186 187
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

188
int mv88e6xxx_read(struct mv88e6xxx_chip *chip, int addr, int reg, u16 *val)
189 190 191
{
	int err;

192
	assert_reg_lock(chip);
193

194
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
195 196 197
	if (err)
		return err;

198
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
199 200 201 202 203
		addr, reg, *val);

	return 0;
}

204
int mv88e6xxx_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val)
205
{
206 207
	int err;

208
	assert_reg_lock(chip);
209

210
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
211 212 213
	if (err)
		return err;

214
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
215 216
		addr, reg, val);

217 218 219
	return 0;
}

220 221
static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port, int reg,
			       u16 *val)
222 223 224 225 226 227
{
	int addr = chip->info->port_base_addr + port;

	return mv88e6xxx_read(chip, addr, reg, val);
}

228 229
static int mv88e6xxx_port_write(struct mv88e6xxx_chip *chip, int port, int reg,
				u16 val)
230 231 232 233 234 235
{
	int addr = chip->info->port_base_addr + port;

	return mv88e6xxx_write(chip, addr, reg, val);
}

236 237 238 239 240
static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
			      int reg, u16 *val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

241
	if (!chip->info->ops->phy_read)
242 243
		return -EOPNOTSUPP;

244
	return chip->info->ops->phy_read(chip, addr, reg, val);
245 246 247 248 249 250 251
}

static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
			       int reg, u16 val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

252
	if (!chip->info->ops->phy_write)
253 254
		return -EOPNOTSUPP;

255
	return chip->info->ops->phy_write(chip, addr, reg, val);
256 257
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
{
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
		return -EOPNOTSUPP;

	return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
}

static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
{
	int err;

	/* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
	err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
	if (unlikely(err)) {
		dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
			phy, err);
	}
}

static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
				   u8 page, int reg, u16 *val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_read(chip, phy, reg, val);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
				    u8 page, int reg, u16 val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
{
	return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
				       reg, val);
}

static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
{
	return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
					reg, val);
}

326
int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg, u16 mask)
327
{
328
	int i;
329

330
	for (i = 0; i < 16; i++) {
331 332 333 334 335 336 337 338 339 340 341 342 343
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

344
	dev_err(chip->dev, "Timeout while waiting for switch\n");
345 346 347
	return -ETIMEDOUT;
}

348
/* Indirect write to single pointer-data register with an Update bit */
349
int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg, u16 update)
350 351
{
	u16 val;
352
	int err;
353 354

	/* Wait until the previous operation is completed */
355 356 357
	err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
	if (err)
		return err;
358 359 360 361 362 363 364

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

365
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
366 367
{
	u16 val;
368
	int i, err;
369

370
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
371 372 373
	if (err)
		return err;

374 375 376 377
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val & ~GLOBAL_CONTROL_PPU_ENABLE);
	if (err)
		return err;
378

379
	for (i = 0; i < 16; i++) {
380 381 382
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
383

384
		usleep_range(1000, 2000);
385
		if ((val & GLOBAL_STATUS_PPU_MASK) != GLOBAL_STATUS_PPU_POLLING)
386
			return 0;
387 388 389 390 391
	}

	return -ETIMEDOUT;
}

392
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
393
{
394 395
	u16 val;
	int i, err;
396

397 398 399
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
	if (err)
		return err;
400

401 402
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val | GLOBAL_CONTROL_PPU_ENABLE);
403 404
	if (err)
		return err;
405

406
	for (i = 0; i < 16; i++) {
407 408 409
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
410

411
		usleep_range(1000, 2000);
412
		if ((val & GLOBAL_STATUS_PPU_MASK) == GLOBAL_STATUS_PPU_POLLING)
413
			return 0;
414 415 416 417 418 419 420
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
421
	struct mv88e6xxx_chip *chip;
422

423
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
424

425
	mutex_lock(&chip->reg_lock);
426

427 428 429 430
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
431
	}
432

433
	mutex_unlock(&chip->reg_lock);
434 435 436 437
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
438
	struct mv88e6xxx_chip *chip = (void *)_ps;
439

440
	schedule_work(&chip->ppu_work);
441 442
}

443
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
444 445 446
{
	int ret;

447
	mutex_lock(&chip->ppu_mutex);
448

449
	/* If the PHY polling unit is enabled, disable it so that
450 451 452 453
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
454 455
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
456
		if (ret < 0) {
457
			mutex_unlock(&chip->ppu_mutex);
458 459
			return ret;
		}
460
		chip->ppu_disabled = 1;
461
	} else {
462
		del_timer(&chip->ppu_timer);
463
		ret = 0;
464 465 466 467 468
	}

	return ret;
}

469
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
470
{
471
	/* Schedule a timer to re-enable the PHY polling unit. */
472 473
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
474 475
}

476
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
477
{
478 479 480 481 482
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&chip->ppu_timer);
	chip->ppu_timer.data = (unsigned long)chip;
	chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
483 484
}

485 486 487 488 489
static void mv88e6xxx_ppu_state_destroy(struct mv88e6xxx_chip *chip)
{
	del_timer_sync(&chip->ppu_timer);
}

490 491
static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
				  int reg, u16 *val)
492
{
493
	int err;
494

495 496 497
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_read(chip, addr, reg, val);
498
		mv88e6xxx_ppu_access_put(chip);
499 500
	}

501
	return err;
502 503
}

504 505
static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
				   int reg, u16 val)
506
{
507
	int err;
508

509 510 511
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_write(chip, addr, reg, val);
512
		mv88e6xxx_ppu_access_put(chip);
513 514
	}

515
	return err;
516 517
}

518
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
519
{
520
	return chip->info->family == MV88E6XXX_FAMILY_6065;
521 522
}

523
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
524
{
525
	return chip->info->family == MV88E6XXX_FAMILY_6095;
526 527
}

528
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
529
{
530
	return chip->info->family == MV88E6XXX_FAMILY_6097;
531 532
}

533
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
534
{
535
	return chip->info->family == MV88E6XXX_FAMILY_6165;
536 537
}

538
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
539
{
540
	return chip->info->family == MV88E6XXX_FAMILY_6185;
541 542
}

543
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
544
{
545
	return chip->info->family == MV88E6XXX_FAMILY_6320;
546 547
}

548
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
549
{
550
	return chip->info->family == MV88E6XXX_FAMILY_6351;
551 552
}

553
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
554
{
555
	return chip->info->family == MV88E6XXX_FAMILY_6352;
556 557
}

558 559 560 561
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
562 563
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
564
{
V
Vivien Didelot 已提交
565
	struct mv88e6xxx_chip *chip = ds->priv;
566 567
	u16 reg;
	int err;
568 569 570 571

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

572
	mutex_lock(&chip->reg_lock);
573

574 575
	err = mv88e6xxx_port_read(chip, port, PORT_PCS_CTRL, &reg);
	if (err)
576 577
		goto out;

578 579 580 581 582
	reg &= ~(PORT_PCS_CTRL_LINK_UP |
		 PORT_PCS_CTRL_FORCE_LINK |
		 PORT_PCS_CTRL_DUPLEX_FULL |
		 PORT_PCS_CTRL_FORCE_DUPLEX |
		 PORT_PCS_CTRL_UNFORCED);
583 584 585

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
586
		reg |= PORT_PCS_CTRL_LINK_UP;
587

588
	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

610
	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
611
	    (port >= mv88e6xxx_num_ports(chip) - 2)) {
612 613 614 615 616 617 618 619
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
620
	mv88e6xxx_port_write(chip, port, PORT_PCS_CTRL, reg);
621 622

out:
623
	mutex_unlock(&chip->reg_lock);
624 625
}

626
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
627
{
628 629
	u16 val;
	int i, err;
630 631

	for (i = 0; i < 10; i++) {
632 633
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_OP, &val);
		if ((val & GLOBAL_STATS_OP_BUSY) == 0)
634 635 636 637 638 639
			return 0;
	}

	return -ETIMEDOUT;
}

640
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
641
{
642
	int err;
643

644
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
645 646
		port = (port + 1) << 5;

647
	/* Snapshot the hardware statistics counters for this port. */
648 649 650 651 652
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_CAPTURE_PORT |
				 GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (err)
		return err;
653

654
	/* Wait for the snapshotting to complete. */
655
	return _mv88e6xxx_stats_wait(chip);
656 657
}

658
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
659
				  int stat, u32 *val)
660
{
661 662 663
	u32 value;
	u16 reg;
	int err;
664 665 666

	*val = 0;

667 668 669 670
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_READ_CAPTURED |
				 GLOBAL_STATS_OP_HIST_RX_TX | stat);
	if (err)
671 672
		return;

673 674
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
675 676
		return;

677 678
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_32, &reg);
	if (err)
679 680
		return;

681
	value = reg << 16;
682

683 684
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_01, &reg);
	if (err)
685 686
		return;

687
	*val = value | reg;
688 689
}

690
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
750 751
};

752
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
753
			       struct mv88e6xxx_hw_stat *stat)
754
{
755 756
	switch (stat->type) {
	case BANK0:
757
		return true;
758
	case BANK1:
759
		return mv88e6xxx_6320_family(chip);
760
	case PORT:
761 762 763 764 765 766
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
767
	}
768
	return false;
769 770
}

771
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
772
					    struct mv88e6xxx_hw_stat *s,
773 774 775 776
					    int port)
{
	u32 low;
	u32 high = 0;
777 778
	int err;
	u16 reg;
779 780
	u64 value;

781 782
	switch (s->type) {
	case PORT:
783 784
		err = mv88e6xxx_port_read(chip, port, s->reg, &reg);
		if (err)
785 786
			return UINT64_MAX;

787
		low = reg;
788
		if (s->sizeof_stat == 4) {
789 790
			err = mv88e6xxx_port_read(chip, port, s->reg + 1, &reg);
			if (err)
791
				return UINT64_MAX;
792
			high = reg;
793
		}
794 795 796
		break;
	case BANK0:
	case BANK1:
797
		_mv88e6xxx_stats_read(chip, s->reg, &low);
798
		if (s->sizeof_stat == 8)
799
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
800 801 802 803 804
	}
	value = (((u64)high) << 16) | low;
	return value;
}

805 806
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
807
{
V
Vivien Didelot 已提交
808
	struct mv88e6xxx_chip *chip = ds->priv;
809 810
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
811

812 813
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
814
		if (mv88e6xxx_has_stat(chip, stat)) {
815 816 817 818
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
819
	}
820 821
}

822
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
823
{
V
Vivien Didelot 已提交
824
	struct mv88e6xxx_chip *chip = ds->priv;
825 826 827 828 829
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
830
		if (mv88e6xxx_has_stat(chip, stat))
831 832 833
			j++;
	}
	return j;
834 835
}

836 837
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
838
{
V
Vivien Didelot 已提交
839
	struct mv88e6xxx_chip *chip = ds->priv;
840 841 842 843
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

844
	mutex_lock(&chip->reg_lock);
845

846
	ret = _mv88e6xxx_stats_snapshot(chip, port);
847
	if (ret < 0) {
848
		mutex_unlock(&chip->reg_lock);
849 850 851 852
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
853 854
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
855 856 857 858
			j++;
		}
	}

859
	mutex_unlock(&chip->reg_lock);
860 861
}

862
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
863 864 865 866
{
	return 32 * sizeof(u16);
}

867 868
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
869
{
V
Vivien Didelot 已提交
870
	struct mv88e6xxx_chip *chip = ds->priv;
871 872
	int err;
	u16 reg;
873 874 875 876 877 878 879
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

880
	mutex_lock(&chip->reg_lock);
881

882 883
	for (i = 0; i < 32; i++) {

884 885 886
		err = mv88e6xxx_port_read(chip, port, i, &reg);
		if (!err)
			p[i] = reg;
887
	}
888

889
	mutex_unlock(&chip->reg_lock);
890 891
}

892
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
893
{
894
	return mv88e6xxx_g1_wait(chip, GLOBAL_ATU_OP, GLOBAL_ATU_OP_BUSY);
895 896
}

897 898
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
899
{
V
Vivien Didelot 已提交
900
	struct mv88e6xxx_chip *chip = ds->priv;
901 902
	u16 reg;
	int err;
903

904
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
905 906
		return -EOPNOTSUPP;

907
	mutex_lock(&chip->reg_lock);
908

909 910
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
911
		goto out;
912 913 914 915

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

916
	err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
917
	if (err)
918
		goto out;
919

920
	e->eee_active = !!(reg & PORT_STATUS_EEE);
921
out:
922
	mutex_unlock(&chip->reg_lock);
923 924

	return err;
925 926
}

927 928
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
929
{
V
Vivien Didelot 已提交
930
	struct mv88e6xxx_chip *chip = ds->priv;
931 932
	u16 reg;
	int err;
933

934
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
935 936
		return -EOPNOTSUPP;

937
	mutex_lock(&chip->reg_lock);
938

939 940
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
941 942
		goto out;

943
	reg &= ~0x0300;
944 945 946 947 948
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

949
	err = mv88e6xxx_phy_write(chip, port, 16, reg);
950
out:
951
	mutex_unlock(&chip->reg_lock);
952

953
	return err;
954 955
}

956
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
957
{
958 959
	u16 val;
	int err;
960

961
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_ATU_FID)) {
962 963 964
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_FID, fid);
		if (err)
			return err;
965
	} else if (mv88e6xxx_num_databases(chip) == 256) {
966
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
967 968 969
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
		if (err)
			return err;
970

971 972 973 974
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
					 (val & 0xfff) | ((fid << 8) & 0xf000));
		if (err)
			return err;
975 976 977

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
978 979
	}

980 981 982
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_OP, cmd);
	if (err)
		return err;
983

984
	return _mv88e6xxx_atu_wait(chip);
985 986
}

987
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1007
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_DATA, data);
1008 1009
}

1010
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1011 1012
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1013
{
1014 1015
	int op;
	int err;
1016

1017
	err = _mv88e6xxx_atu_wait(chip);
1018 1019
	if (err)
		return err;
1020

1021
	err = _mv88e6xxx_atu_data_write(chip, entry);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1033
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1034 1035
}

1036
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1037
				u16 fid, bool static_too)
1038 1039 1040 1041 1042
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1043

1044
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1045 1046
}

1047
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1048
			       int from_port, int to_port, bool static_too)
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1062
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1063 1064
}

1065
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1066
				 int port, bool static_too)
1067 1068
{
	/* Destination port 0xF means remove the entries */
1069
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1070 1071
}

1072 1073 1074 1075 1076 1077 1078
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

1079
static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1080
				 u8 state)
1081
{
1082
	struct dsa_switch *ds = chip->ds;
1083 1084
	u16 reg;
	int err;
1085 1086
	u8 oldstate;

1087 1088 1089
	err = mv88e6xxx_port_read(chip, port, PORT_CONTROL, &reg);
	if (err)
		return err;
1090

1091
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1092

1093 1094
	reg &= ~PORT_CONTROL_STATE_MASK;
	reg |= state;
1095

1096 1097 1098
	err = mv88e6xxx_port_write(chip, port, PORT_CONTROL, reg);
	if (err)
		return err;
1099

1100 1101 1102
	netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
		   mv88e6xxx_port_state_names[state],
		   mv88e6xxx_port_state_names[oldstate]);
1103

1104
	return 0;
1105 1106
}

1107
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1108
{
1109
	struct net_device *bridge = chip->ports[port].bridge_dev;
1110
	const u16 mask = (1 << mv88e6xxx_num_ports(chip)) - 1;
1111
	struct dsa_switch *ds = chip->ds;
1112
	u16 output_ports = 0;
1113 1114
	u16 reg;
	int err;
1115 1116 1117 1118 1119 1120
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
1121
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1122
			/* allow sending frames to every group member */
1123
			if (bridge && chip->ports[i].bridge_dev == bridge)
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1134

1135 1136 1137
	err = mv88e6xxx_port_read(chip, port, PORT_BASE_VLAN, &reg);
	if (err)
		return err;
1138

1139 1140
	reg &= ~mask;
	reg |= output_ports & mask;
1141

1142
	return mv88e6xxx_port_write(chip, port, PORT_BASE_VLAN, reg);
1143 1144
}

1145 1146
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1147
{
V
Vivien Didelot 已提交
1148
	struct mv88e6xxx_chip *chip = ds->priv;
1149
	int stp_state;
1150
	int err;
1151 1152 1153

	switch (state) {
	case BR_STATE_DISABLED:
1154
		stp_state = PORT_CONTROL_STATE_DISABLED;
1155 1156 1157
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1158
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1159 1160
		break;
	case BR_STATE_LEARNING:
1161
		stp_state = PORT_CONTROL_STATE_LEARNING;
1162 1163 1164
		break;
	case BR_STATE_FORWARDING:
	default:
1165
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1166 1167 1168
		break;
	}

1169 1170 1171
	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_port_state(chip, port, stp_state);
	mutex_unlock(&chip->reg_lock);
1172 1173

	if (err)
1174 1175
		netdev_err(ds->ports[port].netdev,
			   "failed to update state to %s\n",
1176
			   mv88e6xxx_port_state_names[stp_state]);
1177 1178
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static void mv88e6xxx_port_fast_age(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_chip *chip = ds->priv;
	int err;

	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_atu_remove(chip, 0, port, false);
	mutex_unlock(&chip->reg_lock);

	if (err)
		netdev_err(ds->ports[port].netdev, "failed to flush ATU\n");
}

1192
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1193
				u16 *new, u16 *old)
1194
{
1195
	struct dsa_switch *ds = chip->ds;
1196 1197
	u16 pvid, reg;
	int err;
1198

1199 1200 1201
	err = mv88e6xxx_port_read(chip, port, PORT_DEFAULT_VLAN, &reg);
	if (err)
		return err;
1202

1203
	pvid = reg & PORT_DEFAULT_VLAN_MASK;
1204 1205

	if (new) {
1206 1207
		reg &= ~PORT_DEFAULT_VLAN_MASK;
		reg |= *new & PORT_DEFAULT_VLAN_MASK;
1208

1209 1210 1211
		err = mv88e6xxx_port_write(chip, port, PORT_DEFAULT_VLAN, reg);
		if (err)
			return err;
1212

1213 1214
		netdev_dbg(ds->ports[port].netdev,
			   "DefaultVID %d (was %d)\n", *new, pvid);
1215 1216 1217 1218
	}

	if (old)
		*old = pvid;
1219 1220 1221 1222

	return 0;
}

1223
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1224
				    int port, u16 *pvid)
1225
{
1226
	return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1227 1228
}

1229
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1230
				    int port, u16 pvid)
1231
{
1232
	return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1233 1234
}

1235
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1236
{
1237
	return mv88e6xxx_g1_wait(chip, GLOBAL_VTU_OP, GLOBAL_VTU_OP_BUSY);
1238 1239
}

1240
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1241
{
1242
	int err;
1243

1244 1245 1246
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_OP, op);
	if (err)
		return err;
1247

1248
	return _mv88e6xxx_vtu_wait(chip);
1249 1250
}

1251
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1252 1253 1254
{
	int ret;

1255
	ret = _mv88e6xxx_vtu_wait(chip);
1256 1257 1258
	if (ret < 0)
		return ret;

1259
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1260 1261
}

1262
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1263
					struct mv88e6xxx_vtu_entry *entry,
1264 1265 1266
					unsigned int nibble_offset)
{
	u16 regs[3];
1267
	int i, err;
1268 1269

	for (i = 0; i < 3; ++i) {
1270
		u16 *reg = &regs[i];
1271

1272 1273 1274
		err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1275 1276
	}

1277
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1278 1279 1280 1281 1282 1283 1284 1285 1286
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1287
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1288
				   struct mv88e6xxx_vtu_entry *entry)
1289
{
1290
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1291 1292
}

1293
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1294
				   struct mv88e6xxx_vtu_entry *entry)
1295
{
1296
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1297 1298
}

1299
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1300
					 struct mv88e6xxx_vtu_entry *entry,
1301 1302 1303
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
1304
	int i, err;
1305

1306
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1307 1308 1309 1310 1311 1312 1313
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1314 1315 1316 1317 1318
		u16 reg = regs[i];

		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1319 1320 1321 1322 1323
	}

	return 0;
}

1324
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1325
				    struct mv88e6xxx_vtu_entry *entry)
1326
{
1327
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1328 1329
}

1330
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1331
				    struct mv88e6xxx_vtu_entry *entry)
1332
{
1333
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1334 1335
}

1336
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1337
{
1338 1339
	return mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID,
				  vid & GLOBAL_VTU_VID_MASK);
1340 1341
}

1342
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1343
				  struct mv88e6xxx_vtu_entry *entry)
1344
{
1345
	struct mv88e6xxx_vtu_entry next = { 0 };
1346 1347
	u16 val;
	int err;
1348

1349 1350 1351
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1352

1353 1354 1355
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (err)
		return err;
1356

1357 1358 1359
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1360

1361 1362
	next.vid = val & GLOBAL_VTU_VID_MASK;
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1363 1364

	if (next.valid) {
1365 1366 1367
		err = mv88e6xxx_vtu_data_read(chip, &next);
		if (err)
			return err;
1368

1369
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1370 1371 1372
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_FID, &val);
			if (err)
				return err;
1373

1374
			next.fid = val & GLOBAL_VTU_FID_MASK;
1375
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1376 1377 1378
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1379 1380 1381
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_OP, &val);
			if (err)
				return err;
1382

1383 1384
			next.fid = (val & 0xf00) >> 4;
			next.fid |= val & 0xf;
1385
		}
1386

1387
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1388 1389 1390
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
			if (err)
				return err;
1391

1392
			next.sid = val & GLOBAL_VTU_SID_MASK;
1393 1394 1395 1396 1397 1398 1399
		}
	}

	*entry = next;
	return 0;
}

1400 1401 1402
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1403
{
V
Vivien Didelot 已提交
1404
	struct mv88e6xxx_chip *chip = ds->priv;
1405
	struct mv88e6xxx_vtu_entry next;
1406 1407 1408
	u16 pvid;
	int err;

1409
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1410 1411
		return -EOPNOTSUPP;

1412
	mutex_lock(&chip->reg_lock);
1413

1414
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1415 1416 1417
	if (err)
		goto unlock;

1418
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1419 1420 1421 1422
	if (err)
		goto unlock;

	do {
1423
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1434 1435
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1450
	mutex_unlock(&chip->reg_lock);
1451 1452 1453 1454

	return err;
}

1455
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1456
				    struct mv88e6xxx_vtu_entry *entry)
1457
{
1458
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1459
	u16 reg = 0;
1460
	int err;
1461

1462 1463 1464
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1465 1466 1467 1468 1469

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1470 1471 1472
	err = mv88e6xxx_vtu_data_write(chip, entry);
	if (err)
		return err;
1473

1474
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1475
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1476 1477 1478
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
		if (err)
			return err;
1479
	}
1480

1481
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1482
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1483 1484 1485
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_FID, reg);
		if (err)
			return err;
1486
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1487 1488 1489 1490 1491
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1492 1493 1494 1495 1496
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1497 1498 1499
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1500

1501
	return _mv88e6xxx_vtu_cmd(chip, op);
1502 1503
}

1504
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1505
				  struct mv88e6xxx_vtu_entry *entry)
1506
{
1507
	struct mv88e6xxx_vtu_entry next = { 0 };
1508 1509
	u16 val;
	int err;
1510

1511 1512 1513
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1514

1515 1516 1517 1518
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID,
				 sid & GLOBAL_VTU_SID_MASK);
	if (err)
		return err;
1519

1520 1521 1522
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (err)
		return err;
1523

1524 1525 1526
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
	if (err)
		return err;
1527

1528
	next.sid = val & GLOBAL_VTU_SID_MASK;
1529

1530 1531 1532
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1533

1534
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1535 1536

	if (next.valid) {
1537 1538 1539
		err = mv88e6xxx_stu_data_read(chip, &next);
		if (err)
			return err;
1540 1541 1542 1543 1544 1545
	}

	*entry = next;
	return 0;
}

1546
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1547
				    struct mv88e6xxx_vtu_entry *entry)
1548 1549
{
	u16 reg = 0;
1550
	int err;
1551

1552 1553 1554
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1555 1556 1557 1558 1559

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1560 1561 1562
	err = mv88e6xxx_stu_data_write(chip, entry);
	if (err)
		return err;
1563 1564 1565

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1566 1567 1568
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1569 1570

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1571 1572 1573
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
	if (err)
		return err;
1574

1575
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1576 1577
}

1578
static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1579
			       u16 *new, u16 *old)
1580
{
1581
	struct dsa_switch *ds = chip->ds;
1582
	u16 upper_mask;
1583
	u16 fid;
1584 1585
	u16 reg;
	int err;
1586

1587
	if (mv88e6xxx_num_databases(chip) == 4096)
1588
		upper_mask = 0xff;
1589
	else if (mv88e6xxx_num_databases(chip) == 256)
1590
		upper_mask = 0xf;
1591 1592 1593
	else
		return -EOPNOTSUPP;

1594
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1595 1596 1597
	err = mv88e6xxx_port_read(chip, port, PORT_BASE_VLAN, &reg);
	if (err)
		return err;
1598

1599
	fid = (reg & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
1600 1601

	if (new) {
1602 1603
		reg &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		reg |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
1604

1605 1606 1607
		err = mv88e6xxx_port_write(chip, port, PORT_BASE_VLAN, reg);
		if (err)
			return err;
1608 1609 1610
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1611 1612 1613
	err = mv88e6xxx_port_read(chip, port, PORT_CONTROL_1, &reg);
	if (err)
		return err;
1614

1615
	fid |= (reg & upper_mask) << 4;
1616 1617

	if (new) {
1618 1619
		reg &= ~upper_mask;
		reg |= (*new >> 4) & upper_mask;
1620

1621 1622 1623
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_1, reg);
		if (err)
			return err;
1624

1625 1626
		netdev_dbg(ds->ports[port].netdev,
			   "FID %d (was %d)\n", *new, fid);
1627 1628 1629 1630 1631 1632 1633 1634
	}

	if (old)
		*old = fid;

	return 0;
}

1635
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1636
				   int port, u16 *fid)
1637
{
1638
	return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1639 1640
}

1641
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1642
				   int port, u16 fid)
1643
{
1644
	return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1645 1646
}

1647
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1648 1649
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1650
	struct mv88e6xxx_vtu_entry vlan;
1651
	int i, err;
1652 1653 1654

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1655
	/* Set every FID bit used by the (un)bridged ports */
1656
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1657
		err = _mv88e6xxx_port_fid_get(chip, i, fid);
1658 1659 1660 1661 1662 1663
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1664
	/* Set every FID bit used by the VLAN entries */
1665
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1666 1667 1668 1669
	if (err)
		return err;

	do {
1670
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1684
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1685 1686 1687
		return -ENOSPC;

	/* Clear the database */
1688
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1689 1690
}

1691
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1692
			      struct mv88e6xxx_vtu_entry *entry)
1693
{
1694
	struct dsa_switch *ds = chip->ds;
1695
	struct mv88e6xxx_vtu_entry vlan = {
1696 1697 1698
		.valid = true,
		.vid = vid,
	};
1699 1700
	int i, err;

1701
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1702 1703
	if (err)
		return err;
1704

1705
	/* exclude all ports except the CPU and DSA ports */
1706
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
1707 1708 1709
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1710

1711 1712
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1713
		struct mv88e6xxx_vtu_entry vstp;
1714 1715 1716 1717 1718 1719

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1720
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1721 1722 1723 1724 1725 1726 1727 1728
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1729
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1730 1731 1732 1733 1734 1735 1736 1737 1738
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1739
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1740
			      struct mv88e6xxx_vtu_entry *entry, bool creat)
1741 1742 1743 1744 1745 1746
{
	int err;

	if (!vid)
		return -EINVAL;

1747
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1748 1749 1750
	if (err)
		return err;

1751
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1762
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1763 1764 1765 1766 1767
	}

	return err;
}

1768 1769 1770
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
V
Vivien Didelot 已提交
1771
	struct mv88e6xxx_chip *chip = ds->priv;
1772
	struct mv88e6xxx_vtu_entry vlan;
1773 1774 1775 1776 1777
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1778
	mutex_lock(&chip->reg_lock);
1779

1780
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1781 1782 1783 1784
	if (err)
		goto unlock;

	do {
1785
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1786 1787 1788 1789 1790 1791 1792 1793 1794
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1795
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1796 1797 1798 1799 1800 1801 1802
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1803 1804
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1805 1806
				break; /* same bridge, check next VLAN */

1807
			netdev_warn(ds->ports[port].netdev,
1808 1809
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1810
				    netdev_name(chip->ports[i].bridge_dev));
1811 1812 1813 1814 1815 1816
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1817
	mutex_unlock(&chip->reg_lock);
1818 1819 1820 1821

	return err;
}

1822 1823 1824 1825 1826 1827 1828
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

1829 1830
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1831
{
V
Vivien Didelot 已提交
1832
	struct mv88e6xxx_chip *chip = ds->priv;
1833 1834
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
1835 1836
	u16 reg;
	int err;
1837

1838
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1839 1840
		return -EOPNOTSUPP;

1841
	mutex_lock(&chip->reg_lock);
1842

1843 1844
	err = mv88e6xxx_port_read(chip, port, PORT_CONTROL_2, &reg);
	if (err)
1845 1846
		goto unlock;

1847
	old = reg & PORT_CONTROL_2_8021Q_MASK;
1848

1849
	if (new != old) {
1850 1851
		reg &= ~PORT_CONTROL_2_8021Q_MASK;
		reg |= new & PORT_CONTROL_2_8021Q_MASK;
1852

1853 1854
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_2, reg);
		if (err)
1855 1856
			goto unlock;

1857
		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1858 1859 1860
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1861

1862
	err = 0;
1863
unlock:
1864
	mutex_unlock(&chip->reg_lock);
1865

1866
	return err;
1867 1868
}

1869 1870 1871 1872
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1873
{
V
Vivien Didelot 已提交
1874
	struct mv88e6xxx_chip *chip = ds->priv;
1875 1876
	int err;

1877
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1878 1879
		return -EOPNOTSUPP;

1880 1881 1882 1883 1884 1885 1886 1887
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1888 1889 1890 1891 1892 1893
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1894
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1895
				    u16 vid, bool untagged)
1896
{
1897
	struct mv88e6xxx_vtu_entry vlan;
1898 1899
	int err;

1900
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1901
	if (err)
1902
		return err;
1903 1904 1905 1906 1907

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1908
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1909 1910
}

1911 1912 1913
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
1914
{
V
Vivien Didelot 已提交
1915
	struct mv88e6xxx_chip *chip = ds->priv;
1916 1917 1918 1919
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

1920
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1921 1922
		return;

1923
	mutex_lock(&chip->reg_lock);
1924

1925
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1926
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1927 1928
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
1929
				   vid, untagged ? 'u' : 't');
1930

1931
	if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1932
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1933
			   vlan->vid_end);
1934

1935
	mutex_unlock(&chip->reg_lock);
1936 1937
}

1938
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1939
				    int port, u16 vid)
1940
{
1941
	struct dsa_switch *ds = chip->ds;
1942
	struct mv88e6xxx_vtu_entry vlan;
1943 1944
	int i, err;

1945
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1946
	if (err)
1947
		return err;
1948

1949 1950
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1951
		return -EOPNOTSUPP;
1952 1953 1954 1955

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1956
	vlan.valid = false;
1957
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1958
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1959 1960 1961
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1962
			vlan.valid = true;
1963 1964 1965 1966
			break;
		}
	}

1967
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1968 1969 1970
	if (err)
		return err;

1971
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
1972 1973
}

1974 1975
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
1976
{
V
Vivien Didelot 已提交
1977
	struct mv88e6xxx_chip *chip = ds->priv;
1978 1979 1980
	u16 pvid, vid;
	int err = 0;

1981
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1982 1983
		return -EOPNOTSUPP;

1984
	mutex_lock(&chip->reg_lock);
1985

1986
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1987 1988 1989
	if (err)
		goto unlock;

1990
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1991
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
1992 1993 1994 1995
		if (err)
			goto unlock;

		if (vid == pvid) {
1996
			err = _mv88e6xxx_port_pvid_set(chip, port, 0);
1997 1998 1999 2000 2001
			if (err)
				goto unlock;
		}
	}

2002
unlock:
2003
	mutex_unlock(&chip->reg_lock);
2004 2005 2006 2007

	return err;
}

2008
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2009
				    const unsigned char *addr)
2010
{
2011
	int i, err;
2012 2013

	for (i = 0; i < 3; i++) {
2014 2015 2016 2017
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_MAC_01 + i,
					 (addr[i * 2] << 8) | addr[i * 2 + 1]);
		if (err)
			return err;
2018 2019 2020 2021 2022
	}

	return 0;
}

2023
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2024
				   unsigned char *addr)
2025
{
2026 2027
	u16 val;
	int i, err;
2028 2029

	for (i = 0; i < 3; i++) {
2030 2031 2032 2033 2034 2035
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_MAC_01 + i, &val);
		if (err)
			return err;

		addr[i * 2] = val >> 8;
		addr[i * 2 + 1] = val & 0xff;
2036 2037 2038 2039 2040
	}

	return 0;
}

2041
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2042
			       struct mv88e6xxx_atu_entry *entry)
2043
{
2044 2045
	int ret;

2046
	ret = _mv88e6xxx_atu_wait(chip);
2047 2048 2049
	if (ret < 0)
		return ret;

2050
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2051 2052 2053
	if (ret < 0)
		return ret;

2054
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2055
	if (ret < 0)
2056 2057
		return ret;

2058
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2059
}
2060

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
				  struct mv88e6xxx_atu_entry *entry);

static int mv88e6xxx_atu_get(struct mv88e6xxx_chip *chip, int fid,
			     const u8 *addr, struct mv88e6xxx_atu_entry *entry)
{
	struct mv88e6xxx_atu_entry next;
	int err;

	eth_broadcast_addr(next.mac);

	err = _mv88e6xxx_atu_mac_write(chip, next.mac);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_atu_getnext(chip, fid, &next);
		if (err)
			return err;

		if (next.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (ether_addr_equal(next.mac, addr)) {
			*entry = next;
			return 0;
		}
	} while (!is_broadcast_ether_addr(next.mac));

	memset(entry, 0, sizeof(*entry));
	entry->fid = fid;
	ether_addr_copy(entry->mac, addr);

	return 0;
}

2097 2098 2099
static int mv88e6xxx_port_db_load_purge(struct mv88e6xxx_chip *chip, int port,
					const unsigned char *addr, u16 vid,
					u8 state)
2100
{
2101
	struct mv88e6xxx_vtu_entry vlan;
2102
	struct mv88e6xxx_atu_entry entry;
2103 2104
	int err;

2105 2106
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2107
		err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2108
	else
2109
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2110 2111
	if (err)
		return err;
2112

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	err = mv88e6xxx_atu_get(chip, vlan.fid, addr, &entry);
	if (err)
		return err;

	/* Purge the ATU entry only if no port is using it anymore */
	if (state == GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.portv_trunkid &= ~BIT(port);
		if (!entry.portv_trunkid)
			entry.state = GLOBAL_ATU_DATA_STATE_UNUSED;
	} else {
		entry.portv_trunkid |= BIT(port);
		entry.state = state;
2125 2126
	}

2127
	return _mv88e6xxx_atu_load(chip, &entry);
2128 2129
}

2130 2131 2132
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2133 2134 2135 2136 2137 2138 2139
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2140 2141 2142
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2143
{
V
Vivien Didelot 已提交
2144
	struct mv88e6xxx_chip *chip = ds->priv;
2145

2146
	mutex_lock(&chip->reg_lock);
2147 2148 2149
	if (mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					 GLOBAL_ATU_DATA_STATE_UC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load unicast MAC address\n");
2150
	mutex_unlock(&chip->reg_lock);
2151 2152
}

2153 2154
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2155
{
V
Vivien Didelot 已提交
2156
	struct mv88e6xxx_chip *chip = ds->priv;
2157
	int err;
2158

2159
	mutex_lock(&chip->reg_lock);
2160 2161
	err = mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
2162
	mutex_unlock(&chip->reg_lock);
2163

2164
	return err;
2165 2166
}

2167
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2168
				  struct mv88e6xxx_atu_entry *entry)
2169
{
2170
	struct mv88e6xxx_atu_entry next = { 0 };
2171 2172
	u16 val;
	int err;
2173 2174

	next.fid = fid;
2175

2176 2177 2178
	err = _mv88e6xxx_atu_wait(chip);
	if (err)
		return err;
2179

2180 2181 2182
	err = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
	if (err)
		return err;
2183

2184 2185 2186
	err = _mv88e6xxx_atu_mac_read(chip, next.mac);
	if (err)
		return err;
2187

2188 2189 2190
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_DATA, &val);
	if (err)
		return err;
2191

2192
	next.state = val & GLOBAL_ATU_DATA_STATE_MASK;
2193 2194 2195
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

2196
		if (val & GLOBAL_ATU_DATA_TRUNK) {
2197 2198 2199 2200 2201 2202 2203 2204 2205
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

2206
		next.portv_trunkid = (val & mask) >> shift;
2207
	}
2208

2209
	*entry = next;
2210 2211 2212
	return 0;
}

2213 2214 2215 2216
static int mv88e6xxx_port_db_dump_fid(struct mv88e6xxx_chip *chip,
				      u16 fid, u16 vid, int port,
				      struct switchdev_obj *obj,
				      int (*cb)(struct switchdev_obj *obj))
2217 2218 2219 2220 2221 2222
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2223
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2224 2225 2226 2227
	if (err)
		return err;

	do {
2228
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2229
		if (err)
2230
			return err;
2231 2232 2233 2234

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

2235 2236 2237 2238 2239
		if (addr.trunk || (addr.portv_trunkid & BIT(port)) == 0)
			continue;

		if (obj->id == SWITCHDEV_OBJ_ID_PORT_FDB) {
			struct switchdev_obj_port_fdb *fdb;
2240

2241 2242 2243 2244
			if (!is_unicast_ether_addr(addr.mac))
				continue;

			fdb = SWITCHDEV_OBJ_PORT_FDB(obj);
2245 2246
			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
2247 2248 2249 2250
			if (addr.state == GLOBAL_ATU_DATA_STATE_UC_STATIC)
				fdb->ndm_state = NUD_NOARP;
			else
				fdb->ndm_state = NUD_REACHABLE;
2251 2252 2253 2254 2255 2256 2257 2258 2259
		} else if (obj->id == SWITCHDEV_OBJ_ID_PORT_MDB) {
			struct switchdev_obj_port_mdb *mdb;

			if (!is_multicast_ether_addr(addr.mac))
				continue;

			mdb = SWITCHDEV_OBJ_PORT_MDB(obj);
			mdb->vid = vid;
			ether_addr_copy(mdb->addr, addr.mac);
2260 2261
		} else {
			return -EOPNOTSUPP;
2262
		}
2263 2264 2265 2266

		err = cb(obj);
		if (err)
			return err;
2267 2268 2269 2270 2271
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2272 2273 2274
static int mv88e6xxx_port_db_dump(struct mv88e6xxx_chip *chip, int port,
				  struct switchdev_obj *obj,
				  int (*cb)(struct switchdev_obj *obj))
2275
{
2276
	struct mv88e6xxx_vtu_entry vlan = {
2277 2278
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2279
	u16 fid;
2280 2281
	int err;

2282
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2283
	err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2284
	if (err)
2285
		return err;
2286

2287
	err = mv88e6xxx_port_db_dump_fid(chip, fid, 0, port, obj, cb);
2288
	if (err)
2289
		return err;
2290

2291
	/* Dump VLANs' Filtering Information Databases */
2292
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2293
	if (err)
2294
		return err;
2295 2296

	do {
2297
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2298
		if (err)
2299
			return err;
2300 2301 2302 2303

		if (!vlan.valid)
			break;

2304 2305
		err = mv88e6xxx_port_db_dump_fid(chip, vlan.fid, vlan.vid, port,
						 obj, cb);
2306
		if (err)
2307
			return err;
2308 2309
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

2310 2311 2312 2313 2314 2315 2316
	return err;
}

static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
2317
	struct mv88e6xxx_chip *chip = ds->priv;
2318 2319 2320 2321
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &fdb->obj, cb);
2322
	mutex_unlock(&chip->reg_lock);
2323 2324 2325 2326

	return err;
}

2327 2328
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2329
{
V
Vivien Didelot 已提交
2330
	struct mv88e6xxx_chip *chip = ds->priv;
2331
	int i, err = 0;
2332

2333
	mutex_lock(&chip->reg_lock);
2334

2335
	/* Assign the bridge and remap each port's VLANTable */
2336
	chip->ports[port].bridge_dev = bridge;
2337

2338
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
2339 2340
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2341 2342 2343 2344 2345
			if (err)
				break;
		}
	}

2346
	mutex_unlock(&chip->reg_lock);
2347

2348
	return err;
2349 2350
}

2351
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2352
{
V
Vivien Didelot 已提交
2353
	struct mv88e6xxx_chip *chip = ds->priv;
2354
	struct net_device *bridge = chip->ports[port].bridge_dev;
2355
	int i;
2356

2357
	mutex_lock(&chip->reg_lock);
2358

2359
	/* Unassign the bridge and remap each port's VLANTable */
2360
	chip->ports[port].bridge_dev = NULL;
2361

2362
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
2363 2364
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2365 2366
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2367

2368
	mutex_unlock(&chip->reg_lock);
2369 2370
}

2371
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2372
{
2373
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2374
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2375
	struct gpio_desc *gpiod = chip->reset;
2376
	unsigned long timeout;
2377
	u16 reg;
2378
	int err;
2379 2380 2381
	int i;

	/* Set all ports to the disabled state. */
2382
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2383 2384 2385
		err = mv88e6xxx_port_read(chip, i, PORT_CONTROL, &reg);
		if (err)
			return err;
2386

2387 2388 2389 2390
		err = mv88e6xxx_port_write(chip, i, PORT_CONTROL,
					   reg & 0xfffc);
		if (err)
			return err;
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2409
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc000);
2410
	else
2411
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc400);
2412 2413
	if (err)
		return err;
2414 2415 2416 2417

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2418 2419 2420
		err = mv88e6xxx_g1_read(chip, 0x00, &reg);
		if (err)
			return err;
2421

2422
		if ((reg & is_reset) == is_reset)
2423 2424 2425 2426
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
2427
		err = -ETIMEDOUT;
2428
	else
2429
		err = 0;
2430

2431
	return err;
2432 2433
}

2434
static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2435
{
2436 2437
	u16 val;
	int err;
2438

2439 2440 2441 2442
	/* Clear Power Down bit */
	err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
	if (err)
		return err;
2443

2444 2445 2446
	if (val & BMCR_PDOWN) {
		val &= ~BMCR_PDOWN;
		err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2447 2448
	}

2449
	return err;
2450 2451
}

2452
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2453
{
2454
	struct dsa_switch *ds = chip->ds;
2455
	int err;
2456
	u16 reg;
2457

2458 2459 2460 2461
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2462 2463 2464 2465 2466 2467
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
2468
		err = mv88e6xxx_port_read(chip, port, PORT_PCS_CTRL, &reg);
2469
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2470
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2471 2472 2473 2474
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
2475
			if (mv88e6xxx_6065_family(chip))
2476 2477 2478 2479 2480 2481 2482
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

2483 2484 2485
		err = mv88e6xxx_port_write(chip, port, PORT_PCS_CTRL, reg);
		if (err)
			return err;
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2503 2504 2505 2506
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2507 2508 2509 2510
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2511
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2512
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2513
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2514 2515
		else
			reg |= PORT_CONTROL_DSA_TAG;
2516 2517
		reg |= PORT_CONTROL_EGRESS_ADD_TAG |
			PORT_CONTROL_FORWARD_UNKNOWN;
2518
	}
2519
	if (dsa_is_dsa_port(ds, port)) {
2520 2521
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2522
			reg |= PORT_CONTROL_DSA_TAG;
2523 2524 2525 2526 2527
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2528
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2529 2530
		}

2531 2532 2533 2534 2535
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2536 2537 2538
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL, reg);
		if (err)
			return err;
2539 2540
	}

2541 2542 2543
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2544
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
		err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
		if (err)
			return err;
		reg &= PORT_STATUS_CMODE_MASK;
		if ((reg == PORT_STATUS_CMODE_100BASE_X) ||
		    (reg == PORT_STATUS_CMODE_1000BASE_X) ||
		    (reg == PORT_STATUS_CMODE_SGMII)) {
			err = mv88e6xxx_serdes_power_on(chip);
			if (err < 0)
				return err;
2555 2556 2557
		}
	}

2558
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2559
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2560 2561 2562
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2563 2564
	 */
	reg = 0;
2565 2566 2567 2568
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2569 2570
		reg = PORT_CONTROL_2_MAP_DA;

2571 2572
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2573 2574
		reg |= PORT_CONTROL_2_JUMBO_10240;

2575
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2576 2577 2578 2579 2580 2581 2582 2583 2584
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2585
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2586

2587
	if (reg) {
2588 2589 2590
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_2, reg);
		if (err)
			return err;
2591 2592 2593 2594 2595 2596 2597
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2598
	reg = 1 << port;
2599 2600
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2601
		reg = 0;
2602

2603 2604 2605
	err = mv88e6xxx_port_write(chip, port, PORT_ASSOC_VECTOR, reg);
	if (err)
		return err;
2606 2607

	/* Egress rate control 2: disable egress rate control. */
2608 2609 2610
	err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL_2, 0x0000);
	if (err)
		return err;
2611

2612 2613 2614
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2615 2616 2617 2618
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2619 2620 2621
		err = mv88e6xxx_port_write(chip, port, PORT_PAUSE_CTRL, 0x0000);
		if (err)
			return err;
2622 2623 2624 2625 2626

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2627 2628
		err = mv88e6xxx_port_write(chip, port, PORT_ATU_CONTROL,
					   0x0000);
2629 2630 2631
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2632 2633 2634 2635
		err = mv88e6xxx_port_write(chip, port, PORT_PRI_OVERRIDE,
					   0x0000);
		if (err)
			return err;
2636 2637 2638 2639

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2640
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
2641 2642 2643 2644
			err = mv88e6xxx_port_write(chip, port, PORT_ETH_TYPE,
						   ETH_P_EDSA);
			if (err)
				return err;
2645 2646
		}

2647 2648 2649
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2650 2651 2652 2653
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_0123,
					   0x3210);
		if (err)
			return err;
2654 2655 2656 2657

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2658 2659 2660 2661
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_4567,
					   0x7654);
		if (err)
			return err;
2662 2663
	}

2664
	/* Rate Control: disable ingress rate limiting. */
2665 2666 2667
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2668 2669 2670 2671
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0001);
		if (err)
			return err;
2672
	} else if (mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip)) {
2673 2674 2675 2676
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0000);
		if (err)
			return err;
2677 2678
	}

2679 2680
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2681
	 */
2682 2683 2684
	err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_1, 0x0000);
	if (err)
		return err;
2685

2686
	/* Port based VLAN map: give each port the same default address
2687 2688
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2689
	 */
2690 2691 2692
	err = _mv88e6xxx_port_fid_set(chip, port, 0);
	if (err)
		return err;
2693

2694 2695 2696
	err = _mv88e6xxx_port_based_vlan_map(chip, port);
	if (err)
		return err;
2697 2698 2699 2700

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2701
	return mv88e6xxx_port_write(chip, port, PORT_DEFAULT_VLAN, 0x0000);
2702 2703
}

2704
int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2705 2706 2707
{
	int err;

2708
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
2709 2710 2711
	if (err)
		return err;

2712
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
2713 2714 2715
	if (err)
		return err;

2716 2717 2718 2719 2720
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
	if (err)
		return err;

	return 0;
2721 2722
}

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

2739
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
2740 2741 2742 2743 2744 2745 2746
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

2747
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL, val);
2748 2749
}

2750 2751 2752
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
V
Vivien Didelot 已提交
2753
	struct mv88e6xxx_chip *chip = ds->priv;
2754 2755 2756 2757 2758 2759 2760 2761 2762
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2763
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2764
{
2765
	struct dsa_switch *ds = chip->ds;
2766
	u32 upstream_port = dsa_upstream_port(ds);
2767
	u16 reg;
2768
	int err;
2769

2770 2771 2772 2773
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
	reg = 0;
2774 2775
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2776 2777
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2778
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
2779 2780 2781
	if (err)
		return err;

2782 2783 2784 2785 2786 2787
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2788
	err = mv88e6xxx_g1_write(chip, GLOBAL_MONITOR_CONTROL, reg);
2789 2790 2791
	if (err)
		return err;

2792
	/* Disable remote management, and set the switch's DSA device number. */
2793 2794 2795
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL_2,
				 GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				 (ds->index & 0x1f));
2796 2797 2798
	if (err)
		return err;

2799 2800 2801 2802 2803
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2804 2805 2806 2807
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2808 2809
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
				 GLOBAL_ATU_CONTROL_LEARN2ALL);
2810
	if (err)
2811
		return err;
2812

2813 2814
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2815 2816 2817 2818 2819 2820 2821
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2822
	/* Configure the IP ToS mapping registers. */
2823
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_0, 0x0000);
2824
	if (err)
2825
		return err;
2826
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_1, 0x0000);
2827
	if (err)
2828
		return err;
2829
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_2, 0x5555);
2830
	if (err)
2831
		return err;
2832
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_3, 0x5555);
2833
	if (err)
2834
		return err;
2835
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_4, 0xaaaa);
2836
	if (err)
2837
		return err;
2838
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_5, 0xaaaa);
2839
	if (err)
2840
		return err;
2841
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_6, 0xffff);
2842
	if (err)
2843
		return err;
2844
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_7, 0xffff);
2845
	if (err)
2846
		return err;
2847 2848

	/* Configure the IEEE 802.1p priority mapping register. */
2849
	err = mv88e6xxx_g1_write(chip, GLOBAL_IEEE_PRI, 0xfa41);
2850
	if (err)
2851
		return err;
2852

2853
	/* Clear the statistics counters for all ports */
2854 2855
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_FLUSH_ALL);
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2867
static int mv88e6xxx_setup(struct dsa_switch *ds)
2868
{
V
Vivien Didelot 已提交
2869
	struct mv88e6xxx_chip *chip = ds->priv;
2870
	int err;
2871 2872
	int i;

2873 2874
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
2875

2876
	mutex_lock(&chip->reg_lock);
2877

2878
	err = mv88e6xxx_switch_reset(chip);
2879 2880 2881
	if (err)
		goto unlock;

2882
	/* Setup Switch Port Registers */
2883
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2884 2885 2886 2887 2888 2889 2890
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
2891 2892 2893
	if (err)
		goto unlock;

2894 2895 2896
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
2897 2898 2899
		if (err)
			goto unlock;
	}
2900

2901
unlock:
2902
	mutex_unlock(&chip->reg_lock);
2903

2904
	return err;
2905 2906
}

2907 2908
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
V
Vivien Didelot 已提交
2909
	struct mv88e6xxx_chip *chip = ds->priv;
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	int err;

	mutex_lock(&chip->reg_lock);

	/* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
		err = mv88e6xxx_g2_set_switch_mac(chip, addr);
	else
		err = mv88e6xxx_g1_set_switch_mac(chip, addr);

	mutex_unlock(&chip->reg_lock);

	return err;
}

2925
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
2926
{
2927
	struct mv88e6xxx_chip *chip = bus->priv;
2928 2929
	u16 val;
	int err;
2930

2931
	if (phy >= mv88e6xxx_num_ports(chip))
2932
		return 0xffff;
2933

2934
	mutex_lock(&chip->reg_lock);
2935
	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
2936
	mutex_unlock(&chip->reg_lock);
2937 2938

	return err ? err : val;
2939 2940
}

2941
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
2942
{
2943
	struct mv88e6xxx_chip *chip = bus->priv;
2944
	int err;
2945

2946
	if (phy >= mv88e6xxx_num_ports(chip))
2947
		return 0xffff;
2948

2949
	mutex_lock(&chip->reg_lock);
2950
	err = mv88e6xxx_phy_write(chip, phy, reg, val);
2951
	mutex_unlock(&chip->reg_lock);
2952 2953

	return err;
2954 2955
}

2956
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
2957 2958 2959 2960 2961 2962 2963
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

	if (np)
2964
		chip->mdio_np = of_get_child_by_name(np, "mdio");
2965

2966
	bus = devm_mdiobus_alloc(chip->dev);
2967 2968 2969
	if (!bus)
		return -ENOMEM;

2970
	bus->priv = (void *)chip;
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
2981
	bus->parent = chip->dev;
2982

2983 2984
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
2985 2986 2987
	else
		err = mdiobus_register(bus);
	if (err) {
2988
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
2989 2990
		goto out;
	}
2991
	chip->mdio_bus = bus;
2992 2993 2994 2995

	return 0;

out:
2996 2997
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
2998 2999 3000 3001

	return err;
}

3002
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3003 3004

{
3005
	struct mii_bus *bus = chip->mdio_bus;
3006 3007 3008

	mdiobus_unregister(bus);

3009 3010
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3011 3012
}

3013 3014 3015 3016
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
3017
	struct mv88e6xxx_chip *chip = ds->priv;
3018
	u16 val;
3019 3020 3021 3022
	int ret;

	*temp = 0;

3023
	mutex_lock(&chip->reg_lock);
3024

3025
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
3026 3027 3028 3029
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
3030
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3031 3032 3033
	if (ret < 0)
		goto error;

3034
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
3035 3036 3037 3038 3039 3040
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

3041 3042
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
	if (ret < 0)
3043 3044 3045
		goto error;

	/* Disable temperature sensor */
3046
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
3047 3048 3049 3050 3051 3052
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3053
	mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3054
	mutex_unlock(&chip->reg_lock);
3055 3056 3057 3058 3059
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
3060
	struct mv88e6xxx_chip *chip = ds->priv;
3061
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3062
	u16 val;
3063 3064 3065 3066
	int ret;

	*temp = 0;

3067 3068 3069
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
	mutex_unlock(&chip->reg_lock);
3070 3071 3072
	if (ret < 0)
		return ret;

3073
	*temp = (val & 0xff) - 25;
3074 3075 3076 3077

	return 0;
}

3078
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3079
{
V
Vivien Didelot 已提交
3080
	struct mv88e6xxx_chip *chip = ds->priv;
3081

3082
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3083 3084
		return -EOPNOTSUPP;

3085
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3086 3087 3088 3089 3090
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3091
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3092
{
V
Vivien Didelot 已提交
3093
	struct mv88e6xxx_chip *chip = ds->priv;
3094
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3095
	u16 val;
3096 3097
	int ret;

3098
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3099 3100 3101 3102
		return -EOPNOTSUPP;

	*temp = 0;

3103 3104 3105
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3106 3107 3108
	if (ret < 0)
		return ret;

3109
	*temp = (((val >> 8) & 0x1f) * 5) - 25;
3110 3111 3112 3113

	return 0;
}

3114
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3115
{
V
Vivien Didelot 已提交
3116
	struct mv88e6xxx_chip *chip = ds->priv;
3117
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3118 3119
	u16 val;
	int err;
3120

3121
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3122 3123
		return -EOPNOTSUPP;

3124 3125 3126 3127
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	if (err)
		goto unlock;
3128
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3129 3130 3131 3132 3133 3134
	err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
				       (val & 0xe0ff) | (temp << 8));
unlock:
	mutex_unlock(&chip->reg_lock);

	return err;
3135 3136
}

3137
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3138
{
V
Vivien Didelot 已提交
3139
	struct mv88e6xxx_chip *chip = ds->priv;
3140
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3141
	u16 val;
3142 3143
	int ret;

3144
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3145 3146 3147 3148
		return -EOPNOTSUPP;

	*alarm = false;

3149 3150 3151
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3152 3153 3154
	if (ret < 0)
		return ret;

3155
	*alarm = !!(val & 0x40);
3156 3157 3158 3159 3160

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3161 3162
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3163
	struct mv88e6xxx_chip *chip = ds->priv;
3164 3165 3166 3167 3168 3169 3170

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3171
	struct mv88e6xxx_chip *chip = ds->priv;
3172 3173 3174 3175 3176
	int err;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3177
		err = mv88e6xxx_g2_get_eeprom16(chip, eeprom, data);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3194
	struct mv88e6xxx_chip *chip = ds->priv;
3195 3196 3197 3198 3199 3200 3201 3202
	int err;

	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3203
		err = mv88e6xxx_g2_set_eeprom16(chip, eeprom, data);
3204 3205 3206 3207 3208 3209 3210 3211
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	return err;
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
static const struct mv88e6xxx_ops mv88e6085_ops = {
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6095_ops = {
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6123_ops = {
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6131_ops = {
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6161_ops = {
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6165_ops = {
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6171_ops = {
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6172_ops = {
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6175_ops = {
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6176_ops = {
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6185_ops = {
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6240_ops = {
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6320_ops = {
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6321_ops = {
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6350_ops = {
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6351_ops = {
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6352_ops = {
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

3297 3298 3299 3300 3301 3302 3303
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3304
		.port_base_addr = 0x10,
3305
		.global1_addr = 0x1b,
3306
		.age_time_coeff = 15000,
3307
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
3308
		.ops = &mv88e6085_ops,
3309 3310 3311 3312 3313 3314 3315 3316
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3317
		.port_base_addr = 0x10,
3318
		.global1_addr = 0x1b,
3319
		.age_time_coeff = 15000,
3320
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
3321
		.ops = &mv88e6095_ops,
3322 3323 3324 3325 3326 3327 3328 3329
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3330
		.port_base_addr = 0x10,
3331
		.global1_addr = 0x1b,
3332
		.age_time_coeff = 15000,
3333
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3334
		.ops = &mv88e6123_ops,
3335 3336 3337 3338 3339 3340 3341 3342
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3343
		.port_base_addr = 0x10,
3344
		.global1_addr = 0x1b,
3345
		.age_time_coeff = 15000,
3346
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3347
		.ops = &mv88e6131_ops,
3348 3349 3350 3351 3352 3353 3354 3355
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3356
		.port_base_addr = 0x10,
3357
		.global1_addr = 0x1b,
3358
		.age_time_coeff = 15000,
3359
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3360
		.ops = &mv88e6161_ops,
3361 3362 3363 3364 3365 3366 3367 3368
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3369
		.port_base_addr = 0x10,
3370
		.global1_addr = 0x1b,
3371
		.age_time_coeff = 15000,
3372
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3373
		.ops = &mv88e6165_ops,
3374 3375 3376 3377 3378 3379 3380 3381
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3382
		.port_base_addr = 0x10,
3383
		.global1_addr = 0x1b,
3384
		.age_time_coeff = 15000,
3385
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3386
		.ops = &mv88e6171_ops,
3387 3388 3389 3390 3391 3392 3393 3394
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3395
		.port_base_addr = 0x10,
3396
		.global1_addr = 0x1b,
3397
		.age_time_coeff = 15000,
3398
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3399
		.ops = &mv88e6172_ops,
3400 3401 3402 3403 3404 3405 3406 3407
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3408
		.port_base_addr = 0x10,
3409
		.global1_addr = 0x1b,
3410
		.age_time_coeff = 15000,
3411
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3412
		.ops = &mv88e6175_ops,
3413 3414 3415 3416 3417 3418 3419 3420
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3421
		.port_base_addr = 0x10,
3422
		.global1_addr = 0x1b,
3423
		.age_time_coeff = 15000,
3424
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3425
		.ops = &mv88e6176_ops,
3426 3427 3428 3429 3430 3431 3432 3433
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3434
		.port_base_addr = 0x10,
3435
		.global1_addr = 0x1b,
3436
		.age_time_coeff = 15000,
3437
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3438
		.ops = &mv88e6185_ops,
3439 3440 3441 3442 3443 3444 3445 3446
	},

	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3447
		.port_base_addr = 0x10,
3448
		.global1_addr = 0x1b,
3449
		.age_time_coeff = 15000,
3450
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3451
		.ops = &mv88e6240_ops,
3452 3453 3454 3455 3456 3457 3458 3459
	},

	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3460
		.port_base_addr = 0x10,
3461
		.global1_addr = 0x1b,
3462
		.age_time_coeff = 15000,
3463
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3464
		.ops = &mv88e6320_ops,
3465 3466 3467 3468 3469 3470 3471 3472
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3473
		.port_base_addr = 0x10,
3474
		.global1_addr = 0x1b,
3475
		.age_time_coeff = 15000,
3476
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3477
		.ops = &mv88e6321_ops,
3478 3479 3480 3481 3482 3483 3484 3485
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3486
		.port_base_addr = 0x10,
3487
		.global1_addr = 0x1b,
3488
		.age_time_coeff = 15000,
3489
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3490
		.ops = &mv88e6350_ops,
3491 3492 3493 3494 3495 3496 3497 3498
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3499
		.port_base_addr = 0x10,
3500
		.global1_addr = 0x1b,
3501
		.age_time_coeff = 15000,
3502
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3503
		.ops = &mv88e6351_ops,
3504 3505 3506 3507 3508 3509 3510 3511
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3512
		.port_base_addr = 0x10,
3513
		.global1_addr = 0x1b,
3514
		.age_time_coeff = 15000,
3515
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3516
		.ops = &mv88e6352_ops,
3517 3518 3519
	},
};

3520
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3521
{
3522
	int i;
3523

3524 3525 3526
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3527 3528 3529 3530

	return NULL;
}

3531
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3532 3533
{
	const struct mv88e6xxx_info *info;
3534 3535 3536
	unsigned int prod_num, rev;
	u16 id;
	int err;
3537

3538 3539 3540 3541 3542
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3543 3544 3545 3546 3547 3548 3549 3550

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3551
	/* Update the compatible info with the probed one */
3552
	chip->info = info;
3553

3554 3555 3556 3557
	err = mv88e6xxx_g2_require(chip);
	if (err)
		return err;

3558 3559
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3560 3561 3562 3563

	return 0;
}

3564
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3565
{
3566
	struct mv88e6xxx_chip *chip;
3567

3568 3569
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3570 3571
		return NULL;

3572
	chip->dev = dev;
3573

3574
	mutex_init(&chip->reg_lock);
3575

3576
	return chip;
3577 3578
}

3579 3580
static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
{
3581
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3582 3583 3584
		mv88e6xxx_ppu_state_init(chip);
}

3585 3586
static void mv88e6xxx_phy_destroy(struct mv88e6xxx_chip *chip)
{
3587
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3588 3589 3590
		mv88e6xxx_ppu_state_destroy(chip);
}

3591
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3592 3593 3594 3595 3596 3597
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3598
	if (sw_addr == 0)
3599
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3600
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3601
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3602 3603 3604
	else
		return -EINVAL;

3605 3606
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3607 3608 3609 3610

	return 0;
}

3611 3612
static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3613
	struct mv88e6xxx_chip *chip = ds->priv;
3614 3615 3616 3617 3618

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
		return DSA_TAG_PROTO_EDSA;

	return DSA_TAG_PROTO_DSA;
3619 3620
}

3621 3622 3623
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3624
{
3625
	struct mv88e6xxx_chip *chip;
3626
	struct mii_bus *bus;
3627
	int err;
3628

3629
	bus = dsa_host_dev_to_mii_bus(host_dev);
3630 3631 3632
	if (!bus)
		return NULL;

3633 3634
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3635 3636
		return NULL;

3637
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3638
	chip->info = &mv88e6xxx_table[MV88E6085];
3639

3640
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3641 3642 3643
	if (err)
		goto free;

3644
	err = mv88e6xxx_detect(chip);
3645
	if (err)
3646
		goto free;
3647

3648 3649
	mv88e6xxx_phy_init(chip);

3650
	err = mv88e6xxx_mdio_register(chip, NULL);
3651
	if (err)
3652
		goto free;
3653

3654
	*priv = chip;
3655

3656
	return chip->info->name;
3657
free:
3658
	devm_kfree(dsa_dev, chip);
3659 3660

	return NULL;
3661 3662
}

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
static int mv88e6xxx_port_mdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_mdb *mdb,
				      struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */

	return 0;
}

static void mv88e6xxx_port_mdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_mdb *mdb,
				   struct switchdev_trans *trans)
{
V
Vivien Didelot 已提交
3678
	struct mv88e6xxx_chip *chip = ds->priv;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689

	mutex_lock(&chip->reg_lock);
	if (mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					 GLOBAL_ATU_DATA_STATE_MC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load multicast MAC address\n");
	mutex_unlock(&chip->reg_lock);
}

static int mv88e6xxx_port_mdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_mdb *mdb)
{
V
Vivien Didelot 已提交
3690
	struct mv88e6xxx_chip *chip = ds->priv;
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
	mutex_unlock(&chip->reg_lock);

	return err;
}

static int mv88e6xxx_port_mdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_mdb *mdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
3705
	struct mv88e6xxx_chip *chip = ds->priv;
3706 3707 3708 3709 3710 3711 3712 3713 3714
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &mdb->obj, cb);
	mutex_unlock(&chip->reg_lock);

	return err;
}

3715
static struct dsa_switch_ops mv88e6xxx_switch_ops = {
3716
	.probe			= mv88e6xxx_drv_probe,
3717
	.get_tag_protocol	= mv88e6xxx_get_tag_protocol,
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
3732
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
3733 3734 3735 3736
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
3737
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
3738 3739 3740
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
3741
	.port_fast_age		= mv88e6xxx_port_fast_age,
3742 3743 3744 3745 3746 3747 3748 3749 3750
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
3751 3752 3753 3754
	.port_mdb_prepare       = mv88e6xxx_port_mdb_prepare,
	.port_mdb_add           = mv88e6xxx_port_mdb_add,
	.port_mdb_del           = mv88e6xxx_port_mdb_del,
	.port_mdb_dump          = mv88e6xxx_port_mdb_dump,
3755 3756
};

3757
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
3758 3759
				     struct device_node *np)
{
3760
	struct device *dev = chip->dev;
3761 3762 3763 3764 3765 3766 3767
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
3768
	ds->priv = chip;
3769
	ds->ops = &mv88e6xxx_switch_ops;
3770 3771 3772 3773 3774 3775

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

3776
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
3777
{
3778
	dsa_unregister_switch(chip->ds);
3779 3780
}

3781
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
3782
{
3783
	struct device *dev = &mdiodev->dev;
3784
	struct device_node *np = dev->of_node;
3785
	const struct mv88e6xxx_info *compat_info;
3786
	struct mv88e6xxx_chip *chip;
3787
	u32 eeprom_len;
3788
	int err;
3789

3790 3791 3792 3793
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

3794 3795
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
3796 3797
		return -ENOMEM;

3798
	chip->info = compat_info;
3799

3800
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
3801 3802
	if (err)
		return err;
3803

3804
	err = mv88e6xxx_detect(chip);
3805 3806
	if (err)
		return err;
3807

3808 3809
	mv88e6xxx_phy_init(chip);

3810 3811 3812
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);
3813

3814
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
3815
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
3816
		chip->eeprom_len = eeprom_len;
3817

3818
	err = mv88e6xxx_mdio_register(chip, np);
3819 3820 3821
	if (err)
		return err;

3822
	err = mv88e6xxx_register_switch(chip, np);
3823
	if (err) {
3824
		mv88e6xxx_mdio_unregister(chip);
3825 3826 3827
		return err;
	}

3828 3829
	return 0;
}
3830 3831 3832 3833

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
V
Vivien Didelot 已提交
3834
	struct mv88e6xxx_chip *chip = ds->priv;
3835

3836
	mv88e6xxx_phy_destroy(chip);
3837 3838
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
3839 3840 3841
}

static const struct of_device_id mv88e6xxx_of_match[] = {
3842 3843 3844 3845
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
3862
	register_switch_driver(&mv88e6xxx_switch_ops);
3863 3864
	return mdio_driver_register(&mv88e6xxx_driver);
}
3865 3866 3867 3868
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
3869
	mdio_driver_unregister(&mv88e6xxx_driver);
3870
	unregister_switch_driver(&mv88e6xxx_switch_ops);
3871 3872
}
module_exit(mv88e6xxx_cleanup);
3873 3874 3875 3876

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");