i915_gem_execbuffer.c 68.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34 35
#include <drm/drmP.h>
#include <drm/i915_drm.h>
36

37
#include "i915_drv.h"
38
#include "i915_gem_clflush.h"
39 40
#include "i915_trace.h"
#include "intel_drv.h"
41
#include "intel_frontbuffer.h"
42

43 44 45 46 47 48
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
49

50 51 52 53 54 55
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
56 57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
#define UPDATE			PIN_OFFSET_FIXED
61 62

#define BATCH_OFFSET_BIAS (256*1024)
63

64 65
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

189
struct i915_execbuffer {
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
216
	struct reloc_cache {
217 218 219
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
220
		unsigned int gen; /** Cached value of INTEL_GEN */
221
		bool use_64bit_reloc : 1;
222 223 224
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
225 226 227 228

		struct drm_i915_gem_request *rq;
		u32 *rq_cmd;
		unsigned int rq_size;
229
	} reloc_cache;
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
245 246
};

247 248 249 250 251 252 253 254
/*
 * As an alternative to creating a hashtable of handle-to-vma for a batch,
 * we used the last available reserved field in the execobject[] and stash
 * a link from the execobj to its vma.
 */
#define __exec_to_vma(ee) (ee)->rsvd2
#define exec_to_vma(ee) u64_to_ptr(struct i915_vma, __exec_to_vma(ee))

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

274
static int eb_create(struct i915_execbuffer *eb)
275
{
276 277
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
278

279 280 281 282 283 284 285 286 287 288 289
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
		do {
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
					      GFP_TEMPORARY |
					      __GFP_NORETRY |
					      __GFP_NOWARN);
			if (eb->buckets)
				break;
		} while (--size);

		if (unlikely(!eb->buckets)) {
			eb->buckets = kzalloc(sizeof(struct hlist_head),
					      GFP_TEMPORARY);
			if (unlikely(!eb->buckets))
				return -ENOMEM;
		}
305

306
		eb->lut_size = size;
307
	} else {
308
		eb->lut_size = -eb->buffer_count;
309
	}
310

311
	return 0;
312 313
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
		 const struct i915_vma *vma)
{
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return true;

	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

	if (entry->flags & EXEC_OBJECT_PINNED &&
	    vma->node.start != entry->offset)
		return true;

	if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

static inline void
eb_pin_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
{
	u64 flags;

349 350 351 352 353 354
	if (vma->node.size)
		flags = vma->node.start;
	else
		flags = entry->offset & PIN_OFFSET_MASK;

	flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
355 356
	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_GTT))
		flags |= PIN_GLOBAL;
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	if (unlikely(i915_vma_pin(vma, 0, 0, flags)))
		return;

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		if (unlikely(i915_vma_get_fence(vma))) {
			i915_vma_unpin(vma);
			return;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
}

374 375 376 377
static inline void
__eb_unreserve_vma(struct i915_vma *vma,
		   const struct drm_i915_gem_exec_object2 *entry)
{
378 379
	GEM_BUG_ON(!(entry->flags & __EXEC_OBJECT_HAS_PIN));

380 381 382
	if (unlikely(entry->flags & __EXEC_OBJECT_HAS_FENCE))
		i915_vma_unpin_fence(vma);

383
	__i915_vma_unpin(vma);
384 385
}

386 387 388
static inline void
eb_unreserve_vma(struct i915_vma *vma,
		 struct drm_i915_gem_exec_object2 *entry)
389
{
390 391
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return;
392 393

	__eb_unreserve_vma(vma, entry);
394
	entry->flags &= ~__EXEC_OBJECT_RESERVED;
395 396
}

397 398 399 400
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
401
{
402 403
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
404

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
422 423
	}

424 425 426 427 428 429 430 431 432 433 434 435 436 437
	if (unlikely(vma->exec_entry)) {
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

	return 0;
438 439
}

440 441 442 443
static int
eb_add_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
444
{
445 446 447 448 449 450 451 452
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
453 454
	}

455 456
	if (eb->lut_size >= 0) {
		vma->exec_handle = entry->handle;
457
		hlist_add_head(&vma->exec_node,
458 459
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
460
	}
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
	vma->exec_entry = entry;
484
	__exec_to_vma(entry) = (uintptr_t)vma;
485 486

	err = 0;
487
	eb_pin_vma(eb, entry, vma);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	if (eb_vma_misplaced(entry, vma)) {
		eb_unreserve_vma(vma, entry);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
	} else {
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

509 510 511 512 513
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	u64 flags;
	int err;

	flags = PIN_USER | PIN_NONBLOCK;
	if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
		flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		flags |= PIN_ZONE_4G;

	if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
		flags |= PIN_MAPPABLE;

	if (entry->flags & EXEC_OBJECT_PINNED) {
		flags |= entry->offset | PIN_OFFSET_FIXED;
		flags &= ~PIN_NONBLOCK; /* force overlapping PINNED checks */
	} else if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS) {
		flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
	}

	err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags);
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma));

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		err = i915_vma_get_fence(vma);
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];

			if (entry->flags & EXEC_OBJECT_PINNED &&
			    entry->flags & __EXEC_OBJECT_HAS_PIN)
				continue;

			vma = exec_to_vma(entry);
			eb_unreserve_vma(vma, entry);

			if (entry->flags & EXEC_OBJECT_PINNED)
				list_add(&vma->exec_link, &eb->unbound);
			else if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
644
}
645

646
static inline struct hlist_head *
647
ht_head(const  struct i915_gem_context_vma_lut *lut, u32 handle)
648
{
649
	return &lut->ht[hash_32(handle, lut->ht_bits)];
650 651 652
}

static inline bool
653
ht_needs_resize(const struct i915_gem_context_vma_lut *lut)
654
{
655 656
	return (4*lut->ht_count > 3*lut->ht_size ||
		4*lut->ht_count + 1 < lut->ht_size);
657 658
}

659 660
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
661 662 663 664
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
665 666 667 668 669 670 671
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
672 673
	if (unlikely(!ctx))
		return -ENOENT;
674 675 676 677

	if (unlikely(i915_gem_context_is_banned(ctx))) {
		DRM_DEBUG("Context %u tried to submit while banned\n",
			  ctx->user_handle);
678
		i915_gem_context_put(ctx);
679 680 681
		return -EIO;
	}

682
	eb->ctx = ctx;
683 684 685 686 687 688 689 690 691 692
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
693
{
694
#define INTERMEDIATE BIT(0)
695 696
	const unsigned int count = eb->buffer_count;
	struct i915_gem_context_vma_lut *lut = &eb->ctx->vma_lut;
697
	struct i915_vma *vma;
698 699
	struct idr *idr;
	unsigned int i;
700
	int slow_pass = -1;
701
	int err;
702

703 704
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
705

706 707 708
	if (unlikely(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS))
		flush_work(&lut->resize);
	GEM_BUG_ON(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS);
709 710 711 712 713

	for (i = 0; i < count; i++) {
		__exec_to_vma(&eb->exec[i]) = 0;

		hlist_for_each_entry(vma,
714
				     ht_head(lut, eb->exec[i].handle),
715 716 717 718
				     ctx_node) {
			if (vma->ctx_handle != eb->exec[i].handle)
				continue;

719 720 721
			err = eb_add_vma(eb, &eb->exec[i], vma);
			if (unlikely(err))
				return err;
722 723 724 725 726 727 728 729 730 731

			goto next_vma;
		}

		if (slow_pass < 0)
			slow_pass = i;
next_vma: ;
	}

	if (slow_pass < 0)
732
		goto out;
733

734
	spin_lock(&eb->file->table_lock);
735 736 737 738 739
	/*
	 * Grab a reference to the object and release the lock so we can lookup
	 * or create the VMA without using GFP_ATOMIC
	 */
	idr = &eb->file->object_idr;
740 741
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
742

743 744 745
		if (__exec_to_vma(&eb->exec[i]))
			continue;

746
		obj = to_intel_bo(idr_find(idr, eb->exec[i].handle));
747
		if (unlikely(!obj)) {
748
			spin_unlock(&eb->file->table_lock);
749 750
			DRM_DEBUG("Invalid object handle %d at index %d\n",
				  eb->exec[i].handle, i);
751 752
			err = -ENOENT;
			goto err;
753 754
		}

755
		__exec_to_vma(&eb->exec[i]) = INTERMEDIATE | (uintptr_t)obj;
756
	}
757
	spin_unlock(&eb->file->table_lock);
758

759 760
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
761

762
		if (!(__exec_to_vma(&eb->exec[i]) & INTERMEDIATE))
763
			continue;
764

765 766 767 768 769 770 771 772
		/*
		 * NOTE: We can leak any vmas created here when something fails
		 * later on. But that's no issue since vma_unbind can deal with
		 * vmas which are not actually bound. And since only
		 * lookup_or_create exists as an interface to get at the vma
		 * from the (obj, vm) we don't run the risk of creating
		 * duplicated vmas for the same vm.
		 */
773
		obj = u64_to_ptr(typeof(*obj),
774
				 __exec_to_vma(&eb->exec[i]) & ~INTERMEDIATE);
775
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
776
		if (unlikely(IS_ERR(vma))) {
777
			DRM_DEBUG("Failed to lookup VMA\n");
778 779
			err = PTR_ERR(vma);
			goto err;
780 781
		}

782 783 784 785 786
		/* First come, first served */
		if (!vma->ctx) {
			vma->ctx = eb->ctx;
			vma->ctx_handle = eb->exec[i].handle;
			hlist_add_head(&vma->ctx_node,
787 788 789
				       ht_head(lut, eb->exec[i].handle));
			lut->ht_count++;
			lut->ht_size |= I915_CTX_RESIZE_IN_PROGRESS;
790 791 792 793
			if (i915_vma_is_ggtt(vma)) {
				GEM_BUG_ON(obj->vma_hashed);
				obj->vma_hashed = vma;
			}
794 795

			i915_vma_get(vma);
796
		}
797

798 799 800
		err = eb_add_vma(eb, &eb->exec[i], vma);
		if (unlikely(err))
			goto err;
801 802 803 804 805 806

		/* Only after we validated the user didn't use our bits */
		if (vma->ctx != eb->ctx) {
			i915_vma_get(vma);
			eb->exec[i].flags |= __EXEC_OBJECT_HAS_REF;
		}
807 808
	}

809 810 811 812 813
	if (lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS) {
		if (ht_needs_resize(lut))
			queue_work(system_highpri_wq, &lut->resize);
		else
			lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
814 815
	}

816 817 818 819
out:
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
	eb->batch = exec_to_vma(&eb->exec[i]);
820

821
	/*
822 823 824 825 826 827 828
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
829
	 */
830 831 832 833
	if (!(eb->exec[i].flags & EXEC_OBJECT_PINNED))
		eb->exec[i].flags |= __EXEC_OBJECT_NEEDS_BIAS;
	if (eb->reloc_cache.has_fence)
		eb->exec[i].flags |= EXEC_OBJECT_NEEDS_FENCE;
834

835 836 837 838 839 840 841 842 843 844 845
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

err:
	for (i = slow_pass; i < count; i++) {
		if (__exec_to_vma(&eb->exec[i]) & INTERMEDIATE)
			__exec_to_vma(&eb->exec[i]) = 0;
	}
	lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
	return err;
#undef INTERMEDIATE
846 847
}

848
static struct i915_vma *
849
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
850
{
851 852
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
853
			return NULL;
854
		return exec_to_vma(&eb->exec[handle]);
855 856
	} else {
		struct hlist_head *head;
857
		struct i915_vma *vma;
858

859
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
860
		hlist_for_each_entry(vma, head, exec_node) {
861 862
			if (vma->exec_handle == handle)
				return vma;
863 864 865
		}
		return NULL;
	}
866 867
}

868
static void eb_release_vmas(const struct i915_execbuffer *eb)
869
{
870 871 872 873 874 875
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
876

877
		if (!vma)
878
			continue;
879

880
		GEM_BUG_ON(vma->exec_entry != entry);
881
		vma->exec_entry = NULL;
882

883 884 885 886 887
		if (entry->flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, entry);

		if (entry->flags & __EXEC_OBJECT_HAS_REF)
			i915_vma_put(vma);
888

889 890
		entry->flags &=
			~(__EXEC_OBJECT_RESERVED | __EXEC_OBJECT_HAS_REF);
891
	}
892 893
}

894
static void eb_reset_vmas(const struct i915_execbuffer *eb)
895
{
896 897 898 899
	eb_release_vmas(eb);
	if (eb->lut_size >= 0)
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
900 901
}

902
static void eb_destroy(const struct i915_execbuffer *eb)
903
{
904 905
	GEM_BUG_ON(eb->reloc_cache.rq);

906 907
	if (eb->lut_size >= 0)
		kfree(eb->buckets);
908 909
}

910
static inline u64
911
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
912
		  const struct i915_vma *target)
913
{
914
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
915 916
}

917 918
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
919
{
920
	cache->page = -1;
921
	cache->vaddr = 0;
922
	/* Must be a variable in the struct to allow GCC to unroll. */
923
	cache->gen = INTEL_GEN(i915);
924
	cache->has_llc = HAS_LLC(i915);
925
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
926 927
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
928
	cache->node.allocated = false;
929 930
	cache->rq = NULL;
	cache->rq_size = 0;
931
}
932

933 934 935 936 937 938 939 940
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
941 942
}

943 944
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

945 946 947 948 949 950 951
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

952 953 954 955 956 957 958 959 960 961 962
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

	__i915_add_request(cache->rq, true);
	cache->rq = NULL;
}

963
static void reloc_cache_reset(struct reloc_cache *cache)
964
{
965
	void *vaddr;
966

967 968 969
	if (cache->rq)
		reloc_gpu_flush(cache);

970 971
	if (!cache->vaddr)
		return;
972

973 974 975 976
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
977

978 979 980
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
981
		wmb();
982
		io_mapping_unmap_atomic((void __iomem *)vaddr);
983
		if (cache->node.allocated) {
984
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
985 986 987

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
988
					       cache->node.size);
989 990 991
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
992
		}
993
	}
994 995 996

	cache->vaddr = 0;
	cache->page = -1;
997 998 999 1000
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1001
			unsigned long page)
1002
{
1003 1004 1005 1006 1007 1008
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1009
		int err;
1010

1011 1012 1013
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
1014 1015 1016

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1017

1018 1019 1020 1021
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1022 1023
	}

1024 1025
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1026
	cache->page = page;
1027

1028
	return vaddr;
1029 1030
}

1031 1032
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1033
			 unsigned long page)
1034
{
1035
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1036
	unsigned long offset;
1037
	void *vaddr;
1038

1039
	if (cache->vaddr) {
1040
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1041 1042
	} else {
		struct i915_vma *vma;
1043
		int err;
1044

1045
		if (use_cpu_reloc(cache, obj))
1046
			return NULL;
1047

1048 1049 1050
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1051

1052 1053
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE | PIN_NONBLOCK);
1054 1055
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1056
			err = drm_mm_insert_node_in_range
1057
				(&ggtt->base.mm, &cache->node,
1058
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1059
				 0, ggtt->mappable_end,
1060
				 DRM_MM_INSERT_LOW);
1061
			if (err) /* no inactive aperture space, use cpu reloc */
1062
				return NULL;
1063
		} else {
1064 1065
			err = i915_vma_put_fence(vma);
			if (err) {
1066
				i915_vma_unpin(vma);
1067
				return ERR_PTR(err);
1068
			}
1069

1070 1071
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1072
		}
1073
	}
1074

1075 1076
	offset = cache->node.start;
	if (cache->node.allocated) {
1077
		wmb();
1078 1079 1080 1081 1082
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1083 1084
	}

1085 1086
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1087 1088
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1089

1090
	return vaddr;
1091 1092
}

1093 1094
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1095
			 unsigned long page)
1096
{
1097
	void *vaddr;
1098

1099 1100 1101 1102 1103 1104 1105 1106
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1107 1108
	}

1109
	return vaddr;
1110 1111
}

1112
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1113
{
1114 1115 1116 1117 1118
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1119

1120
		*addr = value;
1121

1122 1123
		/*
		 * Writes to the same cacheline are serialised by the CPU
1124 1125 1126 1127 1128 1129 1130 1131 1132
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_request *rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
				      cache->has_llc ? I915_MAP_WB : I915_MAP_WC);
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

	err = i915_gem_request_await_object(rq, vma->obj, true);
	if (err)
		goto err_request;

	err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		goto err_request;

	err = i915_switch_context(rq);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1196
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1197
	i915_vma_move_to_active(batch, rq, 0);
1198 1199 1200
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1201 1202
	i915_vma_unpin(batch);

1203
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1204 1205 1206
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
	i915_add_request(rq);
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1250 1251
static u64
relocate_entry(struct i915_vma *vma,
1252
	       const struct drm_i915_gem_relocation_entry *reloc,
1253 1254
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1255
{
1256
	u64 offset = reloc->offset;
1257 1258
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1259
	void *vaddr;
1260

1261 1262
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1263
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
		else if (gen >= 3)
			len = 3;
		else /* On gen2 MI_STORE_DWORD_IMM uses a physical address */
			goto repeat;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1322
repeat:
1323
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1324 1325 1326 1327 1328
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1329
			eb->reloc_cache.vaddr);
1330 1331 1332 1333 1334 1335

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1336 1337
	}

1338
out:
1339
	return target->node.start | UPDATE;
1340 1341
}

1342 1343 1344 1345
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1346
{
1347
	struct i915_vma *target;
1348
	int err;
1349

1350
	/* we've already hold a reference to all valid objects */
1351 1352
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1353
		return -ENOENT;
1354

1355
	/* Validate that the target is in a valid r/w GPU domain */
1356
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1357
		DRM_DEBUG("reloc with multiple write domains: "
1358
			  "target %d offset %d "
1359
			  "read %08x write %08x",
1360
			  reloc->target_handle,
1361 1362 1363
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1364
		return -EINVAL;
1365
	}
1366 1367
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1368
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1369
			  "target %d offset %d "
1370
			  "read %08x write %08x",
1371
			  reloc->target_handle,
1372 1373 1374
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1375
		return -EINVAL;
1376 1377
	}

1378
	if (reloc->write_domain) {
1379 1380
		target->exec_entry->flags |= EXEC_OBJECT_WRITE;

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1395
	}
1396

1397 1398
	/*
	 * If the relocation already has the right value in it, no
1399 1400
	 * more work needs to be done.
	 */
1401 1402
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1403
		return 0;
1404 1405

	/* Check that the relocation address is valid... */
1406
	if (unlikely(reloc->offset >
1407
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1408
		DRM_DEBUG("Relocation beyond object bounds: "
1409 1410 1411 1412
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1413
		return -EINVAL;
1414
	}
1415
	if (unlikely(reloc->offset & 3)) {
1416
		DRM_DEBUG("Relocation not 4-byte aligned: "
1417 1418 1419
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1420
		return -EINVAL;
1421 1422
	}

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
	 * of our synchronisation.
	 */
	vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC;

1433
	/* and update the user's relocation entry */
1434
	return relocate_entry(vma, reloc, eb, target);
1435 1436
}

1437
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1438
{
1439
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1440 1441 1442 1443
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	unsigned int remain;
1444

1445
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1446
	remain = entry->relocation_count;
1447 1448
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(urelocs))))
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1463

1464 1465
		/*
		 * This is the fast path and we cannot handle a pagefault
1466 1467 1468 1469 1470 1471 1472
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1473
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1474
		pagefault_enable();
1475 1476
		if (unlikely(copied)) {
			remain = -EFAULT;
1477 1478
			goto out;
		}
1479

1480
		remain -= count;
1481
		do {
1482
			u64 offset = eb_relocate_entry(eb, vma, r);
1483

1484 1485 1486
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1487
				goto out;
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1513
			}
1514 1515 1516
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1517
out:
1518
	reloc_cache_reset(&eb->reloc_cache);
1519
	return remain;
1520 1521 1522
}

static int
1523
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1524
{
1525
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
1526 1527 1528 1529
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1530 1531

	for (i = 0; i < entry->relocation_count; i++) {
1532
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1533

1534 1535 1536 1537
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1538
	}
1539 1540 1541 1542
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1543 1544
}

1545
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1546
{
1547 1548 1549
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1550

1551 1552 1553
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1554

1555 1556
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1557

1558 1559 1560 1561
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1562

1563 1564 1565 1566 1567
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1568
	}
1569
	return __get_user(c, end - 1);
1570
}
1571

1572
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1573
{
1574 1575 1576
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1577

1578 1579 1580 1581 1582 1583
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1584

1585 1586
		if (nreloc == 0)
			continue;
1587

1588 1589 1590
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1591

1592 1593
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1594

1595 1596 1597 1598 1599 1600
		relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1601

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char *)urelocs + copied,
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1615

1616 1617
			copied += len;
		} while (copied < size);
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1636

1637 1638
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1639

1640
	return 0;
1641

1642 1643 1644 1645 1646 1647 1648 1649
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1650 1651
}

1652
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1653
{
1654 1655
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1656

1657 1658
	if (unlikely(i915.prefault_disable))
		return 0;
1659

1660 1661
	for (i = 0; i < count; i++) {
		int err;
1662

1663 1664 1665 1666
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1667

1668
	return 0;
1669 1670
}

1671
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1672
{
1673
	struct drm_device *dev = &eb->i915->drm;
1674
	bool have_copy = false;
1675
	struct i915_vma *vma;
1676 1677 1678 1679 1680 1681 1682
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1683

1684
	/* We may process another execbuffer during the unlock... */
1685
	eb_reset_vmas(eb);
1686 1687
	mutex_unlock(&dev->struct_mutex);

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1709
	}
1710 1711 1712
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1713 1714
	}

1715 1716 1717
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1718 1719
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1720
		mutex_lock(&dev->struct_mutex);
1721
		goto out;
1722 1723
	}

1724
	/* reacquire the objects */
1725 1726
	err = eb_lookup_vmas(eb);
	if (err)
1727
		goto err;
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1741 1742
	}

1743 1744
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1745 1746 1747 1748 1749 1750
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

	return err ?: have_copy;
1773 1774
}

1775
static int eb_relocate(struct i915_execbuffer *eb)
1776
{
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1796
static void eb_export_fence(struct i915_vma *vma,
1797 1798 1799
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
1800
	struct reservation_object *resv = vma->resv;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1820

1821 1822 1823
	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
1824
		struct drm_i915_gem_object *obj = vma->obj;
1825

1826
		if (entry->flags & EXEC_OBJECT_CAPTURE) {
1827 1828 1829 1830 1831 1832
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1833
			capture->next = eb->request->capture_list;
1834
			capture->vma = vma;
1835
			eb->request->capture_list = capture;
1836 1837
		}

1838 1839
		if (entry->flags & EXEC_OBJECT_ASYNC)
			goto skip_flushes;
1840

1841
		if (unlikely(obj->cache_dirty && !obj->cache_coherent))
1842 1843
			i915_gem_clflush_object(obj, 0);

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
		err = i915_gem_request_await_object
			(eb->request, obj, entry->flags & EXEC_OBJECT_WRITE);
		if (err)
			return err;

skip_flushes:
		i915_vma_move_to_active(vma, eb->request, entry->flags);
		__eb_unreserve_vma(vma, entry);
		vma->exec_entry = NULL;
	}

	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);

1859
		eb_export_fence(vma, eb->request, entry->flags);
1860 1861
		if (unlikely(entry->flags & __EXEC_OBJECT_HAS_REF))
			i915_vma_put(vma);
1862
	}
1863
	eb->exec = NULL;
1864

1865
	/* Unconditionally flush any chipset caches (for streaming writes). */
1866
	i915_gem_chipset_flush(eb->i915);
1867

1868
	/* Unconditionally invalidate GPU caches and TLBs. */
1869
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1870 1871
}

1872
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1873
{
1874
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1875 1876
		return false;

C
Chris Wilson 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	/* Kernel clipping was a DRI1 misfeature */
	if (exec->num_cliprects || exec->cliprects_ptr)
		return false;

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1892 1893
}

1894 1895 1896 1897 1898 1899 1900
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1901
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1902 1903
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1904 1905
	/*
	 * Add a reference if we're newly entering the active list.
1906 1907 1908 1909 1910 1911
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1912 1913 1914 1915 1916
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1917

1918
	obj->base.write_domain = 0;
1919
	if (flags & EXEC_OBJECT_WRITE) {
1920 1921
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1922 1923
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1924

1925
		obj->base.read_domains = 0;
1926
	}
1927
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1928

1929 1930
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1931 1932
}

1933
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1934
{
1935 1936
	u32 *cs;
	int i;
1937

1938
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1939 1940 1941
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1942

1943
	cs = intel_ring_begin(req, 4 * 2 + 2);
1944 1945
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1946

1947
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1948
	for (i = 0; i < 4; i++) {
1949 1950
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1951
	}
1952
	*cs++ = MI_NOOP;
1953
	intel_ring_advance(req, cs);
1954 1955 1956 1957

	return 0;
}

1958
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1959 1960
{
	struct drm_i915_gem_object *shadow_batch_obj;
1961
	struct i915_vma *vma;
1962
	int err;
1963

1964 1965
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1966
	if (IS_ERR(shadow_batch_obj))
1967
		return ERR_CAST(shadow_batch_obj);
1968

1969
	err = intel_engine_cmd_parser(eb->engine,
1970
				      eb->batch->obj,
1971
				      shadow_batch_obj,
1972 1973
				      eb->batch_start_offset,
				      eb->batch_len,
1974
				      is_master);
1975 1976
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1977 1978
			vma = NULL;
		else
1979
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1980 1981
		goto out;
	}
1982

C
Chris Wilson 已提交
1983 1984 1985
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1986

1987
	vma->exec_entry =
1988 1989
		memset(&eb->exec[eb->buffer_count++],
		       0, sizeof(*vma->exec_entry));
1990
	vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1991
	__exec_to_vma(vma->exec_entry) = (uintptr_t)i915_vma_get(vma);
1992

C
Chris Wilson 已提交
1993
out:
C
Chris Wilson 已提交
1994
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1995
	return vma;
1996
}
1997

1998
static void
1999
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
2000 2001 2002 2003 2004
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

2005
static int eb_submit(struct i915_execbuffer *eb)
2006
{
2007
	int err;
2008

2009 2010 2011
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2012

2013 2014 2015
	err = i915_switch_context(eb->request);
	if (err)
		return err;
2016

2017
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2018 2019 2020
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2021 2022
	}

2023
	err = eb->engine->emit_bb_start(eb->request,
2024 2025 2026
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2027 2028 2029
					eb->batch_flags);
	if (err)
		return err;
2030

C
Chris Wilson 已提交
2031
	return 0;
2032 2033
}

2034 2035
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
2036
 * The engine index is returned.
2037
 */
2038
static unsigned int
2039 2040
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2041 2042 2043
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2044
	/* Check whether the file_priv has already selected one ring. */
2045 2046 2047
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2048

2049
	return file_priv->bsd_engine;
2050 2051
}

2052 2053
#define I915_USER_RINGS (4)

2054
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2055 2056 2057 2058 2059 2060 2061
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2062 2063 2064 2065
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2066 2067
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2068
	struct intel_engine_cs *engine;
2069 2070 2071

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2072
		return NULL;
2073 2074 2075 2076 2077 2078
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2079
		return NULL;
2080 2081 2082 2083 2084 2085
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2086
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2087 2088
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2089
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2090 2091 2092 2093
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2094
			return NULL;
2095 2096
		}

2097
		engine = dev_priv->engine[_VCS(bsd_idx)];
2098
	} else {
2099
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2100 2101
	}

2102
	if (!engine) {
2103
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2104
		return NULL;
2105 2106
	}

2107
	return engine;
2108 2109
}

2110
static int
2111
i915_gem_do_execbuffer(struct drm_device *dev,
2112 2113
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2114
		       struct drm_i915_gem_exec_object2 *exec)
2115
{
2116
	struct i915_execbuffer eb;
2117 2118 2119
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2120
	int err;
2121

2122 2123
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2124

2125 2126 2127
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2128
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2129
		args->flags |= __EXEC_HAS_RELOC;
2130
	eb.exec = exec;
2131 2132 2133
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2134 2135
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2136
	eb.buffer_count = args->buffer_count;
2137 2138 2139
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2140
	eb.batch_flags = 0;
2141
	if (args->flags & I915_EXEC_SECURE) {
2142
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2143 2144
		    return -EPERM;

2145
		eb.batch_flags |= I915_DISPATCH_SECURE;
2146
	}
2147
	if (args->flags & I915_EXEC_IS_PINNED)
2148
		eb.batch_flags |= I915_DISPATCH_PINNED;
2149

2150 2151
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2152 2153
		return -EINVAL;

2154
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2155
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2156 2157 2158
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2159
		if (eb.engine->id != RCS) {
2160
			DRM_DEBUG("RS is not available on %s\n",
2161
				 eb.engine->name);
2162 2163 2164
			return -EINVAL;
		}

2165
		eb.batch_flags |= I915_DISPATCH_RS;
2166 2167
	}

2168 2169
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2170 2171
		if (!in_fence)
			return -EINVAL;
2172 2173 2174 2175 2176
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2177
			err = out_fence_fd;
2178
			goto err_in_fence;
2179 2180 2181
		}
	}

2182 2183 2184
	if (eb_create(&eb))
		return -ENOMEM;

2185 2186 2187 2188
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2189 2190
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2191 2192 2193 2194 2195
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2196
	intel_runtime_pm_get(eb.i915);
2197

2198 2199 2200
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2201

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	err = eb_relocate(&eb);
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
	if (err < 0)
		goto err_vma;
2214

2215
	if (unlikely(eb.batch->exec_entry->flags & EXEC_OBJECT_WRITE)) {
2216
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2217 2218
		err = -EINVAL;
		goto err_vma;
2219
	}
2220 2221
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2222
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2223 2224
		err = -EINVAL;
		goto err_vma;
2225
	}
2226

2227
	if (eb.engine->needs_cmd_parser && eb.batch_len) {
2228 2229
		struct i915_vma *vma;

2230
		vma = eb_parse(&eb, drm_is_current_master(file));
2231
		if (IS_ERR(vma)) {
2232 2233
			err = PTR_ERR(vma);
			goto err_vma;
2234
		}
2235

2236
		if (vma) {
2237 2238 2239 2240 2241 2242 2243 2244 2245
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2246
			eb.batch_flags |= I915_DISPATCH_SECURE;
2247 2248
			eb.batch_start_offset = 0;
			eb.batch = vma;
2249
		}
2250 2251
	}

2252 2253
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2254

2255 2256
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2257
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2258
	 * hsw should have this fixed, but bdw mucks it up again. */
2259
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2260
		struct i915_vma *vma;
2261

2262 2263 2264 2265 2266 2267
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2268
		 *   so we don't really have issues with multiple objects not
2269 2270 2271
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2272
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2273
		if (IS_ERR(vma)) {
2274 2275
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2276
		}
2277

2278
		eb.batch = vma;
2279
	}
2280

2281 2282 2283
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2284
	/* Allocate a request for this batch buffer nice and early. */
2285 2286
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2287
		err = PTR_ERR(eb.request);
2288
		goto err_batch_unpin;
2289
	}
2290

2291
	if (in_fence) {
2292 2293
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2294 2295 2296 2297
			goto err_request;
	}

	if (out_fence_fd != -1) {
2298
		out_fence = sync_file_create(&eb.request->fence);
2299
		if (!out_fence) {
2300
			err = -ENOMEM;
2301 2302 2303 2304
			goto err_request;
		}
	}

2305 2306
	/*
	 * Whilst this request exists, batch_obj will be on the
2307 2308 2309 2310 2311
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2312
	eb.request->batch = eb.batch;
2313

2314 2315
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2316
err_request:
2317
	__i915_add_request(eb.request, err == 0);
2318
	add_to_client(eb.request, file);
2319

2320
	if (out_fence) {
2321
		if (err == 0) {
2322 2323 2324 2325 2326 2327 2328 2329
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2330

2331
err_batch_unpin:
2332
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2333
		i915_vma_unpin(eb.batch);
2334 2335 2336
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2337
	mutex_unlock(&dev->struct_mutex);
2338
err_rpm:
2339
	intel_runtime_pm_put(eb.i915);
2340 2341
	i915_gem_context_put(eb.ctx);
err_destroy:
2342
	eb_destroy(&eb);
2343 2344
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2345
err_in_fence:
2346
	dma_fence_put(in_fence);
2347
	return err;
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2358
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2359 2360 2361 2362
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2363 2364
	unsigned int i;
	int err;
2365

2366 2367
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2368 2369 2370
		return -EINVAL;
	}

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2385
	/* Copy in the exec list from userland */
2386 2387 2388 2389
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
				   __GFP_NOWARN | GFP_TEMPORARY);
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2390
	if (exec_list == NULL || exec2_list == NULL) {
2391
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2392
			  args->buffer_count);
M
Michal Hocko 已提交
2393 2394
		kvfree(exec_list);
		kvfree(exec2_list);
2395 2396
		return -ENOMEM;
	}
2397
	err = copy_from_user(exec_list,
2398
			     u64_to_user_ptr(args->buffers_ptr),
2399
			     sizeof(*exec_list) * args->buffer_count);
2400
	if (err) {
2401
		DRM_DEBUG("copy %d exec entries failed %d\n",
2402
			  args->buffer_count, err);
M
Michal Hocko 已提交
2403 2404
		kvfree(exec_list);
		kvfree(exec2_list);
2405 2406 2407 2408 2409 2410 2411 2412 2413
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2414
		if (INTEL_GEN(to_i915(dev)) < 4)
2415 2416 2417 2418 2419
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2420 2421
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
	if (exec2.flags & __EXEC_HAS_RELOC) {
2422
		struct drm_i915_gem_exec_object __user *user_exec_list =
2423
			u64_to_user_ptr(args->buffers_ptr);
2424

2425
		/* Copy the new buffer offsets back to the user's exec list. */
2426
		for (i = 0; i < args->buffer_count; i++) {
2427 2428 2429
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2430
			exec2_list[i].offset =
2431 2432 2433 2434 2435
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2436
				break;
2437 2438 2439
		}
	}

M
Michal Hocko 已提交
2440 2441
	kvfree(exec_list);
	kvfree(exec2_list);
2442
	return err;
2443 2444 2445 2446 2447 2448
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2449
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2450
	struct drm_i915_gem_execbuffer2 *args = data;
2451 2452
	struct drm_i915_gem_exec_object2 *exec2_list;
	int err;
2453

2454
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2455
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2456 2457 2458
		return -EINVAL;
	}

2459 2460 2461 2462 2463 2464
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2465
	if (exec2_list == NULL) {
2466
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2467 2468 2469
			  args->buffer_count);
		return -ENOMEM;
	}
2470 2471 2472 2473
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2474
		kvfree(exec2_list);
2475 2476 2477
		return -EFAULT;
	}

2478 2479 2480 2481 2482 2483 2484 2485 2486
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2487
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2488 2489
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2490

2491 2492
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2493
		for (i = 0; i < args->buffer_count; i++) {
2494 2495 2496
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2497
			exec2_list[i].offset =
2498 2499 2500 2501
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2502
		}
2503 2504
end_user:
		user_access_end();
2505 2506
	}

2507
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
2508
	kvfree(exec2_list);
2509
	return err;
2510
}