regmap.c 80.7 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
//
// Register map access API
//
// Copyright 2011 Wolfson Microelectronics plc
//
// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8

9
#include <linux/device.h>
10
#include <linux/slab.h>
11
#include <linux/export.h>
12 13
#include <linux/mutex.h>
#include <linux/err.h>
14
#include <linux/property.h>
15
#include <linux/rbtree.h>
16
#include <linux/sched.h>
17
#include <linux/delay.h>
18
#include <linux/log2.h>
19
#include <linux/hwspinlock.h>
20
#include <asm/unaligned.h>
21

M
Mark Brown 已提交
22
#define CREATE_TRACE_POINTS
23
#include "trace.h"
M
Mark Brown 已提交
24

25
#include "internal.h"
26

27 28 29 30 31 32 33 34
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

B
Ben Dooks 已提交
35 36 37 38 39 40 41 42 43 44
#ifdef LOG_DEVICE
static inline bool regmap_should_log(struct regmap *map)
{
	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
}
#else
static inline bool regmap_should_log(struct regmap *map) { return false; }
#endif


45 46
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
47
			       bool *change, bool force_write);
48

49 50
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
51 52
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
53 54
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
55 56
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
57 58
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

74 75
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
76 77 78 79 80 81 82 83 84 85 86 87
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
88
EXPORT_SYMBOL_GPL(regmap_check_range_table);
89

90 91 92 93 94 95 96 97
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

98
	if (map->wr_table)
99
		return regmap_check_range_table(map, reg, map->wr_table);
100

101 102 103
	return true;
}

104 105 106 107 108
bool regmap_cached(struct regmap *map, unsigned int reg)
{
	int ret;
	unsigned int val;

109
	if (map->cache_type == REGCACHE_NONE)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
		return false;

	if (!map->cache_ops)
		return false;

	if (map->max_register && reg > map->max_register)
		return false;

	map->lock(map->lock_arg);
	ret = regcache_read(map, reg, &val);
	map->unlock(map->lock_arg);
	if (ret)
		return false;

	return true;
}

127 128
bool regmap_readable(struct regmap *map, unsigned int reg)
{
129 130 131
	if (!map->reg_read)
		return false;

132 133 134
	if (map->max_register && reg > map->max_register)
		return false;

135 136 137
	if (map->format.format_write)
		return false;

138 139 140
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

141
	if (map->rd_table)
142
		return regmap_check_range_table(map, reg, map->rd_table);
143

144 145 146 147 148
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
149
	if (!map->format.format_write && !regmap_readable(map, reg))
150 151 152 153 154
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

155
	if (map->volatile_table)
156
		return regmap_check_range_table(map, reg, map->volatile_table);
157

158 159 160 161
	if (map->cache_ops)
		return false;
	else
		return true;
162 163 164 165
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
166
	if (!regmap_readable(map, reg))
167 168 169 170 171
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

172
	if (map->precious_table)
173
		return regmap_check_range_table(map, reg, map->precious_table);
174

175 176 177
	return false;
}

B
Ben Whitten 已提交
178 179 180 181 182 183 184 185 186 187 188
bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
{
	if (map->writeable_noinc_reg)
		return map->writeable_noinc_reg(map->dev, reg);

	if (map->wr_noinc_table)
		return regmap_check_range_table(map, reg, map->wr_noinc_table);

	return true;
}

189 190 191 192 193 194 195 196 197 198 199
bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
{
	if (map->readable_noinc_reg)
		return map->readable_noinc_reg(map->dev, reg);

	if (map->rd_noinc_table)
		return regmap_check_range_table(map, reg, map->rd_noinc_table);

	return true;
}

200
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
201
	size_t num)
202 203 204 205
{
	unsigned int i;

	for (i = 0; i < num; i++)
206
		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 208 209 210 211
			return false;

	return true;
}

212 213 214 215 216 217 218 219 220 221 222 223
static void regmap_format_12_20_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[0] = reg >> 4;
	out[1] = (reg << 4) | (val >> 16);
	out[2] = val >> 8;
	out[3] = val;
}


224 225 226 227 228 229 230 231
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

246 247 248 249 250 251 252 253 254 255
static void regmap_format_7_17_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = val >> 8;
	out[0] = (val >> 16) | (reg << 1);
}

256 257 258 259 260 261 262 263 264 265
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

266
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 268 269
{
	u8 *b = buf;

270
	b[0] = val << shift;
271 272
}

273
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274
{
275
	put_unaligned_be16(val << shift, buf);
276 277
}

278 279
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
280
	put_unaligned_le16(val << shift, buf);
281 282
}

283 284 285
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
286 287 288
	u16 v = val << shift;

	memcpy(buf, &v, sizeof(v));
289 290
}

291
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 293 294
{
	u8 *b = buf;

295 296
	val <<= shift;

297 298 299 300 301
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

302
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303
{
304
	put_unaligned_be32(val << shift, buf);
305 306
}

307 308
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
309
	put_unaligned_le32(val << shift, buf);
310 311
}

312 313 314
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
315 316 317
	u32 v = val << shift;

	memcpy(buf, &v, sizeof(v));
318 319
}

X
Xiubo Li 已提交
320 321 322
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
323
	put_unaligned_be64((u64) val << shift, buf);
X
Xiubo Li 已提交
324 325 326 327
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
328
	put_unaligned_le64((u64) val << shift, buf);
X
Xiubo Li 已提交
329 330 331 332 333
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
334 335 336
	u64 v = (u64) val << shift;

	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
337 338 339
}
#endif

340
static void regmap_parse_inplace_noop(void *buf)
341
{
342 343 344 345 346
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
347 348 349 350

	return b[0];
}

351 352
static unsigned int regmap_parse_16_be(const void *buf)
{
353
	return get_unaligned_be16(buf);
354 355
}

356 357
static unsigned int regmap_parse_16_le(const void *buf)
{
358
	return get_unaligned_le16(buf);
359 360
}

361
static void regmap_parse_16_be_inplace(void *buf)
362
{
363
	u16 v = get_unaligned_be16(buf);
364

365
	memcpy(buf, &v, sizeof(v));
366 367
}

368 369
static void regmap_parse_16_le_inplace(void *buf)
{
370
	u16 v = get_unaligned_le16(buf);
371

372
	memcpy(buf, &v, sizeof(v));
373 374
}

375
static unsigned int regmap_parse_16_native(const void *buf)
376
{
377 378 379 380
	u16 v;

	memcpy(&v, buf, sizeof(v));
	return v;
381 382
}

383
static unsigned int regmap_parse_24(const void *buf)
384
{
385
	const u8 *b = buf;
386 387 388 389 390 391 392
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

393 394
static unsigned int regmap_parse_32_be(const void *buf)
{
395
	return get_unaligned_be32(buf);
396 397
}

398 399
static unsigned int regmap_parse_32_le(const void *buf)
{
400
	return get_unaligned_le32(buf);
401 402
}

403
static void regmap_parse_32_be_inplace(void *buf)
404
{
405
	u32 v = get_unaligned_be32(buf);
406

407
	memcpy(buf, &v, sizeof(v));
408 409
}

410 411
static void regmap_parse_32_le_inplace(void *buf)
{
412
	u32 v = get_unaligned_le32(buf);
413

414
	memcpy(buf, &v, sizeof(v));
415 416
}

417
static unsigned int regmap_parse_32_native(const void *buf)
418
{
419 420 421 422
	u32 v;

	memcpy(&v, buf, sizeof(v));
	return v;
423 424
}

X
Xiubo Li 已提交
425 426 427
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
428
	return get_unaligned_be64(buf);
X
Xiubo Li 已提交
429 430 431 432
}

static unsigned int regmap_parse_64_le(const void *buf)
{
433
	return get_unaligned_le64(buf);
X
Xiubo Li 已提交
434 435 436 437
}

static void regmap_parse_64_be_inplace(void *buf)
{
438
	u64 v =  get_unaligned_be64(buf);
X
Xiubo Li 已提交
439

440
	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
441 442 443 444
}

static void regmap_parse_64_le_inplace(void *buf)
{
445
	u64 v = get_unaligned_le64(buf);
X
Xiubo Li 已提交
446

447
	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
448 449 450 451
}

static unsigned int regmap_parse_64_native(const void *buf)
{
452 453 454 455
	u64 v;

	memcpy(&v, buf, sizeof(v));
	return v;
X
Xiubo Li 已提交
456 457 458
}
#endif

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static void regmap_lock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irqsave(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
				    &map->spinlock_flags);
}

static void regmap_unlock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock(map->hwlock);
}

static void regmap_unlock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irq(map->hwlock);
}

static void regmap_unlock_hwlock_irqrestore(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
}

502
static void regmap_lock_unlock_none(void *__map)
503 504 505
{

}
506

507
static void regmap_lock_mutex(void *__map)
508
{
509
	struct regmap *map = __map;
510 511 512
	mutex_lock(&map->mutex);
}

513
static void regmap_unlock_mutex(void *__map)
514
{
515
	struct regmap *map = __map;
516 517 518
	mutex_unlock(&map->mutex);
}

519
static void regmap_lock_spinlock(void *__map)
520
__acquires(&map->spinlock)
521
{
522
	struct regmap *map = __map;
523 524 525 526
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
527 528
}

529
static void regmap_unlock_spinlock(void *__map)
530
__releases(&map->spinlock)
531
{
532
	struct regmap *map = __map;
533
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 535
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static void regmap_lock_raw_spinlock(void *__map)
__acquires(&map->raw_spinlock)
{
	struct regmap *map = __map;
	unsigned long flags;

	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
	map->raw_spinlock_flags = flags;
}

static void regmap_unlock_raw_spinlock(void *__map)
__releases(&map->raw_spinlock)
{
	struct regmap *map = __map;
	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
}

M
Mark Brown 已提交
553 554 555 556 557 558 559 560 561
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

562 563 564 565 566 567 568 569
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
570
			rb_entry(*new, struct regmap_range_node, node);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
594
			rb_entry(node, struct regmap_range_node, node);
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
{
	if (config->name) {
		const char *name = kstrdup_const(config->name, GFP_KERNEL);

		if (!name)
			return -ENOMEM;

		kfree_const(map->name);
		map->name = name;
	}

	return 0;
}

638 639 640 641
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;
642
	int ret;
643 644 645

	map->dev = dev;

646 647 648 649
	ret = regmap_set_name(map, config);
	if (ret)
		return ret;

650
	regmap_debugfs_exit(map);
651
	regmap_debugfs_init(map);
652 653 654 655 656 657 658 659 660 661 662 663 664 665

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
681

682 683 684 685 686 687 688 689
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

690 691 692
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
693
{
694
	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695
	enum regmap_endian endian;
696

697
	/* Retrieve the endianness specification from the regmap config */
698
	endian = config->val_format_endian;
699

700
	/* If the regmap config specified a non-default value, use that */
701 702
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
703

704 705 706 707 708 709 710 711 712 713 714
	/* If the firmware node exist try to get endianness from it */
	if (fwnode_property_read_bool(fwnode, "big-endian"))
		endian = REGMAP_ENDIAN_BIG;
	else if (fwnode_property_read_bool(fwnode, "little-endian"))
		endian = REGMAP_ENDIAN_LITTLE;
	else if (fwnode_property_read_bool(fwnode, "native-endian"))
		endian = REGMAP_ENDIAN_NATIVE;

	/* If the endianness was specified in fwnode, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
715 716

	/* Retrieve the endianness specification from the bus config */
717 718
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
719

720
	/* If the bus specified a non-default value, use that */
721 722
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
723 724

	/* Use this if no other value was found */
725
	return REGMAP_ENDIAN_BIG;
726
}
727
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728

729 730 731 732 733 734
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
735
{
736
	struct regmap *map;
737
	int ret = -EINVAL;
738
	enum regmap_endian reg_endian, val_endian;
739
	int i, j;
740

741
	if (!config)
742
		goto err;
743 744 745 746 747 748 749

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

750 751 752
	ret = regmap_set_name(map, config);
	if (ret)
		goto err_map;
753

754 755
	ret = -EINVAL; /* Later error paths rely on this */

756
	if (config->disable_locking) {
757
		map->lock = map->unlock = regmap_lock_unlock_none;
758
		map->can_sleep = config->can_sleep;
759
		regmap_debugfs_disable(map);
760
	} else if (config->lock && config->unlock) {
761 762 763
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
764
		map->can_sleep = config->can_sleep;
765
	} else if (config->use_hwlock) {
766 767 768
		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
		if (!map->hwlock) {
			ret = -ENXIO;
769
			goto err_name;
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		}

		switch (config->hwlock_mode) {
		case HWLOCK_IRQSTATE:
			map->lock = regmap_lock_hwlock_irqsave;
			map->unlock = regmap_unlock_hwlock_irqrestore;
			break;
		case HWLOCK_IRQ:
			map->lock = regmap_lock_hwlock_irq;
			map->unlock = regmap_unlock_hwlock_irq;
			break;
		default:
			map->lock = regmap_lock_hwlock;
			map->unlock = regmap_unlock_hwlock;
			break;
		}

		map->lock_arg = map;
788
	} else {
789 790
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
791 792 793 794 795 796 797 798 799 800 801 802 803
			if (config->use_raw_spinlock) {
				raw_spin_lock_init(&map->raw_spinlock);
				map->lock = regmap_lock_raw_spinlock;
				map->unlock = regmap_unlock_raw_spinlock;
				lockdep_set_class_and_name(&map->raw_spinlock,
							   lock_key, lock_name);
			} else {
				spin_lock_init(&map->spinlock);
				map->lock = regmap_lock_spinlock;
				map->unlock = regmap_unlock_spinlock;
				lockdep_set_class_and_name(&map->spinlock,
							   lock_key, lock_name);
			}
804 805 806 807
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
808
			map->can_sleep = true;
809 810
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
811 812
		}
		map->lock_arg = map;
813
	}
814 815 816 817 818 819 820 821 822 823

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

824 825
	map->reg_base = config->reg_base;

826
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
827
	map->format.pad_bytes = config->pad_bits / 8;
828
	map->format.reg_downshift = config->reg_downshift;
829
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
830 831
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
832
	map->reg_shift = config->pad_bits % 8;
833 834 835 836
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
837 838 839 840
	if (is_power_of_2(map->reg_stride))
		map->reg_stride_order = ilog2(map->reg_stride);
	else
		map->reg_stride_order = -1;
841 842 843
	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
844 845 846
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
847 848 849
	} else if (config->max_raw_read && config->max_raw_write) {
		map->max_raw_read = config->max_raw_read;
		map->max_raw_write = config->max_raw_write;
850
	}
851 852
	map->dev = dev;
	map->bus = bus;
853
	map->bus_context = bus_context;
854
	map->max_register = config->max_register;
855 856 857 858
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
B
Ben Whitten 已提交
859
	map->wr_noinc_table = config->wr_noinc_table;
860
	map->rd_noinc_table = config->rd_noinc_table;
861 862 863
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
864
	map->precious_reg = config->precious_reg;
B
Ben Whitten 已提交
865
	map->writeable_noinc_reg = config->writeable_noinc_reg;
866
	map->readable_noinc_reg = config->readable_noinc_reg;
867
	map->cache_type = config->cache_type;
868

869 870
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
871
	INIT_LIST_HEAD(&map->async_free);
872 873
	init_waitqueue_head(&map->async_waitq);

874 875 876
	if (config->read_flag_mask ||
	    config->write_flag_mask ||
	    config->zero_flag_mask) {
877 878
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
879
	} else if (bus) {
880 881 882
		map->read_flag_mask = bus->read_flag_mask;
	}

883 884 885 886 887 888 889 890 891 892
	if (config && config->read && config->write) {
		map->reg_read  = _regmap_bus_read;

		/* Bulk read/write */
		map->read = config->read;
		map->write = config->write;

		reg_endian = REGMAP_ENDIAN_NATIVE;
		val_endian = REGMAP_ENDIAN_NATIVE;
	} else if (!bus) {
893 894
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;
895
		map->reg_update_bits = config->reg_update_bits;
896

897 898 899 900 901
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;
902
		map->reg_update_bits = bus->reg_update_bits;
903

904 905 906 907
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
908
		map->reg_update_bits = bus->reg_update_bits;
909 910 911
		/* Bulk read/write */
		map->read = bus->read;
		map->write = bus->write;
912

913 914 915
		reg_endian = regmap_get_reg_endian(bus, config);
		val_endian = regmap_get_val_endian(dev, bus, config);
	}
916

917
	switch (config->reg_bits + map->reg_shift) {
918 919 920 921 922 923
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
924
			goto err_hwlock;
925 926 927
		}
		break;

928 929 930 931 932 933
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
934
			goto err_hwlock;
935 936 937 938 939 940 941 942
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
943 944 945
		case 17:
			map->format.format_write = regmap_format_7_17_write;
			break;
946
		default:
947
			goto err_hwlock;
948 949 950
		}
		break;

951 952 953 954 955 956
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
957
			goto err_hwlock;
958 959 960
		}
		break;

961 962 963 964 965 966 967 968 969 970
	case 12:
		switch (config->val_bits) {
		case 20:
			map->format.format_write = regmap_format_12_20_write;
			break;
		default:
			goto err_hwlock;
		}
		break;

971 972 973 974 975
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
976 977 978 979
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
980 981 982
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_16_le;
			break;
983 984 985 986
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
987
			goto err_hwlock;
988
		}
989 990
		break;

991 992
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
993
			goto err_hwlock;
994 995 996
		map->format.format_reg = regmap_format_24;
		break;

997
	case 32:
998 999 1000 1001
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
1002 1003 1004
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_32_le;
			break;
1005 1006 1007 1008
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
1009
			goto err_hwlock;
1010
		}
1011 1012
		break;

X
Xiubo Li 已提交
1013 1014 1015 1016 1017 1018
#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
1019 1020 1021
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_64_le;
			break;
X
Xiubo Li 已提交
1022 1023 1024 1025
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
1026
			goto err_hwlock;
X
Xiubo Li 已提交
1027 1028 1029 1030
		}
		break;
#endif

1031
	default:
1032
		goto err_hwlock;
1033 1034
	}

1035 1036 1037
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

1038 1039 1040 1041
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
1042
		map->format.parse_inplace = regmap_parse_inplace_noop;
1043 1044
		break;
	case 16:
1045 1046 1047 1048
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
1049
			map->format.parse_inplace = regmap_parse_16_be_inplace;
1050
			break;
1051 1052 1053 1054 1055
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
1056 1057 1058 1059 1060
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
1061
			goto err_hwlock;
1062
		}
1063
		break;
1064
	case 24:
1065
		if (val_endian != REGMAP_ENDIAN_BIG)
1066
			goto err_hwlock;
1067 1068 1069
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
1070
	case 32:
1071 1072 1073 1074
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
1075
			map->format.parse_inplace = regmap_parse_32_be_inplace;
1076
			break;
1077 1078 1079 1080 1081
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
1082 1083 1084 1085 1086
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
1087
			goto err_hwlock;
1088
		}
1089
		break;
X
Xiubo Li 已提交
1090
#ifdef CONFIG_64BIT
D
Dan Carpenter 已提交
1091
	case 64:
X
Xiubo Li 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
1108
			goto err_hwlock;
X
Xiubo Li 已提交
1109 1110 1111
		}
		break;
#endif
1112 1113
	}

1114 1115 1116
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
1117
			goto err_hwlock;
1118
		map->use_single_write = true;
1119
	}
1120

1121 1122
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
1123
		goto err_hwlock;
1124

1125
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1126 1127
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
1128
		goto err_hwlock;
1129 1130
	}

1131 1132
	if (map->format.format_write) {
		map->defer_caching = false;
1133
		map->reg_write = _regmap_bus_formatted_write;
1134 1135
	} else if (map->format.format_val) {
		map->defer_caching = true;
1136
		map->reg_write = _regmap_bus_raw_write;
1137 1138 1139
	}

skip_format_initialization:
1140

1141
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
1142
	for (i = 0; i < config->num_ranges; i++) {
1143 1144 1145 1146
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
1147 1148 1149
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
1150
			goto err_range;
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
1170 1171 1172

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
1173
		for (j = 0; j < config->num_ranges; j++) {
1174 1175 1176 1177
			unsigned int sel_reg = config->ranges[j].selector_reg;
			unsigned int win_min = config->ranges[j].window_start;
			unsigned int win_max = win_min +
					       config->ranges[j].window_len - 1;
1178

1179 1180 1181 1182
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

1183 1184
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
1185 1186 1187
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
1188 1189 1190 1191 1192
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
1193 1194 1195
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

1206
		new->map = map;
M
Mark Brown 已提交
1207
		new->name = range_cfg->name;
1208 1209 1210 1211 1212 1213 1214 1215
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
1216
		if (!_regmap_range_add(map, new)) {
1217
			dev_err(map->dev, "Failed to add range %d\n", i);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
1231

1232
	ret = regcache_init(map, config);
1233
	if (ret != 0)
1234 1235
		goto err_range;

1236
	if (dev) {
1237 1238 1239
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
1240
	} else {
1241
		regmap_debugfs_init(map);
1242
	}
M
Mark Brown 已提交
1243

1244 1245
	return map;

1246
err_regcache:
M
Mark Brown 已提交
1247
	regcache_exit(map);
1248 1249
err_range:
	regmap_range_exit(map);
1250
	kfree(map->work_buf);
1251
err_hwlock:
1252
	if (map->hwlock)
1253
		hwspin_lock_free(map->hwlock);
1254 1255
err_name:
	kfree_const(map->name);
1256 1257 1258 1259 1260
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
1261
EXPORT_SYMBOL_GPL(__regmap_init);
1262

1263 1264 1265 1266 1267
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

1268 1269 1270 1271 1272 1273
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
1274 1275 1276 1277 1278 1279 1280
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

1281 1282
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
1283 1284 1285 1286 1287 1288 1289 1290 1291
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
1292
EXPORT_SYMBOL_GPL(__devm_regmap_init);
1293

1294 1295 1296 1297 1298 1299
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
1300
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1301 1302
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
1303 1304 1305
}

/**
1306
 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

/**
 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
 *
 * @regmap: regmap bank in which this register field is located.
 * @rm_field: regmap register fields within the bank.
 * @reg_field: Register fields within the bank.
 * @num_fields: Number of register fields.
 *
 * The return value will be an -ENOMEM on error or zero for success.
 * Newly allocated regmap_fields should be freed by calling
 * regmap_field_bulk_free()
 */
int regmap_field_bulk_alloc(struct regmap *regmap,
			    struct regmap_field **rm_field,
1346
			    const struct reg_field *reg_field,
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
			    int num_fields)
{
	struct regmap_field *rf;
	int i;

	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
	if (!rf)
		return -ENOMEM;

	for (i = 0; i < num_fields; i++) {
		regmap_field_init(&rf[i], regmap, reg_field[i]);
		rm_field[i] = &rf[i];
	}

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);

/**
 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
 * fields.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @rm_field: regmap register fields within the bank.
 * @reg_field: Register fields within the bank.
 * @num_fields: Number of register fields.
 *
 * The return value will be an -ENOMEM on error or zero for success.
 * Newly allocated regmap_fields will be automatically freed by the
 * device management code.
 */
int devm_regmap_field_bulk_alloc(struct device *dev,
				 struct regmap *regmap,
				 struct regmap_field **rm_field,
1382
				 const struct reg_field *reg_field,
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
				 int num_fields)
{
	struct regmap_field *rf;
	int i;

	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
	if (!rf)
		return -ENOMEM;

	for (i = 0; i < num_fields; i++) {
		regmap_field_init(&rf[i], regmap, reg_field[i]);
		rm_field[i] = &rf[i];
	}

	return 0;
}
EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);

/**
 * regmap_field_bulk_free() - Free register field allocated using
 *                       regmap_field_bulk_alloc.
 *
 * @field: regmap fields which should be freed.
 */
void regmap_field_bulk_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_bulk_free);

/**
 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
 *                            devm_regmap_field_bulk_alloc.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 *
 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cycle.
 */
void devm_regmap_field_bulk_free(struct device *dev,
				 struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);

1431
/**
1432 1433
 * devm_regmap_field_free() - Free a register field allocated using
 *                            devm_regmap_field_alloc.
1434 1435 1436
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
1437 1438 1439 1440
 *
 * Free register field allocated using devm_regmap_field_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cyle.
1441 1442 1443 1444 1445 1446 1447 1448 1449
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
1450
 * regmap_field_alloc() - Allocate and initialise a register field.
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
1474 1475
 * regmap_field_free() - Free register field allocated using
 *                       regmap_field_alloc.
1476 1477 1478 1479 1480 1481 1482 1483 1484
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1485
/**
1486
 * regmap_reinit_cache() - Reinitialise the current register cache
1487 1488 1489 1490 1491 1492 1493 1494
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1495 1496 1497
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1498 1499 1500
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
1501 1502
	int ret;

1503
	regcache_exit(map);
1504
	regmap_debugfs_exit(map);
1505 1506 1507 1508 1509 1510

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
B
Ben Whitten 已提交
1511
	map->writeable_noinc_reg = config->writeable_noinc_reg;
1512
	map->readable_noinc_reg = config->readable_noinc_reg;
1513 1514
	map->cache_type = config->cache_type;

1515 1516 1517 1518 1519
	ret = regmap_set_name(map, config);
	if (ret)
		return ret;

	regmap_debugfs_init(map);
1520

1521 1522 1523
	map->cache_bypass = false;
	map->cache_only = false;

1524
	return regcache_init(map, config);
1525
}
1526
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1527

1528
/**
1529 1530 1531
 * regmap_exit() - Free a previously allocated register map
 *
 * @map: Register map to operate on.
1532 1533 1534
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1535 1536
	struct regmap_async *async;

1537
	regcache_exit(map);
1538
	regmap_debugfs_exit(map);
1539
	regmap_range_exit(map);
1540
	if (map->bus && map->bus->free_context)
1541
		map->bus->free_context(map->bus_context);
1542
	kfree(map->work_buf);
M
Mark Brown 已提交
1543 1544 1545 1546 1547 1548 1549 1550
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1551
	if (map->hwlock)
1552
		hwspin_lock_free(map->hwlock);
1553 1554
	if (map->lock == regmap_lock_mutex)
		mutex_destroy(&map->mutex);
1555
	kfree_const(map->name);
1556
	kfree(map->patch);
1557 1558
	if (map->bus && map->bus->free_on_exit)
		kfree(map->bus);
1559 1560 1561 1562
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
1573
		return !strcmp((*r)->name, data);
M
Mark Brown 已提交
1574 1575 1576 1577 1578
	else
		return 1;
}

/**
1579
 * dev_get_regmap() - Obtain the regmap (if any) for a device
M
Mark Brown 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1601
/**
1602
 * regmap_get_device() - Obtain the device from a regmap
T
Tuomas Tynkkynen 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1612
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1613

1614
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1615
			       struct regmap_range_node *range,
1616 1617 1618 1619 1620 1621 1622 1623
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1624 1625
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1626

1627 1628 1629 1630
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1631

1632 1633 1634 1635
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1636

1637 1638 1639 1640 1641 1642 1643 1644
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1645

1646 1647 1648
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1649
					  &page_chg, false);
1650

1651
		map->work_buf = orig_work_buf;
1652

1653
		if (ret != 0)
1654
			return ret;
1655 1656
	}

1657 1658
	*reg = range->window_start + win_offset;

1659 1660 1661
	return 0;
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
					  unsigned long mask)
{
	u8 *buf;
	int i;

	if (!mask || !map->work_buf)
		return;

	buf = map->work_buf;

	for (i = 0; i < max_bytes; i++)
		buf[i] |= (mask >> (8 * i)) & 0xff;
}

1677
static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1678
				  const void *val, size_t val_len, bool noinc)
1679
{
1680
	struct regmap_range_node *range;
1681 1682 1683
	unsigned long flags;
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1684 1685 1686
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1687 1688
	int i;

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	/* Check for unwritable or noinc registers in range
	 * before we start
	 */
	if (!regmap_writeable_noinc(map, reg)) {
		for (i = 0; i < val_len / map->format.val_bytes; i++) {
			unsigned int element =
				reg + regmap_get_offset(map, i);
			if (!regmap_writeable(map, element) ||
				regmap_writeable_noinc(map, element))
				return -EINVAL;
		}
	}
1701

1702 1703 1704 1705
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1706
			ival = map->format.parse_val(val + (i * val_bytes));
1707 1708
			ret = regcache_write(map,
					     reg + regmap_get_offset(map, i),
1709
					     ival);
1710 1711
			if (ret) {
				dev_err(map->dev,
1712
					"Error in caching of register: %x ret: %d\n",
1713
					reg + regmap_get_offset(map, i), ret);
1714 1715 1716 1717 1718 1719 1720 1721 1722
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1723 1724
	range = _regmap_range_lookup(map, reg);
	if (range) {
1725 1726 1727 1728 1729 1730
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1731
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1732
				win_residue, val_len / map->format.val_bytes);
1733 1734
			ret = _regmap_raw_write_impl(map, reg, val,
						     win_residue *
1735
						     map->format.val_bytes, noinc);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

1749
		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1750
		if (ret != 0)
1751 1752
			return ret;
	}
1753

1754
	reg += map->reg_base;
1755
	reg >>= map->format.reg_downshift;
1756
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1757 1758
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->write_flag_mask);
1759

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1770
	if (map->async && map->bus && map->bus->async_write) {
M
Mark Brown 已提交
1771
		struct regmap_async *async;
1772

1773
		trace_regmap_async_write_start(map, reg, val_len);
1774

M
Mark Brown 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1818 1819 1820 1821 1822 1823

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1824
			list_move(&async->list, &map->async_free);
1825 1826
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1827 1828

		return ret;
1829 1830
	}

1831
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1832

1833 1834 1835 1836
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1837
	if (val == work_val)
1838 1839 1840 1841
		ret = map->write(map->bus_context, map->work_buf,
				 map->format.reg_bytes +
				 map->format.pad_bytes +
				 val_len);
M
Marek Vasut 已提交
1842
	else if (map->bus && map->bus->gather_write)
1843
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1844 1845
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1846
					     val, val_len);
1847 1848
	else
		ret = -ENOTSUPP;
1849

1850
	/* If that didn't work fall back on linearising by hand. */
1851
	if (ret == -ENOTSUPP) {
1852 1853
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1854 1855 1856 1857
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1858 1859
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1860
		ret = map->write(map->bus_context, buf, len);
1861 1862

		kfree(buf);
1863
	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1864 1865 1866 1867 1868
		/* regcache_drop_region() takes lock that we already have,
		 * thus call map->cache_ops->drop() directly
		 */
		if (map->cache_ops && map->cache_ops->drop)
			map->cache_ops->drop(map, reg, reg + 1);
1869 1870
	}

1871
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1872

1873 1874 1875
	return ret;
}

1876 1877 1878 1879 1880 1881 1882
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1883
	return map->write && map->format.format_val && map->format.format_reg;
1884 1885 1886
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1909 1910 1911 1912 1913 1914 1915
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1916
	WARN_ON(!map->format.format_write);
1917 1918 1919 1920 1921 1922 1923 1924

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

1925
	reg += map->reg_base;
1926
	reg >>= map->format.reg_downshift;
1927 1928
	map->format.format_write(map, reg, val);

1929
	trace_regmap_hw_write_start(map, reg, 1);
1930

1931
	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1932

1933
	trace_regmap_hw_write_done(map, reg, 1);
1934 1935 1936 1937

	return ret;
}

1938 1939 1940 1941 1942 1943 1944 1945
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1946 1947 1948 1949 1950
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1951
	WARN_ON(!map->format.format_val);
1952 1953 1954

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
1955 1956 1957 1958
	return _regmap_raw_write_impl(map, reg,
				      map->work_buf +
				      map->format.reg_bytes +
				      map->format.pad_bytes,
1959 1960
				      map->format.val_bytes,
				      false);
1961 1962
}

1963 1964
static inline void *_regmap_map_get_context(struct regmap *map)
{
1965
	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1966 1967
}

1968 1969
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1970
{
M
Mark Brown 已提交
1971
	int ret;
1972
	void *context = _regmap_map_get_context(map);
1973

1974 1975 1976
	if (!regmap_writeable(map, reg))
		return -EIO;

1977
	if (!map->cache_bypass && !map->defer_caching) {
1978 1979 1980
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1981 1982
		if (map->cache_only) {
			map->cache_dirty = true;
1983
			return 0;
1984
		}
1985 1986
	}

1987 1988 1989 1990
	ret = map->reg_write(context, reg, val);
	if (ret == 0) {
		if (regmap_should_log(map))
			dev_info(map->dev, "%x <= %x\n", reg, val);
1991

1992 1993
		trace_regmap_reg_write(map, reg, val);
	}
M
Mark Brown 已提交
1994

1995
	return ret;
1996 1997 1998
}

/**
1999
 * regmap_write() - Write a value to a single register
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

2012
	if (!IS_ALIGNED(reg, map->reg_stride))
2013 2014
		return -EINVAL;

2015
	map->lock(map->lock_arg);
2016 2017 2018

	ret = _regmap_write(map, reg, val);

2019
	map->unlock(map->lock_arg);
2020 2021 2022 2023 2024

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

2025
/**
2026
 * regmap_write_async() - Write a value to a single register asynchronously
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

2039
	if (!IS_ALIGNED(reg, map->reg_stride))
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

2056
int _regmap_raw_write(struct regmap *map, unsigned int reg,
2057
		      const void *val, size_t val_len, bool noinc)
2058 2059 2060
{
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
2061 2062
	size_t chunk_count, chunk_bytes;
	size_t chunk_regs = val_count;
2063 2064 2065 2066 2067
	int ret, i;

	if (!val_count)
		return -EINVAL;

2068 2069 2070 2071 2072 2073 2074
	if (map->use_single_write)
		chunk_regs = 1;
	else if (map->max_raw_write && val_len > map->max_raw_write)
		chunk_regs = map->max_raw_write / val_bytes;

	chunk_count = val_count / chunk_regs;
	chunk_bytes = chunk_regs * val_bytes;
2075 2076 2077

	/* Write as many bytes as possible with chunk_size */
	for (i = 0; i < chunk_count; i++) {
2078
		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2079 2080
		if (ret)
			return ret;
2081 2082 2083 2084

		reg += regmap_get_offset(map, chunk_regs);
		val += chunk_bytes;
		val_len -= chunk_bytes;
2085 2086 2087
	}

	/* Write remaining bytes */
2088
	if (val_len)
2089
		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2090 2091 2092 2093

	return ret;
}

2094
/**
2095
 * regmap_raw_write() - Write raw values to one or more registers
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

2115
	if (!regmap_can_raw_write(map))
2116
		return -EINVAL;
2117 2118 2119
	if (val_len % map->format.val_bytes)
		return -EINVAL;

2120
	map->lock(map->lock_arg);
2121

2122
	ret = _regmap_raw_write(map, reg, val, val_len, false);
2123

2124
	map->unlock(map->lock_arg);
2125 2126 2127 2128 2129

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

B
Ben Whitten 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
/**
 * regmap_noinc_write(): Write data from a register without incrementing the
 *			register number
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Pointer to data buffer
 * @val_len: Length of output buffer in bytes.
 *
 * The regmap API usually assumes that bulk bus write operations will write a
 * range of registers. Some devices have certain registers for which a write
 * operation can write to an internal FIFO.
 *
 * The target register must be volatile but registers after it can be
 * completely unrelated cacheable registers.
 *
 * This will attempt multiple writes as required to write val_len bytes.
 *
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
 */
int regmap_noinc_write(struct regmap *map, unsigned int reg,
		      const void *val, size_t val_len)
{
	size_t write_len;
	int ret;

2157
	if (!map->write)
B
Ben Whitten 已提交
2158
		return -ENOTSUPP;
2159

B
Ben Whitten 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;
	if (val_len == 0)
		return -EINVAL;

	map->lock(map->lock_arg);

	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
		ret = -EINVAL;
		goto out_unlock;
	}

	while (val_len) {
		if (map->max_raw_write && map->max_raw_write < val_len)
			write_len = map->max_raw_write;
		else
			write_len = val_len;
2179
		ret = _regmap_raw_write(map, reg, val, write_len, true);
B
Ben Whitten 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
		if (ret)
			goto out_unlock;
		val = ((u8 *)val) + write_len;
		val_len -= write_len;
	}

out_unlock:
	map->unlock(map->lock_arg);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_noinc_write);

2192
/**
2193 2194
 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
 *                                   register field.
2195 2196 2197 2198
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
2199 2200 2201
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2202
 *
2203 2204 2205
 * Perform a read/modify/write cycle on the register field with change,
 * async, force option.
 *
2206 2207 2208
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2209 2210 2211
int regmap_field_update_bits_base(struct regmap_field *field,
				  unsigned int mask, unsigned int val,
				  bool *change, bool async, bool force)
2212 2213 2214
{
	mask = (mask << field->shift) & field->mask;

2215 2216 2217
	return regmap_update_bits_base(field->regmap, field->reg,
				       mask, val << field->shift,
				       change, async, force);
2218
}
2219
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2220

2221
/**
2222 2223
 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
 *                                    register field with port ID
2224 2225 2226 2227 2228
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
2229 2230 2231
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2232 2233 2234 2235
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
B
Bartosz Golaszewski 已提交
2236
int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2237 2238
				   unsigned int mask, unsigned int val,
				   bool *change, bool async, bool force)
2239 2240 2241 2242 2243 2244
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

2245 2246 2247 2248
	return regmap_update_bits_base(field->regmap,
				       field->reg + (field->id_offset * id),
				       mask, val << field->shift,
				       change, async, force);
2249
}
2250
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2251

2252 2253
/**
 * regmap_bulk_write() - Write multiple registers to the device
2254 2255 2256 2257 2258 2259 2260
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
2261
 * data to the device either in single transfer or multiple transfer.
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

2272
	if (!IS_ALIGNED(reg, map->reg_stride))
2273
		return -EINVAL;
2274

2275
	/*
2276 2277
	 * Some devices don't support bulk write, for them we have a series of
	 * single write operations.
2278
	 */
2279
	if (!map->write || !map->format.parse_inplace) {
2280
		map->lock(map->lock_arg);
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
2303

2304 2305 2306
			ret = _regmap_write(map,
					    reg + regmap_get_offset(map, i),
					    ival);
2307 2308 2309
			if (ret != 0)
				goto out;
		}
2310 2311
out:
		map->unlock(map->lock_arg);
2312
	} else {
2313 2314
		void *wval;

2315
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2316
		if (!wval)
2317
			return -ENOMEM;
2318

2319
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2320
			map->format.parse_inplace(wval + i);
2321

2322
		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2323 2324

		kfree(wval);
2325
	}
2326 2327 2328 2329
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

2330 2331 2332 2333 2334
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
2335
 * relative. The page register has been written if that was necessary.
2336 2337
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
2338
				       const struct reg_sequence *regs,
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

2351 2352 2353
	if (!len)
		return -EINVAL;

2354 2355 2356 2357 2358 2359 2360 2361 2362
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
2363 2364
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
2365
		trace_regmap_hw_write_start(map, reg, 1);
2366
		reg += map->reg_base;
2367
		reg >>= map->format.reg_downshift;
2368 2369 2370 2371 2372 2373 2374 2375
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

2376
	ret = map->write(map->bus_context, buf, len);
2377 2378 2379 2380 2381

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
2382
		trace_regmap_hw_write_done(map, reg, 1);
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2397
					       struct reg_sequence *regs,
2398 2399 2400 2401
					       size_t num_regs)
{
	int ret;
	int i, n;
2402
	struct reg_sequence *base;
2403
	unsigned int this_page = 0;
2404
	unsigned int page_change = 0;
2405 2406 2407
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
2408 2409
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

2445 2446 2447
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
2448

2449 2450 2451 2452 2453 2454
				if (regs[i].delay_us) {
					if (map->can_sleep)
						fsleep(regs[i].delay_us);
					else
						udelay(regs[i].delay_us);
				}
2455

2456 2457
				base += n;
				n = 0;
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

2469
		}
2470

2471 2472 2473 2474 2475 2476
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

2477
static int _regmap_multi_reg_write(struct regmap *map,
2478
				   const struct reg_sequence *regs,
2479
				   size_t num_regs)
2480
{
2481 2482 2483 2484 2485 2486 2487 2488
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
2489

2490 2491 2492 2493 2494 2495
			if (regs[i].delay_us) {
				if (map->can_sleep)
					fsleep(regs[i].delay_us);
				else
					udelay(regs[i].delay_us);
			}
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
2508
			if (!IS_ALIGNED(reg, map->reg_stride))
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2531 2532

	for (i = 0; i < num_regs; i++) {
2533 2534
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2535 2536 2537 2538

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2539
		range = _regmap_range_lookup(map, reg);
2540
		if (range || regs[i].delay_us) {
2541 2542
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2543 2544 2545 2546 2547 2548 2549
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2550 2551 2552
			return ret;
		}
	}
2553
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2554 2555
}

2556 2557
/**
 * regmap_multi_reg_write() - Write multiple registers to the device
2558 2559 2560 2561 2562
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2563 2564 2565
 * Write multiple registers to the device where the set of register, value
 * pairs are supplied in any order, possibly not all in a single range.
 *
2566
 * The 'normal' block write mode will send ultimately send data on the
2567
 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2568 2569 2570
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2571
 *
2572 2573
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2574
 */
2575
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2576
			   int num_regs)
2577
{
2578
	int ret;
2579 2580 2581

	map->lock(map->lock_arg);

2582 2583
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2584 2585 2586 2587 2588 2589
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2590 2591 2592
/**
 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
 *                                     device but not the cache
2593 2594 2595 2596 2597
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2598 2599 2600
 * Write multiple registers to the device but not the cache where the set
 * of register are supplied in any order.
 *
2601 2602 2603 2604 2605 2606 2607
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2608
int regmap_multi_reg_write_bypassed(struct regmap *map,
2609
				    const struct reg_sequence *regs,
2610
				    int num_regs)
2611
{
2612 2613
	int ret;
	bool bypass;
2614 2615 2616

	map->lock(map->lock_arg);

2617 2618 2619 2620 2621 2622 2623
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2624 2625 2626 2627
	map->unlock(map->lock_arg);

	return ret;
}
2628
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2629

2630
/**
2631 2632
 * regmap_raw_write_async() - Write raw values to one or more registers
 *                            asynchronously
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
2659
	if (!IS_ALIGNED(reg, map->reg_stride))
2660 2661 2662 2663
		return -EINVAL;

	map->lock(map->lock_arg);

2664 2665
	map->async = true;

2666
	ret = _regmap_raw_write(map, reg, val, val_len, false);
2667 2668

	map->async = false;
2669 2670 2671 2672 2673 2674 2675

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2676
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2677
			    unsigned int val_len, bool noinc)
2678
{
2679
	struct regmap_range_node *range;
2680 2681
	int ret;

2682
	if (!map->read)
2683 2684
		return -EINVAL;

2685 2686 2687
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
2688
					  noinc ? 1 : val_len / map->format.val_bytes);
2689
		if (ret != 0)
2690 2691
			return ret;
	}
2692

2693
	reg += map->reg_base;
2694
	reg >>= map->format.reg_downshift;
2695
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2696 2697
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->read_flag_mask);
2698
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2699

2700 2701 2702
	ret = map->read(map->bus_context, map->work_buf,
			map->format.reg_bytes + map->format.pad_bytes,
			val, val_len);
2703

2704
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2705 2706

	return ret;
2707 2708
}

2709 2710 2711 2712 2713 2714 2715 2716
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2717 2718 2719 2720 2721
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;
2722 2723
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
2724 2725 2726 2727

	if (!map->format.parse_val)
		return -EINVAL;

2728
	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2729
	if (ret == 0)
2730
		*val = map->format.parse_val(work_val);
2731 2732 2733 2734

	return ret;
}

2735 2736 2737 2738
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2739 2740
	void *context = _regmap_map_get_context(map);

2741 2742 2743 2744 2745 2746 2747 2748 2749
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2750 2751 2752
	if (!regmap_readable(map, reg))
		return -EIO;

2753
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2754
	if (ret == 0) {
B
Ben Dooks 已提交
2755
		if (regmap_should_log(map))
2756 2757
			dev_info(map->dev, "%x => %x\n", reg, *val);

2758
		trace_regmap_reg_read(map, reg, *val);
2759

2760 2761 2762
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2763

2764 2765 2766 2767
	return ret;
}

/**
2768
 * regmap_read() - Read a value from a single register
2769
 *
2770
 * @map: Register map to read from
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2781
	if (!IS_ALIGNED(reg, map->reg_stride))
2782 2783
		return -EINVAL;

2784
	map->lock(map->lock_arg);
2785 2786 2787

	ret = _regmap_read(map, reg, val);

2788
	map->unlock(map->lock_arg);
2789 2790 2791 2792 2793 2794

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
2795
 * regmap_raw_read() - Read raw data from the device
2796
 *
2797
 * @map: Register map to read from
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2808 2809 2810 2811
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2812

2813 2814
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2815
	if (!IS_ALIGNED(reg, map->reg_stride))
2816
		return -EINVAL;
2817 2818
	if (val_count == 0)
		return -EINVAL;
2819

2820
	map->lock(map->lock_arg);
2821

2822 2823
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2824 2825
		size_t chunk_count, chunk_bytes;
		size_t chunk_regs = val_count;
2826

2827
		if (!map->read) {
2828 2829 2830 2831
			ret = -ENOTSUPP;
			goto out;
		}

2832 2833 2834 2835
		if (map->use_single_read)
			chunk_regs = 1;
		else if (map->max_raw_read && val_len > map->max_raw_read)
			chunk_regs = map->max_raw_read / val_bytes;
2836

2837 2838 2839 2840
		chunk_count = val_count / chunk_regs;
		chunk_bytes = chunk_regs * val_bytes;

		/* Read bytes that fit into whole chunks */
2841
		for (i = 0; i < chunk_count; i++) {
2842
			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2843
			if (ret != 0)
2844 2845 2846 2847 2848
				goto out;

			reg += regmap_get_offset(map, chunk_regs);
			val += chunk_bytes;
			val_len -= chunk_bytes;
2849
		}
2850

2851
		/* Read remaining bytes */
2852
		if (val_len) {
2853
			ret = _regmap_raw_read(map, reg, val, val_len, false);
2854
			if (ret != 0)
2855
				goto out;
2856
		}
2857 2858 2859 2860 2861
	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2862
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2863
					   &v);
2864 2865 2866
			if (ret != 0)
				goto out;

2867
			map->format.format_val(val + (i * val_bytes), v, 0);
2868 2869
		}
	}
2870

2871
 out:
2872
	map->unlock(map->lock_arg);
2873 2874 2875 2876 2877

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2878
/**
2879 2880 2881 2882 2883 2884 2885 2886
 * regmap_noinc_read(): Read data from a register without incrementing the
 *			register number
 *
 * @map: Register map to read from
 * @reg: Register to read from
 * @val: Pointer to data buffer
 * @val_len: Length of output buffer in bytes.
 *
2887
 * The regmap API usually assumes that bulk read operations will read a
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
 * range of registers. Some devices have certain registers for which a read
 * operation read will read from an internal FIFO.
 *
 * The target register must be volatile but registers after it can be
 * completely unrelated cacheable registers.
 *
 * This will attempt multiple reads as required to read val_len bytes.
 *
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
 */
int regmap_noinc_read(struct regmap *map, unsigned int reg,
		      void *val, size_t val_len)
{
	size_t read_len;
	int ret;

2905 2906 2907
	if (!map->read)
		return -ENOTSUPP;

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;
	if (val_len == 0)
		return -EINVAL;

	map->lock(map->lock_arg);

	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
		ret = -EINVAL;
		goto out_unlock;
	}

	while (val_len) {
		if (map->max_raw_read && map->max_raw_read < val_len)
			read_len = map->max_raw_read;
		else
			read_len = val_len;
2927
		ret = _regmap_raw_read(map, reg, val, read_len, true);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
		if (ret)
			goto out_unlock;
		val = ((u8 *)val) + read_len;
		val_len -= read_len;
	}

out_unlock:
	map->unlock(map->lock_arg);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_noinc_read);

/**
 * regmap_field_read(): Read a value to a single register field
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2965
/**
2966
 * regmap_fields_read() - Read a value to a single register field with port ID
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2998
/**
2999
 * regmap_bulk_read() - Read multiple registers from the device
3000
 *
3001
 * @map: Register map to read from
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
3014
	bool vol = regmap_volatile_range(map, reg, val_count);
3015

3016
	if (!IS_ALIGNED(reg, map->reg_stride))
3017
		return -EINVAL;
3018 3019
	if (val_count == 0)
		return -EINVAL;
3020

3021
	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3022 3023 3024
		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
		if (ret != 0)
			return ret;
3025 3026

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3027
			map->format.parse_inplace(val + i);
3028
	} else {
3029 3030 3031 3032 3033 3034 3035
#ifdef CONFIG_64BIT
		u64 *u64 = val;
#endif
		u32 *u32 = val;
		u16 *u16 = val;
		u8 *u8 = val;

3036 3037
		map->lock(map->lock_arg);

3038
		for (i = 0; i < val_count; i++) {
3039
			unsigned int ival;
3040

3041 3042
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
					   &ival);
3043
			if (ret != 0)
3044
				goto out;
3045

3046
			switch (map->format.val_bytes) {
X
Xiubo Li 已提交
3047
#ifdef CONFIG_64BIT
3048 3049 3050
			case 8:
				u64[i] = ival;
				break;
X
Xiubo Li 已提交
3051
#endif
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
			case 4:
				u32[i] = ival;
				break;
			case 2:
				u16[i] = ival;
				break;
			case 1:
				u8[i] = ival;
				break;
			default:
3062 3063
				ret = -EINVAL;
				goto out;
3064
			}
3065
		}
3066 3067 3068

out:
		map->unlock(map->lock_arg);
3069
	}
3070

3071
	return ret;
3072 3073 3074
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

3075 3076
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
3077
			       bool *change, bool force_write)
3078 3079
{
	int ret;
3080
	unsigned int tmp, orig;
3081

3082 3083
	if (change)
		*change = false;
3084

3085 3086 3087
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
3088
			*change = true;
3089
	} else {
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
3102
	}
3103 3104 3105

	return ret;
}
3106 3107

/**
3108
 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3109 3110 3111 3112 3113 3114
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
3115 3116
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
3117
 *
3118 3119 3120 3121 3122 3123 3124 3125
 * Perform a read/modify/write cycle on a register map with change, async, force
 * options.
 *
 * If async is true:
 *
 * With most buses the read must be done synchronously so this is most useful
 * for devices with a cache which do not need to interact with the hardware to
 * determine the current register value.
3126 3127 3128
 *
 * Returns zero for success, a negative number on error.
 */
3129 3130 3131
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
			    unsigned int mask, unsigned int val,
			    bool *change, bool async, bool force)
3132 3133 3134 3135 3136
{
	int ret;

	map->lock(map->lock_arg);

3137
	map->async = async;
3138

3139
	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3140 3141 3142 3143 3144 3145 3146

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
3147
EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3148

3149 3150 3151 3152 3153 3154 3155
/**
 * regmap_test_bits() - Check if all specified bits are set in a register.
 *
 * @map: Register map to operate on
 * @reg: Register to read from
 * @bits: Bits to test
 *
3156 3157 3158
 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
 * bits are set and a negative error number if the underlying regmap_read()
 * fails.
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
 */
int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
{
	unsigned int val, ret;

	ret = regmap_read(map, reg, &val);
	if (ret)
		return ret;

	return (val & bits) == bits;
}
EXPORT_SYMBOL_GPL(regmap_test_bits);

3172 3173 3174 3175 3176
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

3177
	trace_regmap_async_io_complete(map);
3178

3179
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
3180
	list_move(&async->list, &map->async_free);
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
3191
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
3206
 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
3219
	if (!map->bus || !map->bus->async_write)
3220 3221
		return 0;

3222
	trace_regmap_async_complete_start(map);
3223

3224 3225 3226 3227 3228 3229 3230
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

3231
	trace_regmap_async_complete_done(map);
3232

3233 3234
	return ret;
}
3235
EXPORT_SYMBOL_GPL(regmap_async_complete);
3236

M
Mark Brown 已提交
3237
/**
3238 3239
 * regmap_register_patch - Register and apply register updates to be applied
 *                         on device initialistion
M
Mark Brown 已提交
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
3250 3251 3252
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
3253
 */
3254
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
3255 3256
			  int num_regs)
{
3257
	struct reg_sequence *p;
3258
	int ret;
M
Mark Brown 已提交
3259 3260
	bool bypass;

3261 3262 3263 3264
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

3265
	p = krealloc(map->patch,
3266
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3267 3268 3269 3270 3271
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
3272
	} else {
3273
		return -ENOMEM;
M
Mark Brown 已提交
3274 3275
	}

3276
	map->lock(map->lock_arg);
M
Mark Brown 已提交
3277 3278 3279 3280

	bypass = map->cache_bypass;

	map->cache_bypass = true;
3281
	map->async = true;
M
Mark Brown 已提交
3282

3283
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
3284

3285
	map->async = false;
M
Mark Brown 已提交
3286 3287
	map->cache_bypass = bypass;

3288
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
3289

3290 3291
	regmap_async_complete(map);

M
Mark Brown 已提交
3292 3293 3294 3295
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

3296 3297 3298 3299
/**
 * regmap_get_val_bytes() - Report the size of a register value
 *
 * @map: Register map to operate on.
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

3313
/**
3314 3315 3316
 * regmap_get_max_register() - Report the max register value
 *
 * @map: Register map to operate on.
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

3327
/**
3328 3329 3330
 * regmap_get_reg_stride() - Report the register address stride
 *
 * @map: Register map to operate on.
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

3353 3354 3355 3356 3357 3358 3359
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);